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Abstract. The author's method of oligomer sums for analysis of oligomer
compositions of eukaryotic and prokaryotic genomes is described. The use of this
method revealed the existence of general rules for cooperative oligomeric
organization of a wide list of genomes. These rules are called hyperbolic because they
are associated with hyperbolic sequences including the harmonic progression 1, 1/2,
1/3, .., 1/n. These rules are demonstrated by examples of quantitative analysis of
many genomes from the human genome to the genomes of archaea and bacteria. The
hyperbolic (harmonic) rules, speaking about the existence of algebraic invariants in
full genomic sequences, are considered as candidates for the role of universal rules for
the cooperative organization of genomes. The described phenomenological results
were obtained as consequences of the previously published author's quantum-
information model of long DNA sequences. The oligomer sums method was also
applied to the analysis of long genes and viruses including the COVID-19 virus; this
revealed, in characteristics of many of them, the phenomenon of such rhythmically
repeating deviations from model hyperbolic sequences, which are associated with
DNA triplets. In addition, an application of the oligomer sums method are shown to
the analysis of the following long sequences: 1) amino acid sequences in long proteins
like the protein Titin; 2) phonetic sequences of long Russan literary texts (for
checking of thoughts of many authors that phonetic organization of human languages
is deeply connected with the genetic language). The topics of the algebraic harmony
in living bodies and of the quantum-information approach in biology are discussed.
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1. Introduction

Living bodies are huge sets of various molecules, which have an amazing ability
to inherit biological traits of organisms to the next generations. G. Mendel, in his
experiments with plant hybrids, found that the transmission of traits under the
crossing of organisms occurs by certain algebraic rules, despite the colossal
heterogeneity and complexity of molecular structures of their bodies. This article
represents new results of studying hidden algebraic rules in molecular genetic
information structures.

One of the founders of quantum mechanics, who introduced also the term
“quantum biology,” P. Jordan noted the main difference between living and inanimate
objects: inanimate objects are controlled by the average random movement of their
millions of particles, whose individual influence is negligible, while in a living
organism selected — genetic - molecules have a dictatorial influence on the whole
living organism [McFadden and Al-Khalili, 2018]. Taking into account the dictatorial
influence of DNA and RNA molecules on the whole body, the author focused his
research on a special analysis of numeric parameters of nucleotide sequences in
single-stranded DNA of different genomes and their parts. As a result of this research,
a new method of analysis of nucleotide sequences was created, which has led to
discovering new numeric rules of cooperative oligomer organization of eukaryotic
and prokaryotic genomes. These materials are described below. All initial data on
nucleotide sequences for this analysis were taken from the GenBank.

It should be recalled that genomic nucleotide sequences are not random
sequences. These sequences carry information transmitted in a noise-immune manner
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from generation to generation. They contain a great number of repeats and
complementary palindromes. For example, in the human genome, about a third of
DNA sequences are represented by complementary palindromes [Gusfield, 1997;
McConkey, 1993]. In evolutionary biology, the abundance of such complementary
palindromes in genomes is seen as evidence of not random DNA sequences, that is,
their irreducibility to a set of random mutations (see additional data in [Fimmel,
Gumbel, Karpuzoglu, Petoukhov, 2019; Petoukhov, Tolokonnikov, 2020]).

For long nucleotide sequences of single-stranded DNA, the second Chargaff’s rule
is well known, which states that in such sequences the amount of guanine G is
approximately equal to the amount of cytosine C and the amount of adenine A is
approximately equal to the amount of thymine T. Many authors have devoted their
works to the analysis and discussion of this rule (see, for example, [Fimmel, Gumbel,
Karpuzoglu, Petoukhov, 2019; Prabhu, 1993; Rapoport, Trifonov, 2012; Rosandic,
Vlahovic, Gluncic, Paar, 2016; Shporer, Chor, Rosset, and Horn, 2016; Yamagishi,
2017]). According to [Albrecht-Buehler, 2006], this rule applies to the eukaryotic
chromosomes, the bacterial chromosomes, the double-stranded DNA viral genomes, and
the archaeal chromosomes provided they are long enough. In connection with the hidden
rules of long DNA sequences, Chargraff introduced the important term "a grammar of
biology"[Chargaff, 1971], which is repeatedly used by his followers (see, for example,
[Yamagishi, 2017]).

Regarding the quantitative analysis of DNA sequences, researchers usually study
quantities and percentages (or probability, or frequencies) of separate n-plets (that is
separate oligomers, having their length n). For example, the second Chargaff’s rule is
based on such a study of the quantities of separate nucleotides A, T, C, and G. The
work [Prahbu, 1993] studies quantities of separate n-plets. In contrast to such analytic
approaches, the author suggests for analysis of long nucleotide sequences another
method called the oligomer sums method. It allows studying the oligomer cooperative
organization by analysis of total amounts of all n-plets, having fixed length n, from
the certain equivalence classes of oligomers.

Below this analytic approach and the results of its application to many genomes
and separate nucleotide sequences are represented (these results are briefly described
in the published author’s letter [Petoukhov, 2020d]. In addition, this second version of
this article additionally shows that the oligomer sums method can be usefully applied
to the analysis not only genomic sequences of nucleotides but also to the analysis of
the following long biological sequences: 1) amino acid sequences of long proteins
(the example of the protein Titin is presented); 2) phonetic sequences representing
long Russian literary novels by L.N. Tolstoy, F.M. Dostoevsky, A.S. Pushkin (for
checking of thoughts of many authors that phonetic organization of linguistic
languages is deeply connected with the genetic language; the Russian alphabet has a
one-to-one correspondence between letters and phonemes, and by this reason, long
Russian literary texts are appropriate for such checking).

The presented study is a continuation of long term author's researches on
biological symmetries.

2. The hyperbolic rule in the oligomer cooperative organization of all
human nuclear chromosomes

The term “oligomer” refers to a molecular complex of chemical that consists of a
few repeating units. Nucleobases - adenine A, thymine T, cytosine C, and guanine G -
serve as such repeated units in DNA oligomers, which can have different lengths and
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which are also called n-plets, where n refers to the oligomer length. Each of
nucleotide sequences in eukaryotic and prokaryotic genomes can be considered as a
sequence of monomers (like as A-C-A-T-G-T-...), or a sequence of doublets (like as
AC-AT-GT-GG-...), or a sequence of triplets (like as ACA-TGT-GGA-...), etc. The
article describes the numerical analysis of sets of n-plets, which belong to the
equivalence classes (or cooperative groupings) of Aj-oligomers, or T;-oligomers, or
C;-oligomers, or Gj-oligomers correspondingly (their index 1 indicates that all
oligomers of each class start with the same nucleotide A, or T, or C, or G). For
example, the class of the Aj-oligomers contains the following n-plets: 4 doublets AA,
AT, AC, and AG; 16 triplets AAA, AAT, AAC, AAG, ATA, ..., AGG; etc. The total
amount of different kinds of n-plets, which start with the same nucleotide, under fixed
n is equal to 4™

To simplify a theoretical explanation, let us consider the example of an analysis of
the oligomer cooperative organization of human chromosome Nel by the author’s
method of oligomer sums (abbreviation, the OS-method). The totality of data obtained
by analyzing a nucleotide sequence by the OS-method is called its OS-
representations. This method gives numeric sequences called oligomer sums
sequences (or briefly, OS-sequences).

The application of the OS-method to the analysis of the human chromosome Nel
includes the following steps, which are typical also for the analysis of other DNA and
RNA sequences:

* Firstly, one should calculate phenomenological quantities Sa, St, Sc, and Sg
of monomers A, T, C, and G correspondingly in the considered nucleotide
sequence. In the human chromosome Ne 1, the following quantities exist: Sy =
67070277, St= 67244164, Sc = 48055043, Sg=48111528;

¢ Secondly, to construct the oligomer sums sequences, one should calculate the
total amounts X4 .1, Z1.4.1, Zcn1, and Xg 1 of n-plets in equivalence classes of
Aj-oligomers, T;-oligomers, C;-oligomers, and Gj-oligomers under n = 1, 2,
3, 4, ... (here, for example, the symbol X, ;; refers to the total amount of
triplets, which start with the nucleotide A). These total amounts regarding
each of the classes are members of the appropriate OS-sequence of the class.
For analysis of human chromosomes and various eukaryotic and prokaryotic
genomes, the author usually takes n =1, 2, 3, ... ,19, 20 or, in special cases, n
=1,2,3,...,99, 100.

One can remind here that genomic sequences in the GenBank sites usually contain
some letters N, indicating that there can be any nucleotide in this place
(https://www.ncbi.nlm.nih.gov/books/NBK21136/). By this reason, the total amount
of all monomers A, T, C, G (that is the sum S5 + St + S¢ + Sg), calculated for the
sequence from the GenBank, is slightly less than the complete length of the DNA
sequence, which is indicated in the GenBank. But practically this is not essential for
the results of the application of the OS-method to analyze genomic sequences.

For human chromosome Ne 1, phenomenological values of the total amounts of #-
plets from the class of Aj-oligomers are shown in the graphical form for n =1, 2, 3,
..., 20 in Fig.2.1, left (in blue). Here the abscissa axis represents the values of n, and
the ordinate axis represents the values of the total amounts X, ,; of n-plets, which
start with the nucleotide A. The amazing result is that all 20 phenomenological points
[n, Za 1] lie - with a high level of accuracy - along with the hyperbola Ha | = Sa/n =
67070277/n shown in red in Fig. 2.1, middle. Deviations of phenomenological
quantities X4 ,; from model values Sa/n lie in the range -0.030%+0.024%, that is,
they comprise only one-hundredths of a percent (Fig. 2.1, right). Initial data on this
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chromosome were taken in the GenBank:
https://www.ncbi.nlm.nih.gov/nuccore/NC _000001.11.
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Fig. 2.1. The graphs of data for the case of the OS-sequences of n-plets from the
class Aj-oligomers of the human chromosome Nel. In these graphs, the abscissa axis
represents the values n = 1, 2, 3, ..., 20. Left: the ordinate axis represents the set of
phenomenological total amounts X ,; of n-plets beginning with the nucleotide A.
Middle: the ordinate axis represents modeling values Sa/n = 67070277/n. The dots
with coordinates [n, Sa/n] belong to the shown hyperbola Ha ; = Sa/n = 67070277/n.
Right: deviations of the real OS-sequence Xa,; from the model hyperbolic
progression Sa/n in percentages.

This result is striking because it shows that knowing only the number of
nucleotides A, that is, only one member of the number series shown in Fig. 2.1, at
left, one can predict with the high accuracy all other 19 members, each of which is a
sum of 4™ possible kinds of n-plets. The number of possible kinds of n-plets in these
sums is growing rapidly, becoming astronomically huge: 4, 16, 64, 256, 1024, ..., 4%
..., 4. Of course, in the human chromosome Nel, for example, not all possible
4" kinds of the mentioned 20-plets exist but the total amount of all those kinds of
20-plets, which exist in this chromosome, is practically equal to SA/20 with a high
level of accuracy shown below.

Similar results were obtained when studying in this chromosome the total amounts
of n-plets, which start with the nucleotide T (Fig. 2.2, at left), and with the nucleotide
C (Fig. 2.2, at middle), and with the nucleotide G (Fig. 2.2, at right). The
phenomenological values of the total amounts Xt 1, Xc.1, and Zg,1 of n-plets are
also modeled effectively by appropriate hyperbolic progressions Hr, Hc1, Hg,
(2.1), which differ from each other only by their numerators St, Sc, and Sg:

Hr=St/n=67244164/n, Hc,1=Sc/n=48055043/n, Hg1=Sc/n=48111528/n (2.1)
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Fig. 2.2. Additional graph data to the OS-representation of the human
chromosome Nel. The abscissa axes represent the values n = 1, 2, 3, ..., 20. The
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ordinate axes show model values Hr(n), Hci(n), and Hg(n) (in red) from (2.1),
which practically coincide phenomenological values Xr,1, Xc,.1, and Zg 1 of the
total amount of n-plets, which start with the nucleotide T (at the left graph), the
nucleotide C (at the middle graph), and the nucleotide G (at the right graph). The
numerical data on this coincidence is shown below.

Fig. 2.3 shows real and model values for the OS-representation of the classes of
Ai-, Ti-, Ci-, and Gj-oligomers of the human chromosome Nel for n =1, 2, 3,..., 20.
The model values of the total amounts of n-plets, which start with a certain nucleotide
(A, T, C, or G), are calculated correspondingly as values of the hyperbolic
progressions Ha; = Sa/m = 67070277/n,  Hr,=S1/n=67244164/n,
Hc,1=Sc¢/n=48055043/n, and Hg 1=Sc/n=48111528/n. Deviations of real values from
model values are also shown in percent in accordance with the expression:
100(1 — (real value)/(model value)). One can see that these deviations are much lesser
than 0,2% in all cases.

N 1 2 3 4 5 6 7 8 9 10

A
Real || 67070277 | 33537501 | 22360413 | 16768845 | 13413532 [ 11179286 | 9584038 | 8383461 | 7453552 | 6706672

;Model|| 67070277 | 33535139 | 22356759 | 16767569 | 13414055 | 11178380 | 9581468 | 8383785 | 7452253 | 6707028
A%A 0.000 -0.007 -0.016 -0.008 0.004 -0.008 -0.027 0.004 -0.017 0.005

|| Real || 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359
I Model || 67244164 | 33622082 | 22414721 | 16811041 | 13448833 | 11207361 | 9606309 | 8405521 | 7471574 | 6724416
A%T 0.000 0.005 0.008 0.013 0.026 0.001 -0.005 0.006 0.019 0.001

C
Real || 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919

:Modclll 48055043 | 24027522 | 16018348 | 12013761 | 9611009 8009174 | 6865006 | 6006880 | 5339449 | 4805504
A%C 0.000 0.011 0.035 0.001 -0.013 0.043 -0.014 -0.022 0.046 0.033

|I_Real |f 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156
Il Model || 48111528 | 24055764 | 16037176 | 12027882 | 9622306 | 8018588 | 6873075 | 6013941 | 5345725 | 4811153

A%G 0.000 -0.008 -0.023 -0.009 -0.029 -0.033 0.057 0.009 -0.049 -0.042

] A

I Real || 6095821 | 5588773 | 5160139 | 4792078 | 4472245 | 4192017 | 3946422 | 3726860 | 3531067 | 3354107 ||
N Model J| 6097298 | 5589190 | 5159252 | 4790734 | 4471352 | 4191892 | 3945310 | 3726127 | 3530015 | 3353514 ||
I A%A 0.024 0.007 -0.017 -0.028 ~0.020 ~0.003 -0.028 -0.020 -0.030 -0.018 |

T

I Real J| 6111970 | 5601854 | 5173904 | 4801395 | 4479492 | 4202773 | 3954021 | 3735327 | 3535288 | 3360459 ||
I Model || 6113106 | 5603680 | 5172628 | 4803155 | 4482944 | 4202760 | 3955539 | 3735787 | 3539167 | 3362208 ||
| A%T 0.019 0.033 -0.025 0.037 0.077 0.000 0.038 0.012 0.110 0.052

C
|| Real J| 4370502 | 4002753 | 3694018 | 3433636 | 3202830 | 3003511 | 2826568 | 2668499 | 2531448 | 2402186 ||
I Model || 4368640 | 4004587 | 3696542 | 3432503 | 3203670 | 3003440 | 2826767 | 2669725 | 2529213 | 2402752 ||

A%C -0.043 0.046 0.068 -0.033 0.026 -0.002 0.007 0.046 -0.088 0.024

e
|TReaT 7372518 | 2013372 | 3701250 | 3435824 | 3210830 | 3006763 | 2830608 | 2673815 | 2532772 | 2407301 ||

I Model J| 4373775 | 4009294 | 3700887 | 3436538 | 3207435 | 3006971 | 2830090 | 2672863 | 2532186 | 2405576 ||
1| A%G || -0.017 -0.102 -0.010 0.021 -0.106 0.007 -0.021 -0.036 -0.023 -0.072 ||

Fig. 2.3. Real and model values to the OS-representations of the classes of
Ai-, Ti-, Ci-, and G;-oligomers in human chromosome Nel are shown forn =1, 2, ...,
20. The real total amounts of n-plets, which start with a certain nucleotide (A, T, C, or
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G), are indicated (in blue) jointly with their model values Ha (%), Hri(n), Hc.i(n),
and Hg(n) from (2.1) (in red). The symbol A% refers to deviations of real values
from model values in percent (the model values are taken as 100%).

The model hyperbolic progressions Ha 1 = Sa/n, Hr; = St/n, Hc1 = Sc¢/n, and
Hg1 = Sg/n serve as mathematical standards for the described phenomenological
facts. These hyperbolic progressions differ from each other only in the magnitude of
numerators in their expressions, and therefore they can be specified by the general
expression (2.2):

HN,1(I’Z) = SN/n, (22)

where N refers to any of nucleotides A, T, C, or G; Sy refers to the number of
corresponding monomers A, T, C, or G in the analyzed nucleotide sequence. If you
know the total quantity Sx of the monomer N, you can predict - with a high level of
accuracy - the total amounts of n-plets belonging to the class Nj-oligomers by using
the general expression (2.2). These phenomenological facts testify in favor of the
cooperative entity of the nucleotide sequence in the human chromosome Nel.

By the corresponding compression of the ordinate axis in these cartesian
coordinate systems (that is by appropriate scaling of numerators S, St, Sc, and Sg),
each of these four hyperbolic sequences Ha 1=Sa/n, Hr=St/n, Hc1=Sc/n, and
Hg 1=Sa/n reduces to the hyperbolic sequence (2.3):

y=1/n, (2.3)

which we call the canonical (or reference) hyperbolic sequence of OS-representations
(or the canonical OS-sequence) of nucleotide sequences. In mathematics, the
sequence (2.4)

1/1,1/2,1/3, 1/4, 1/5,..., 1/n (2.4)

is known long ago as a harmonic progression (or a harmonic sequence) where each
term is the harmonic mean of the neighboring terms. For this reason, the revealed
hyperbolic sequences in genomes can be also called genomic harmonic progressions,
and, in this mathematical sense, one can talk about the harmonic rules and the
harmonious organization of genomes described below. The historically famous name
"the harmonic progression" comes from the connection (2.4) with the series of
harmonics in music. The sums of the first members of the harmonic progression (2.4)
are called harmonic numbers. The rich centuries-old history of the study of harmonic
progressions and harmonic series is associated with the names of Pythagoras, Orem
(d'Oresme), Leibniz, Newton, Euler, Fourier, Dirichlet, Riemann, and other
researchers. The generalization of the harmonic series is known as the Riemann zeta
function. Using musical terminology, where the term “timbre” refers to the totality of
the set of sound frequencies in a prolonged sound, one can conditionally say that the
oligomer sums method represents the analyzed nucleotide sequence as some
“oligomer timbre”. The series of harmonic numbers serves as the discrete analog of
the continuous function of natural logarithm In n» [Graham, Knuth, Parashnik, 1994, p.
276]; this, in particular, connects the harmonic progression (2.4) with the Weber-
Fechner logarithmic law, which is the main psychophysical law and dictates
informatic peculiarities for all inherited sensory channels - vision, hearing, smell, etc ,
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whose organs (eyes, ears, nose, etc.) very differ each other in appearance. It testifies
that genetic and different psychophysical levels of inherited biological informatics

are structurally intercorrelated on the algebra-harmonical basis [Petoukhov, 2016,
2020b].

Given the relationship of the harmonic progression (2.4) with the four OS-
sequences for the four types of nucleotides A, T, C, and G, genomic sequences can
be called tetra-harmonic sequences. Fig. 2.3 shows that the OS-sequences of the total
amounts of n-plets from the classes of Aj-oligomers and T;-oligomers differ little
from each other. The same is true for the OS-sequences of the total amounts of n-plets

from the classes of C;- and Gj-oligomers. This fact is described by the expressions
(2.5):

DN REDY FEN Xl = X6l (2.5)

In the particular case at n = 1, expressions (2.4) demonstrate the second Chargaff's
rule on the approximate equality between the amounts of nucleotides A and T, as well
as C and G in long DNA sequences. Correspondingly the phenomenological fact,
described by expressions (2.4), is a certain generalization of the 2nd Chargaff's rule.

The results presented indicate, at least for the human chromosome Nel, that there
exist two general hyperbolic (or harmonic) rules regarding the total amounts of
n-plets, which start with a certain nucleotide A, T, C, or G.

The first hyperbolic rule (about interrelations of oligomers in individual
chromosomes):

e For any of classes of Aj;-, T;-, C;-, or Gj-oligomers in individual
chromosomes, the total amounts Xy, (n) of their n-plets, corresponding
different n, are interrelated each other through the general expression X, =
Sn/n with a high level of accuracy (here N refers to any of nucleotides A, T, C,
or G; Sy refers to the number of monomers N; n =1, 2, 3, 4, ... is not too large
compared to the full length of the nucleotide sequence). The
phenomenological points with coordinates [n, Xn,.1] practically lie on the
hyperbola having points Hy ; = Sn/n.

The second hyperbolic rule (about the similarity in the pairs of OS-sequences):

* In individual chromosomes, two numeric OS-sequences expressing the total
amounts of n-plets, which start with the nucleotide A and with the nucleotide
T, are approximately identical. The same is true for two numeric OS-
sequences expressing the total amounts of n-plets, which start with the
nucleotide C and with the nucleotide G (in accordance with the expressions
(2.5)). Heren =1, 2, 3, 4, ... is not too large compared to the full length of the
nucleotide sequence.
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The obtained results of the hyperbolic (or harmonic) interrelationship of the
amounts of n-plets, belonging to the indicated classes of oligomers, are not trivial.
Theoretical counter-examples of artificial nucleotide sequences, which have not such
interrelation, can be indicated. For example, for the case of the class of A;-oligomers,
one can mentally construct a long nucleotide sequence that contains many nucleotides
A but does not have two adjacent nucleotides A, that is, does not contain a single AA
doublet. Such a sequence does not have the hyperbolic interrelationship between the
amounts of the nucleotide A and the total amounts of n-plets starting with A. It can be
added that, in the same human chromosome Ne 1, the comparison of amounts of n-
plets, consisting only of nucleotides of the same kind, for example, of the nucleotide
A, shows the absence of the hyperbolic relationship between them. Really, in this case
the amount of the nucleotide A is equal to 67070277, the amount of the doublet AA -
10952057, the amount of the triplet AAA — 2837038, the amount of the tetraplet
AAAA — 856207, and so on without their hyperbolic interrelation.

Let us continue the description of obtained results of the analysis of the human
genome, which contains 22 autosomes and 2 sex chromosomes X and Y. These
chromosomes are very different from each other in length, molecular weight, gene
content, etc. What can be said about the other 23 human chromosomes? Are there
hyperbolic rules similar to formulated rules for the human chromosome Nel? Yes, the
author has got a positive answer to this question. For each of 24 human chromosomes,
knowing its quantity Sy of the monomer N (that is A, T, C, or G) allows you to
calculate the total amounts of n-plets, which start with the oligomer N, with a high
level of accuracy by using the general expression (2.2). Here n = 1, 2, 3,... but not
very large in comparison with the length of the DNA sequence. Fig. 2.4 shows
general confirmational results of studying all 24 human chromosomes by the
OS-method under n =1, 2, 3, ..., 20.

These results demonstrate that both hyperbolic (or harmonic) rules Ne 1 and Ne 2
hold true for each of the human chromosomes with a high level of accuracy.
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No Sa Range % Sy Range % S¢ Range % Sq Range %
1 § 67070277 -0.030 67244164 -0.025 48055043 -0.088 48111528 -0.106
+0.024 +0.110 +0.068 +0.057
2 71791213 -0.079 71987932 -0.075 48318180 -0.097 48450903 -0.105
+0.087 =0.095 +0.072 +0.141
3 J 59689091 -0.021 59833302 -0.097 39233483 -0.130 39344259 -0.034
+0.045 =0.098 +0.081 +0.088
4 | 58561236 -0.065 58623430 -0.036 36236976 -0.039 36331025 -0.117
+0.044 +0.128 +0.127 +0.075
5 | 54699094 -0.052 54955010 -0.071 35731600 -0.012 35879674 -0.103
+0.040 +0.078 +0.132 +0.085
6 § 51160489 0.039 51151754 0.049 33520786 0.092 33516767 0.029
+0.057 +0.022 +0.061 +0.069
7 J 47058248 -0.104 47215040 -0.061 32317984 -0.086 32378859 -0.076
+0.040 +0.030 +0.091 +0.069
8 J 42641072 -0.061 42581941 -0.111 28600559 -0.110 28600963 -0.068
+0.068 +0.071 +0.069 +0.050
9 § 31752642 -0.134 31733822 -0.083 22487631 -0.099 22470915 -0.079
+0.090 +0.065 +0.141 +0.143
10 § 38875926 -0.081 39027555 -0.067 27639505 -0.058 27719976 -0.118
+0.052 +0.099 +0.085 +0.085
11§ 39286730 -0.032 39361954 -0.062 27903257 -0.139 27981801 -0.086
+0.084 =0.042 +0.056 0,112
12 § 39370109 -0.096 39492225 -0.097 27092804 -0.076 27182678 -0.073
+0.056 =0.094 +0.078 +0.105
13 § 29224840 -0.067 29320872 -0.107 18341128 -0.107 18346620 -0.130
+0.077 +0.069 +0.141 +0.065
14 § 25606393 -0.109 25819249 -0.040 17733667 -0.137 17782016 -0.056
+0.100 +0.086 +0.077 +0.142
15 | 24508669 -0.085 24553812 -0.127 17752941 -0.090 17825903 -0.067
+0.179 +0.088 +0.162 +0.113
16 § 22558319 -0.122 22774906 -0.143 18172742 -0.146 18299976 -0.146
+0.080 =0.104 +0.074 +0.173
17 § 22639499 -0.141 22705261 -0.146 18723944 -0.134 18851500 -0.144
+0.105 =0.070 +0.072 =0.105
18 § 22087028 -0.160 22109347 -0.169 14574701 -0.090 14594335 -0.160
+0.071 =0.121 +0.134 +0.210
19§ 15142293 -0.160 15282753 -0.062 13954580 -0.103 14061132 -0.057
+0.024 +0.062 +0.097 +0.226
20 § 16455618 -0.106 16643030 -0.099 13037092 -0.062 13098788 -0.092
+0.129 +0.089 +0.116 +0.155
21 § 9943435 -0.161 9882679 -0.206 6864570 -0.134 6852178 -0.373
*0.083 +0.173 +0.277 +0.219
22 § 10382214 -0.175 10370725 -0.036 9160652 -0.258 9246186 -0.143
+0.084 =0.209 +0.155 +0.235
X § 46754807 -0.078 46916701 -0.102 30523780 0.116 30697741 -0.135
+0.084 =0.055 +0.179 +0.067
Y 7886192 -0.244 7956168 -0.063 5285789 -0.181 5286894 -0.247
+0.097 0.185 +0.407 +).142

Fig. 2.4. Some results of the analysis of all 24 human nuclear chromosomes
by the oligomer sums method are represented. For each of the chromosomes,
quantities Sa, St, Sc, and Sg of monomers A, T, C, and G are shown to define the
model hyperbolic progressions (2.2). The columns «Range %) show ranges of
deviations of real OS-series of corresponding n-plets (n = 1, 2, ..., 20) from their
appropriate model values Sa/n, St/n, Sc/n, and Sg/n in percentages (in each case, an
appropriate model value is taken as 100%). The left column shows chromosome
numbers.

One can show that the obtained phenomenological data also leads to the third
hyperbolic rule related to normalized versions of the OS-sequences Sa/n, St/n, Sc/n,
and Sg/n. Scaling the numerators Sa, St, Sc, and Sg by dividing by their total amount
S = SA+St+Sc+Ss, we obtain the corresponding scaling of all these OS-sequences,
which are termed as "normalized OS-sequences" (2.6):

SA/(nS), St/(nS), Sc/(nS), Sc/(nS) (2.6)
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It turns out that the normalized OS-sequences of all human chromosomes are
similar to each other with a high level of accuracy as Fig. 2.5 shows regarding the
first main members SA/S, St/S, S¢/S, and Sa/S of these hyperbolic sequences.

Chrom | SA/S St/S Sc/S Sc/S Harmonic mean
1 0.2910 | 0.2918 | 0.2085 | 0.2087 0.243
2 0.2984 | 0.2993 | 0.2009 | 0.2014 0.241
3 0.3013 | 0.3020 | 0.1980 | 0.1986 0.239
4 0.3086 | 0.3089 | 0.1910 | 0.1915 0.236
5 0.3018 | 0.3032 | 0.1971 | 0.1979 0.239
6 0.3021 | 0.302 | 0.1979 | 0.197 0.239
7 0.2960 | 0.2970 | 0.2033 | 0.2037 0.241
8 0.2994 | 0.2990 | 0.2008 | 0.2008 0.240
9 0.2928 | 0.2926 | 0.2074 | 0.2072 0.243
10 0.2917 | 0.2929 | 0.2074 | 0.2080 0.243
11 0.2920 | 0.2926 | 0.2074 | 0.2080 0.243
12 0.2957 | 0.2966 | 0.2035 | 0.2042 0.242
13 0.3069 | 0.3079 | 0.1926 | 0.1926 0.237
14 0.2945 | 0.2970 | 0.2040 | 0.2045 0.242
15 0.2896 | 0.2901 | 0.2097 | 0.2106 0.244
16 0.2758 | 0.2784 | 0.2221 | 0.2237 0.247
17 0.2730 | 0.2738 | 0.2258 | 0.2273 0.248
18 0.3011 | 0.3014 | 0.1987 | 0.1989 0.240
19 0.2591 | 0.2615 | 0.2388 | 0.2406 0.250
20 0.2778 | 0.2810 | 0.2201 | 0.2211 0.247
21 0.2964 | 0.2946 | 0.2047 | 0.2043 0.242
22 0.2651 | 0.2648 | 0.2339 | 0.2361 0.249
X 0.3019 | 0.3029 | 0.1971 | 0.1982 0.239
Y 0.2985 | 0.3012 | 0.2001 | 0.2001 0.240

Fig. 2.5. Data for normalized OS-sequences SA/(nS), St/(nS), Sc/(nS), and
Sc/(nS) of all human chromosomes are shown for comparison. Here
S = SA+St+Sc+Sg. Harmonic means of the values SA/S, St/S, Sc/S, and Sg/S in each
chromosome are also indicated.

The same results on the similarity of normalized OS-sequences Sa/nS, St/nS,
Sc/nS, and Sg/nS in all chromosomes of a particular genome were obtained by the
author when studying the genomes of a number of eukaryotes (until now, without a
single exception in analyzed cases). Below Sections 4-7 present appropriate results
for some eukaryotic genomes. These results allow proposing the third hyperbolic (or
harmonic) rule on the total amounts of n-plets, which start with a certain nucleotide
AT, C,orG.

The third hyperbolic rule (about the similarity of chromosomes):

¢ All chromosomes of any individual eukaryotic genome have approximately
the same normalized OS-sequences Sa/nS, Si/nS, Sc/nS, and Sg/nS
representing classes of A;-, Ti-, C;-, and G;-oligomers (n =1, 2, 3, 4, ... is not
too large compared to the full length of the nucleotide sequence).
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The author suggests that these hyperbolic rules are universal genetic rules. But at
this stage of the study, they are only candidates for the role of universal rules, since
the analysis of the widest variety of genomes is required to verify their universality.

Let us return to the harmonic progression (2.4) and recall its relation with the
well-known concept of the harmonic mean. The harmonic mean H of the positive real
numbers x;, X2, ..., X, is defined to be

o hm T (2.7)

Knowing two neighboring members of the harmonic progression, one can calculate its
next member. Here we can briefly mention that the harmonic mean is associated with
the Pythagorean teaching on the musical harmony and the aesthetics of proportions,
presented in the famous numerical triangle published 2000 years ago by Nichomachus
of Gerasa in his book “Introduction into arithmetic”. In accordance with this triangle,
the Parthenon [Kappraff, 2006] and other great architectural objects were created
because architecture was interpreted as the non-movement music, and the music was
interpreted as the dynamic architecture (see more details in [Kappraft, 2000, 2002;
Petoukhov, 2008; Petoukhov, He, 2010, Section 2, Chapter 4]). Since the harmonic
mean is related to the harmonic progression, the author indicates values of the
harmonic mean in some figures of the article for comparison analysis of OS-
sequences in different nucleotide sequences (Fig. 2.5 and many others).

Each genomic DNA sequence with its total amount S of all nucleotides A, T, C,
and G also contains total amounts S/n of n-plets (that is, S/2 doublets, S/3 triplets,
etc.). These total amounts are members of the hyperbolic sequence S, S/2, S/3,..., S/n.
Each member of this sequence is the sum of the four OS-sequences Sa/n, St/n, Sc/n,
and Sg/n (2.8):

Sa/n + St/n+ Sc/n+ Sg/n = S/n or Sa/nS + St/nS + Sc/nS +Se/mS =1/n (2.8)

These linear superpositions are valid for a wide variety of genomes that differ only in
individual coefficients Sa, St, Sc, and Sg.

Below Sections 4-7 represents the results, which have been obtained on the basis of
the analysis of very different genomes by the OS-method and which testify in favor
that the formulated hyperbolic rules have a general genomic significance. But
previously the next Section will explain the matrix-algebraic approach, which has led
the author to discover these rules.

3. The representation of the DNA alphabets by their binary-oppositional traits
in matrix genetics

Science does not know why the DNA alphabet of nucleotides consists of only
4 relatively simple molecules A, T, C, and G. But science knows that this alphabet is
endowed with a system of binary-opposition traits (or indicators):
- 1) in the double helix of DNA, there are two complementary pairs of nucleotides:
the nucleotides C and G of the first pair are connected by three hydrogen bonds,
and the nucleotides A and T of the second pair by two hydrogen bonds. Given
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these oppositional indicators, one can represent C=G=1and A =T =0,

- 2) the two nucleotides are keto molecules (G and T), and the other two are amino
molecules (A and C). Given these oppositional indicators, one can represent
G=T=landA=C=0.

Taking this into account, it is convenient to represent DNA alphabets of

4 nucleotides, 16 doublets and 64 triplets in the form of square tables, the columns of

which are numbered in accordance with oppositional indicators “3 or 2 hydrogen

bonds” (C = G =1, A =T = 0), and the rows in accordance with oppositional
indicators “amino or keto” (C=A =1, G =T = 0). In such tables, all letters, doublets,

and triplets automatically occupy their strictly individual places (Fig. 3.1).

11 [10 o1 [00
110 |11JGG|GT|TG |TT

10 GC |GA| TC | TA
Al o1 JCG|CT | AG | AT

00JCC | CA | AC | AA

QQ
—

111 110 101 100 011 010 001 000

111§ GGG | GGT | GTG | GTT | TGG | TGT | TTG | TTT

110 § GGC | GGA | GTC | GTA | TGC | TGA | TTC | TTA
101 § GCG | GCT | GAG | GAT | TCG | TCT | TAG | TAT
100 § GCC | GCA | GAC | GAA | TCC | TCA | TAC | TAA
011 § CGG | CGT | CTG | CTT | AGG | AGT | ATG | ATT
010 § CGC | CGA | CTC | CTA | AGC | AGA | ATC | ATA
001 § CCG | CCT | CAG | CAT | ACG | ACT | AAG | AAT
000 CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA

Fig. 3.1. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets,
and 64 triplets with a strict arrangement of all components. Each of the tables is
constructed in line with the principle of binary numeration of its column and rows on
the basis of binary-oppositional indicators of nucleobases G, T, C, and A (see
explanations in the text).

These three tables (Fig. 3.1) are not only simple tables but they are members
of the tensor family of matrices: the second and the third tensor (Kronecker) powers
of the matrix [G, T; C, A] generate similar arrangements of 16 doublets and 64 triplets
inside matrices [G, T; C, A](z) and [G, T; C, A](3) as shown in Fig. 3.1. One can note
here that the classes of Gj-, T;-, Ci-, and A;-oligomers, analyzed in the previous
Section as related to the hyperbolic rules, are connected by a special manner with the
tensor family of the matrices [G, T; C, A]"” where the symbol (n) refers to an
appropriate tensor power. More precisely, in Fig. 3.1, each of (2*2)-quadrants of the
matrix [G, T; C, A](z) contains a complete set of 4 doublets, which start with one of
nucleotides G, T, C, and A; each of (22*22)-quadrants of the matrix [G, T; C, A](3)
contains a complete set of 16 triplets, which start with one of the nucleotides G, T, C,
and A. In general, each of (2"'*2"")-quadrants of the matrix [G, T; C, A]" contains a
complete set of 4! n-plets, which start with one of the nucleotides G, T, C, and A.
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The genetic code is called a "degenerate code" because 64 triplets encode 20
amino acids and stop-codons so that several triplets can encode each amino acid at
once, and each triplet necessarily encodes only a single amino acid or a stop-codon.
The (8*8)-matrix of 64 triplets (Fig. 3.1) was built formally without any mention of
amino acids and stop-codons. Nothing data preliminary exist on a possible
correspondence between triplets and amino acids. How can these 20 amino acids and
stop-codons be located in this matrix of 64 triplets? There are a huge number of
possible options for the location and repetition of separate amino acids and stop-
codons in 64 cells of this matrix. More precisely, the number of these options is much
more than 10'" (for comparison, the entire time of the Universe existence is
estimated in modern physics at 10" seconds). But Nature uses - from this huge
number of options - only a very specific repetition and arrangement of separate amino
acids and stop-codons, the analysis of which is important for revealing the structural
organization of the information foundations of living matter.

Fig. 3.2 shows the real repetition and location of amino acids and stop-codons
in the Vertebrate Mitochondrial Code, which is the most symmetrical among known
dialects on the genetic code. This genetic code is called the most ancient and "ideal"
in genetics [Frank-Kamenetskii, 1988] (other dialects of the genetic code have small
differences from this one, which is considered in the theory of symmetries as the basis
from the structural point of view).

111 110 | 101 [100 |[O11 010 001 000
111§ PRO | PRO | HIS | GLN ]| THR | THR | ASN | LYS
ccc ccA | cAC | cAA ACC ACA AAC AAA
110 § PRO | PRO | GLN | HIS | THR | THR | LYS | ASN
ccG | ccT | CAG | CAT ACG ACT AAG AAT
10l fARG | ARG | LEU | LEU | SER | STOP| ILE | MET
cGC | cGa | crc | cTA AGC AGA ATC ATA
100 § ARG | ARG | LEU | LEU | STOP | SER | MET | ILE
cGG | ccT | CcTG | CTT AGG AGT ATG ATT
011 f ALA | ALA | ASP | GLU| SER | SER | TYR | STOP
GCC_ | GCA | GAC | GAA TCC TCA TAC TAA
010 f ALA | ALA | GLU | ASP | SER | SER | STOP | TYR
GCG | GCT | GAG | GAT TCG TCT TAG TAT
00l fGLY | GLY | VAL | VAL | CYS | TRP | PHE | LEU
GGC | GGA | GTIC | GTA TGC TGA TTC TTA
000 f GLY | GLY | VAL | VAL | TRP | CYS | LEU | PHE
GGG | GGT | GTG | GTT TGG TGT TTG TTT

Fig. 3.2. The location and repetition of 20 amino acids and 4 stop-codons
(denoted by bold) in the matrix of 64 triplets [C, A; G, T]® (Fig. 3.1) for the
Vertebrate Mitochondrial Code. The symbol “Stop” refers to stop-codons.

The location and repetition of all amino acids and stop-codons in the matrix of 64
triplets have the following algebraic feature (Fig. 3.2):
¢ Each of sixteen (2*2)-sub-quadrants, forming this genetic matrix and denoted
by bold frames, is bisymmerical: each of its both diagonals contains an
identical kind of amino acids or stop-codon.

Bisymmetric (2*2)-matrices [a, b; b, a] are well known in algebra as matrix
representations of two-dimensional hypercomplex numbers called hyperbolic
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numbers: a+bj where “a” and “b” are real numbers, and the imaginary unit j satisfies
j*= +1. [Kantor, Solodovnikov, 1989]. Hyperbolic numbers are used in physics and
mathematics and they have also synonymical names: "split-complex numbers",
“double numbers” and "perplex numbers". The collection of all hyperbolic numbers
forms algebra over the field of real numbers [Harkin, Harkin, 2004; Kantor,
Solodovnikov, 1989]. The algebra is not a division algebra or field since it contains
zero divisors. Addition and multiplication of hyperbolic numbers are defined by the
expressions (3.1):

)t v)=tu)tj(yty);,  (xAy)(utjv)=(xutyv)Hj(xv+yu) (3.1

This multiplication is commutative, associative, and distributes over addition.

Hyperbolic numbers have the matrix form of their representation in a form of
bisymmetric matrix [a, b; b, a]. Fig. 3.3 shows the decomposition of such matrix into
two sparse matrices, the first of which is the matrix representation of the real unit and
the second one is the matrix representation of the imaginary unit j.

a,b

1,0
a*1+b*j <« b,a|=a 0,1

0,1
+b| 1,0

Fig. 3.3. The decomposition of the bisymmetric matrix [a, b; b, a] into two sparse
matrices representing real and imaginary units of hyperbolic numbers
correspondingly.

Regarding the hyperbolas from the hyperbolic rules of the previous Section
(Figs. 2.1, 2.2, etc.), it can be noted that the transformation of one point of the
hyperbola to another point is determined by the transformation of the hyperbolic
rotation, in which the hyperbole glides along with itself. Such a transformation is
determined by a bisymmetric matrix [a, b; b, a] representing a special form of
hyperbolic numbers (the hyperbolic rotation is known in the special theory of
relativity under the name of the Lorentz transformation).

If each amino acid and stop-codon is represented by some characteristic parameter
(for example, the number of carbon atoms in these organic formations or numbers of
protons in its molecular structure, etc.), then a numerical (8*8)-matrix arises (Fig. 3.4)
with bisymmetric (2*2)-sub-quadrants representing hyperbolic numbers a+bj. In other
words, this phenomenologic arrangement of amino acids and stop-codons in the
matrix of 64 triplets is associated to the multiblock union of matrix presentations of
16 two-dimensional hyperbolic numbers.

515165 4 4 4 6
S|5)15[6] 4 4 6 4
616161613 0 6 5
6 1616 6] 0 3 5 6
313141513 3 9 0
313151 4] 3 3 0 9
2 1215|513 1119 6
2 021515111 3 6 9
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Fig. 3.4. The numeric analog of the symbolic (8*8)-matrix of amino acids and
stop-codons from Fig. 3.2 for the case of representing each of amino acids by
numbers of its carbon atoms (stop-codons are conditionally represented by zero).

The connection of the genetic code with hyperbolic numbers supplements the
following statement of the author, presented in a number of his publications
[Petoukhov, 2008, 2016, 2018a; Petoukhov, He, 2010, etc.]. The genetic code is not
just a mapping of one set of elements to other sets of elements by type, for example,
of a phone book in which phone numbers encode names of people. But the genetic
code is inherently an algebraic code, akin to a certain degree to those algebraic codes
that are used in modern communication theory for noise-immune transmission of
information. Algebraic features of the genetic code are related to the noise-immune
properties of this code and the whole genetic system.

One can explain the meaning and possibilities of algebraic codes by the example
of transmitting a photograph of the Martian surface from Mars to Earth using
electromagnetic signals. On the way to the Earth, these signals travel millions of
kilometers of interference and arrive at the Earth in a very weakened and distorted
form. But, magicallly, based on these mutilated signals on Earth, a high-quality
photograph of the surface of Mars is recreated. The secret of this magic lies in the fact
that from Mars not the information signals about this photo are sent, but algebraically
encoded versions of these signals that are quite other. At receivers on Earth, these
algebraically encoded signals are algebraically decoded into signals, which recreate
the original photographic image of the surface of Mars. It should be emphasized that
algebraic coding of information in the theory of noise-immune communication
actively uses the mathematical apparatus of matrices, which is also used in quantum
informatics and quantum mechanics as matrix operators. The author’s works are
aimed at studying algebraic properties of the genetic coding system for revealing
hidden information rules algebraically encoded in the molecular genetic system. This
article is part of a set of long-term author's studies of the genetic system by the
methods of matrix analysis and modeling combined under the general name "matrix
genetics" [Petoukhov, 2008, 2011, 2016, 2017, 2019b,c; Petoukhov, He, 2010;
Petoukhov, Petukhova, 2017a,b].

Let's continue the presentation of confirmational data on the existence of
hyperbolic (or harmonic) rules in the cooperative oligomeric organization of the
eukaryotic and prokaryotic genomes.

4. The hyperbolic rules in all chromosomes of a fruit fly Drosophila
melanogaster

This and upcoming Sections 5-7 are devoted to the analysis - by the oligomer sums
method (the OS-method) - of single-stranded DNA sequences of the complete sets of
chromosomes of a few model eukaryotic organisms, which are used long ago in the
study of genetics, development, and disease. Represented tabular data confirm that
both hyperbolic (harmonic) rules regarding n-plets from the classes of A;-, Ti-, Ci-,
and Gj-oligomers hold for each of described chromosomes atn =1, 2, 3,4, ..., 19, 20
(although these rules are also satisfied for larger values of n, at least up to n = 100, but
the data tables for such large n are too cumbersome to include in the article).

Let us start with a fruit fly Drosophila melanogaster, which is studied in
biology labs for over eighty years. All initial data about its chromosomes were taken
from the GenBank -
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https://www.ncbi.nlm.nih.gov/genome/?term=drosophila+melanogaster. Resulting
data in Fig. 4.1 confirm that - for all the chromosomes - the model hyperbolic
progressions Ha 1(n) = Sa/n, Hr.1(n) = St/n, Hc1(n) = Sc/n, and Hg 1(n) = Sx/n from
the expression (2.2) practically coincide with the real sequences of total amounts of
n-plets from the classes A;-, T;-, C;-, and Gj-oligomers at n = 1, 2, 3, ..., 20. In all
shown cases, the deviations of real sequences from model hyperbolic progressions are
less than 1% as data in the tabular columns «Range % indicates. This means that the
formulated hyperbolic (harmonic) rules are fulfilled in the considered genome.

No Sa Range % St Range % Sc Range % S¢ Range %
X | 6732793 -0.196 | 6774766 -0.125 4975870 -0.198 | 4992722 -0.148
+0.057 +0.090 +0.139 +0.213
2L | 6853032 -0.217 | 6836080 -0.219 | 4912017 -0.239 | 4912383 -0.251
+0.178 +0.090 +0.313 +0.350
2R | 7272860 -0.259 | 7235562 -0.144 5395216 -0.195 5376598 -0.222
+0.128 +0.304 +0.222 +0.323
3L J 8143548 -0.142 8198331 -0.126 5825673 -0.211 5824515 -0.262
+0.196 +0.206 +0.108 +0.169
3R J 9205526 -0.143 9197619 -0.145 6833716 -0.170 | 6817898 -0.231
+0.152 +0.132 +0.169 +0.192
4 425241 -1.759 436669 -0.423 232566 -1.463 236655 -0.855
+0.488 +0.744 +1.299 +1.369
Y [ 1056780 -0.494 1008635 -0.125 682725 -0.268 661579 -0.512
+0.314 +0.431 +0.659 +0.386

Fig. 4.1. The results of the analysis of all chromosomes of Drosophila
melanogaster by the OS-method. The left column shows symbols of chromosomes.
Sa, St, Sc, and Sg refer to the quantities of monomers A, T, C, and G in appropriate
chromosomes. The columns “Range %’ show deviations of real sequences from the
model hyperbolic progressions Ha 1(n) = Sa/n, Hr1(n) = St/n, Hci(n) = Sc¢/n, and
Hgi(n)=Sg/matn=1,2,3, ..., 20 (the model values are taken as 100%).

Fig. 4.2 shows data of normalized OS-sequences for all chromosomes of
Drosophila melanogaster.

Chrom | SA/S St/S Sc/S Sc/S Harmonic mean
X 0.2868 | 0.2886 | 0.2120 | 0.2127 0.244
2L 0.2915 | 0.2907 | 0.2089 | 0.2089 0.243
2R 0.2877 | 0.2862 | 0.2134 | 0.2127 0.245
3L 0.2909 | 0.2929 | 0.2081 | 0.2081 0.243
3R 0.2872 | 0.2869 | 0.2132 | 0.2127 0.245
4 0.3195 | 0.3280 | 0.1747 | 0.1778 0.228
Y 0.3099 | 0.2958 | 0.2002 | 0.1940 0.239

Fig. 4.2. Data of normalized OS-sequences Sa/nS, St/nS, Sc¢/nS, and Sg/nS
of all chromosomes of Drosophila melanogaster are shown for comparison. Here
S = SA+St+Sc+Ss. Harmonic means of the values Sa/S, St/S, Sc/S, and Sg/S in each
chromosome are also indicated.
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5. The hyperbolic rules in all chromosomes of a nematode Caenorhabditis
elegans

The Section represents data about results of the analysis of single-stranded
DNA sequences of the complete set of chromosomes of free-living soil nematode
Caenorhabditis elegans by the OS-method. This nematode is widely used as a model
organism in genetics for a long time. The Caenorhabditis elegans nuclear genome is
approximately 100 Mb, distributed among six chromosomes. All initial data are taken
from the GenBank
(https://www.ncbi.nlm.nih.gov/genome?term=caenorhabditis%?20elegans).

Resulting data in Fig. 5.1 confirm that - for all the chromosomes - the model
hyperbolic progressions Ha 1(n) = Sa/n, Hr.1(n) = St/n, Hc1(n) = Sc/n, and Hg 1(n) =
Sn/n from the expression (2.2) practically coincide with the real sequences of total
amounts of n-plets from the classes A;-, Ti-, C;-, and G-oligomers atn =1, 2, 3, ...,
20. In all shown cases, the deviations of real sequences from model hyperbolic
(harmonic) progressions are less than 0.5% as data in the tabular columns «Range %»
indicates. This means that the formulated hyperbolic (harmonic) rules are fulfilled in
the considered genome.

Ne Sa Range St Range Sc Range Sc Range
% % % %
1 4835939 | -0.144 | 4848450 | -0.160 § 2695890 | -0.487 §2692155| -0.498
+0.319 +0.294 +0.327 +0.218
2 |4878209 | -0.196 [4869734 | -0.229 |2769232 | -0.256 | 2762246 | -0.253
+0.421 +0.109 +0.492 +0.257
3 4444681 | -0.139 [ 4423618 | -0.269 | 2449158 | -0.451 | 2466344 | -0.173
+0.157 +0.156 +0.303 +0.362
4 |5711043 | -0.106 5730974 | -0.253 |3034784 | -0.393 [3017028 | -0.199
+0.229 +0.177 +0.219 +0.414
5 6750403 | -0.145 | 6760297 | -0.164 §3712075 | -0.222 J3701405| -0.418
+0.124 +0.203 +0.575 +0.286
X | 5747200 | -0.256 |5734092 | -0.166 [3119741 | -0.156 {3117909 | -0.272
+0.120 +0.167 +0.340 +0.256

Fig. 5.1. The results of the analysis of all chromosomes of Caenorhabditis
elegans by the OS-method. The left column shows symbols of chromosomes. Sa, St,
Sc, and Sg refer to the quantities of monomers A, T, C, and G in appropriate
chromosomes. The columns “Range %” show deviations of real series from the model
hyperbolic progressions Ha 1(n) = Sa/n, Hr.1(n) = St/n, Hc1(n) = Sc/n, and Hg 1(n) =
Seg/matn=1,2,3, ..., 20 (the model values are taken as 100%).

Fig. 5.2 shows data of normalized OS-sequences for all chromosomes of
Caenorhabditis elegans.

Chrom | SA/S St/S Sc/S S¢/S | Harmonic mean
1 0.3208 | 0.3217 | 0.1789 | 0.1786 0.230
2 0.3193 | 0.3187 | 0.1812 | 0.1808 0.231
3 0.3225 1 0.3209 | 0.1777 | 0.1789 0.229
4 0.3265 | 0.3276 | 0.1735 | 0.1725 0.226
5 0.3226 | 0.3231 | 0.1774 | 0.1769 0.229
X 0.3244 | 0.3236 | 0.1761 | 0.1760 0.228
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Fig. 5.2. Data of normalized OS-sequences Sa/nS, St/nS, Sc/nS, and Sg/nS
of all chromosomes of Caenorhabditis elegans are shown for comparison. Here
S = SA+St+Sc+Sg. Harmonic means of the values SA/S, St/S, Sc/S, and Sg/S in each
chromosome are also indicated.

6. The hyperbolic rules in all chromosomes of a house mouse Mus musculus

The Section represents data about results of the analysis of single-stranded
DNA sequences of the complete set of chromosomes of the laboratory mouse Mus
musculus, which is a major model organism for basic mammalian biology, human
disease, and genome evolution. All initial data are taken from the GenBank
https://www.ncbi.nlm.nih.gov/genome?term=mus%20musculus.

Resulting data in Fig. 6.1 confirm that - for all the chromosomes - the model
harmonic progressions Ha 1(n) = Sa/n, Hr1(n) = St/n, Hci(n) = Sc¢/n, and Hg 1(n) =
Sn/n from the expression (2.2) practically coincide with the real sequences of total
amounts of n-plets from the classes A;-, Ti-, C;-, and G-oligomers atn =1, 2, 3, ...,
20. In all shown cases, the deviations of real sequences from model hyperbolic
progressions are significantly less than 0.5% as data in the tabular columns «Range
%» indicates. This means that the formulated hyperbolic (harmonic) rules are fulfilled
in the considered genome.

Ne Sa Range St Range Sc Range Sc Range
% % % %
1 |56530182 | -0.051 56416289 | -0.126 § 39495313 | -0.044 J 39467408 | -0.150
+0.054 +0.067 +0.121 +0.107
2 | 51600126 | -0.099 J 51679955 | -0.060 § 37504114 | -0.041 | 37542456 | -0.110
+0.076 +0.063 +0.111 +0.036
3 146503996 | -0.041 [46631177 | -0.057 § 31603703 | -0.151 § 31659979 | -0.063
+0.063 +0.092 +0.120 +0.075
4 43821952 | -0.050 43922197 | -0.056 § 32146231 | -0.097 | 32165231 | -0.050
+0.081 +0.076 +0.062 +0.090
5 | 42488105 | -0.060 [42515761 | -0.063 § 31456650 | -0.033 | 31459158 | -0.218
+0.059 +0.050 +0.085 +0.052
6 42843713 | -0.122 | 42886213 | -0.107 § 30315703 | -0.028 § 30290914 | -0.083
+0.082 +0.048 +0.108 +0.094
7 140271749 | -0.105 | 40509547 | -0.110 § 30554235 | -0.089 § 30519876 | -0.019
+0.070 +0.079 +0.081 +0.125
& 136224525 | -0.043 36167473 | -0.119 § 26616967 | -0.147 | 26602467 | -0.123
+0.083 +0.127 +0.104 +0.081
9 134722476 | -0.079 | 34694585 | -0.088 § 25880876 | -0.154 25859081 | -0.114
+0.066 +0.066 +0.185 +0.095
10 37185184 | -0.066 [ 37273294 | -0.046 § 26277876 | -0.099 § 26331308 | -0.112
+0.068 +0.142 +0.096 +0.123
11 33401283 | -0.069 | 33317397 | -0.121 § 26022668 | -0.057 § 26004597 | -0.061
+0.049 +0.049 +0.177 +0.081
12 § 33897029 | -0.111 J 34225639 | -0.105 § 24374340 | -0.061~+ | 24425412 | -0.115
+0.069 +0.144 0.094 +0.109
13 | 34255191 | -0.119 [ 34115119 | -0.064 § 24377641 | -0.079 | 24373242 | -0.138
+0.088 +0.082 +0.119 +0.090
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14 | 35695406 | -0.135 | 35758968 | -0.086 § 24980458 | -0.057 § 25007278 | -0.099
+0.027 +0.115 +0.135 +0.124
1529177752 | -0.135 | 29244798 | -0.028 § 21121081 | -0.050 § 21109684 | -0.095
+0.069 +0.092 +0.180 +0.088
16 | 28035438 | -0.054 [ 28084677 | -0.067 § 19439086 | -0.125 J 19460557 | -0.170
+0.115 +0.099 +0.023 +0.003
17 126251160 | -0.075 | 26302830 | -0.051 § 19586991 | -0.085 J 19566481 | -0.096
+0.097 +0.079 +0.060 +0.063
18 § 25615329 -0.064 | 25597990 | -0.103 § 18095575 | -0.099 § 18143740 | -0.129
+0.075 +0.054 +0.159 +0.089
19 § 16732680 | -0.097 | 16602953 | -0.193 § 12449343 | -0.181 | 12420880 | -0.098
+0.094 +0.076 +0.201 +0.225
X 149660944 | -0.069 | 49651848 | -0.102 § 32081377 | -0.049 | 32093826 | -0.126
+0.049 +0.052 +0.093 +0.131
Y | 26842991 | -0.084 | 27013719 | -0.072 § 17175367 | -0.221 | 17092621 | -0.163
+0.166 +0.107 +0.171 +0.171

Fig. 6.1. The results of the analysis of all chromosomes of a house mouse Mus
musculus by the OS-method. The left column shows symbols of chromosomes. S,
St, Sc, and Sg refer to the quantities of monomers A, T, C, and G in appropriate
chromosomes. The columns “Range %’ show deviations of real sequences from the
model hyperbolic sequences Ha 1(n) = Sa/n, Hri(n) = St/n, Hci(n) = Sc¢/n, and
Hgi(n)=Sg/matn=1,2,3, ..., 20 (the model values are taken as 100%).

Fig. 6.2 shows data of normalized OS-sequences for all chromosomes of Mus

musculus.

Chrom | SA/S St/S Sc/S S¢/S | Harmonic mean
1 0.2946 | 0.2940 | 0.2058 | 0.2057 0.242
2 0.2894 | 0.2898 | 0.2103 | 0.2105 0.244
3 0.2973 | 0.2982 | 0.2021 | 0.2024 0.241
4 0.2882 | 0.2889 | 0.2114 | 0.2115 0.244
5 0.2872 | 0.2874 | 0.2127 | 0.2127 0.244
6 0.2928 | 0.2931 | 0.2072 | 0.2070 0.243
7 0.2839 | 0.2856 | 0.2154 | 0.2151 0.245
8 0.2884 | 0.2879 | 0.2119 | 0.2118 0.244
9 0.2866 | 0.2864 | 0.2136 | 0.2134 0.245
10 0.2926 | 0.2933 | 0.2068 | 0.2072 0.243
11 0.2813 | 0.2806 | 0.2191 | 0.2190 0.246
12 0.2899 | 0.2927 | 0.2085 | 0.2089 0.243
13 0.2925 1 0.2913 | 0.2081 | 0.2081 0.243
14 0.2939 | 0.2945 | 0.2057 | 0.2059 0.242
15 0.2899 | 0.2905 | 0.2098 | 0.2097 0.244
16 0.2950 | 0.2956 | 0.2046 | 0.2048 0.242
17 0.2862 | 0.2868 | 0.2136 | 0.2134 0.245
18 0.2929 | 0.2927 | 0.2069 | 0.2075 0.243
19 0.2875 | 0.2852 | 0.2139 | 0.2134 0.245
X 0.3038 | 0.3037 | 0.1962 | 0.1963 0.239
Y 0.3046 | 0.3065 | 0.1949 | 0.1940 0.238
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Fig. 6.2. Data of normalized OS-sequences Sa/nS, St/nS, Sc¢/nS, and Sg/nS
of all chromosomes of a house mouse Mus musculus are shown for comparison. Here
S = SA+St+Sc+Ss. Harmonic means of the values Sa/S, St/S, Sc/S, and Sg/S in each
chromosome are also indicated.

7. The hyperbolic rules in all chromosomes of a plant Arabidopsis thaliana

One more model organism is a plant Arabidopsis thaliana. This small flowering
plant is used for over fifty years to study plant mutations and for classical genetic
analysis. It became the first plant genome to be fully sequenced; it has a small
genome of ~120 Mb. The Section represents data about results of the analysis of
single-stranded DNA sequences of the complete set of 5 chromosomes of this plant by
the oligomer sums method. All initial data about the chromosomes were taken from
the GenBank - https://www.ncbi.nlm.nih.gov/genome/4, the column RefSeq).

Resulting data in Fig. 7.1 confirm that - for all the chromosomes - the model
harmonic progressions Ha 1(n) = Sa/n, Hr1(n) = St/n, Hci(n) = Sc¢/n, and Hg 1(n) =
Sn/n from the expression (2.2) practically coincide with the real sequences of total
amounts of n-plets from the classes A;-, Ti-, C;-, and G-oligomers atn =1, 2, 3, ...,
20. In all shown cases, the deviations of real sequences from model harmonic
progressions are less than 0.6% as data in the tabular columns «Range %» indicates.
This means that the formulated hyperbolic (harmonic) rules are fulfilled in the
considered genome.

Ne Sa Range St Range Sc Range Sc Range
% % % %

1 §9709674 | -0.275 9697113 | -0.140 5435374 | -0.130 5421151 | -0.186
+0.103 +0.209 +0.303 +0.296

2 J 6315641 | -0.035 6316348 | -0.256 3542973 | -0.406 3520766 | -0.148
+0.198 +0.162 +0.252 +0.478

3 | 7484757 | -0.121 7448059 | -0.141 4258333 | -0.283 -0.206
+0.101 +0.238 +0.200 4262704 | +0.121

4 ]5940546 | -0.155 5914038 | -0.109 3371349 | -0.222 3356091 | -0.293
+0.239 +0.238 +0.333 =0.161

5 18621974 | -0.123 8652238 | -0.213 4832253 | -0.515 4858759 | -0.132
+0.184 +0.204 +0.073 +0.407

Fig. 7.1. The results of the analysis of all chromosomes of a plant Arabidopsis

thailana by the OS-method. The left column shows symbols of chromosomes. Sa, St,
Sc, and Sg refer to the quantities of monomers A, T, C, and G in appropriate
chromosomes. The columns “Range %’ show deviations of real sequences from the
model hyperbolic progressions Ha 1(n) = Sa/n, Hr1(n) = St/n, Hci(n) = Sc¢/n, and

Hgi(n)=Sg/matn=1,2,3, ..., 20 (the model values are taken as 100%).

Fig. 7.2 shows data of normalized OS-sequences for all chromosomes of
Arabidopsis thailana.

Chrom | SA/S St/S Sc/S S¢/S | Harmonic mean
1 0.3208 | 0.3204 | 0.1796 | 0.1791 0.230
2 0.3207 | 0.3207 | 0.1799 | 0.1788 0.230
3 0.3191 | 0.3176 | 0.1816 | 0.1817 0.231
4 0.3197 | 0.3183 | 0.1814 | 0.1806 0.231
5 0.3197 | 0.3209 | 0.1792 | 0.1802 0.230
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Fig. 7.2. Data of normalized OS-sequences Sa/nS, St/nS, Sc/nS, and Sg/nS
of all chromosomes of Arabidopsis thailana are shown for comparison. Here
S = SA+St+Sc+Sg. Harmonic means of the values SA/S, St/S, Sc/S, and Sg/S in each
chromosome are also indicated.

8. Analysis of long genes by the oligomer sums method

Before proceeding to the analysis of prokaryotic genomes, it is useful to show
the applicability of the oligomer sum method to the analysis of genes whose
sequences are much shorter than DNA sequences in chromosomes. The application of
the method unexpectedly reveals the phenomenon of regular rhythmic deviations of
the sequences of real total sums of n-plets in the described genes from the
corresponding model hyperbolic progressions.

Let us first consider the human 77N gene encoding the largest known protein
Titin. Titin, also known as connectin, is important in the contraction of striated
muscle tissues. Figs. 8.1-8.6 show some results of the analysis - by the oligomer
sums method - of the nucleotide sequence of the 77N gene (numeric results will be
represented below). Initial data on its nucleotide sequence are taken in the GenBank
https://www.ncbi.nlm.nih.gov/nuccore/X90568.1. This gene contains 26373
nucleotides A, 19569 nucleotides T, 17097 nucleotides C, and 18901 nucleotides G,
that is Sy = 26373, St = 19569, Sc = 17097, and Sg = 18901 for the model hyperbolic
progressions (2.2). It can be especially noted that, in this gene, the amounts of
nucleotides A and T are significantly different (26373 and 19569), that is, the second
Chargaff's rule on their approximate equality in long sequences is not satisfied here
since this nucleotide sequence is not enough long for the Chargaft’s rule.

The class of T;-oligomers The class of Gj-oligomers
x10* x10

Fig. 8.1. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human 7NT gene. The OS-sequences of its total
amounts of n-plets, which start with the nucleotide T (left) and the nucleotide G
(right), are shown. The red lines refer to model hyperbolic progressions St/n and Sg/n
correspondingly, where St = 19569 and Sg = 18901 are quantities of nucleotides T
and G in the gene; n = 1, 2, 3, ..., 20 as shown at the abscissa axes. The blue line
(left) and the green line (right) with dots on them refer to the real OS-sequences of the
total amounts of such n-plets. The ordinate axes indicate the total amounts of n-plets.

Fig. 8.1 shows the sequences of the highly regular significant deviations of the
real total amounts of n-plets, which start with the nucleotide T and the nucleotide G,
from model hyperbolic progressions St/n = 19569/n and Sg/n = 18901/n. One should
note that all these significant deviations happen only atn =3, 6, 9, ..., 3m, that is only
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for cases of 3m-plets (here m = 1, 2, 3,...). Correspondingly these significant
deviations can be called «triplet-deviationsy.

Fig. 8.2 shows the graph, which unites both graphs from Fig. 8.1 and
demonstrates a few interesting features of the highly regular series of these triplet-
deviations.

Fig. 8.2. The graph, uniting two graphs from Fig. 8.1 for the TNT gene, is
shown. The blue dot line and the green dot lines correspond to those additional
hyperbolic progressions 11979/n and 28788/n, which model real total amounts of
3m-plets. Other parts of this united graph are the same as in Fig. 8.1.

Firstly, one can see in Fig. 8.2 that, in classes of Tj-oligomers and Gj-
oligomers, the triplet-deviations happen in opposite directions (or, figuratively
speaking, in antiphase):

* in the class of T;-oligomers, they decrease real values compared with model

values of the hyperbolic progression 19569/n;

* in the class of Gj-oligomers, they increase real values in comparison with

model values of the hyperbolic progression 18901/n.

Secondly, under triplet-deviations, real total amounts of 3m-plets from the classes
of Ti-oligomers and Gj-oligomers belong correspondingly to other hyperbolic
progressions 11979/n and 28788/n. These hyperbolic progressions are indicated by
the blue dot line and the green dot line in Fig. 8.2. Where did these numerators of
model hyperbolas come from? Each of these numerators is associated with the total
amount of triplets (n = 3) in an appropriate class of oligomers in this gene: the total
amount of triplets starting with nucleotide T is equal to 3993, and the total amount of
triplets starting with nucleotide G is equal to 9596. To calculate the first values of the
model hyperbolas, each of these amounts of triplets must be tripled, giving the shown
numerators 11979 and 28788.

Similar triplet-deviations exist in the OS-representations not only of the 7N7 gene
but also of other long genes, prokaryotic genomes, and viruses in different degrees as
the author has discovered in the analysis of a limited set of nucleotide series by the
OS-method. In the genetic code system, triplets have an important meaning, which
differs from other n-plets: they encode amino acids and punctuations of protein
synthesis. One can believe that the phenomenon of the triplet-deviations is related to
this special meaning of triplets. For this reason, the deeper analysis of triplet-
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deviations in different species can be useful to study the secrets of the genetic system
and biological evolution.
Fig. 8.2 demonstrated the highly regular rhythmic triplet-deviations for n =1, 2, 3,
., 20, but similar rhythmic triplet-deviations exist in a much wider range of values 7.
Fig. 8.3 shows in graphical forms percentage values of the highly regular rhythmic
deviations of the real total amounts of n-plets, which start with the nucleotide T and
with the nucleotide G in the TNT gene, from the appropriate model values 19569/n
and 18901/n. Two cases of the range of values n are represented there: n=1, 2, 3,...,
20,andn=1,2, 3, .., 100.

The class of T;-oligomers The class of G;-oligomers
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Fig. 8.3. Percentage representations of highly regular rhythmic sequences of the
triplet-deviations of the real amounts of n-plets, which belong to classes of T;-, and
Gj-oligomers, from the appropriate model hyperbolic values 19569/n and 18901/n in
the TNT gene. Here n = 1, 2, 3, ..., 20 (upper row) and n = 1, 2, 3,..., 100 (bottom
row) as shown at the abscissa axes. The ordinate axes show percentages of the
deviations (the model values are taken as 100%).

The nucleobases T and G are keto-nucleobases. Figs. 8.2 and 8.3 draw attention
to the phenomenon of long-range correlations in the 7NT gene between sequences of
the triplet-deviations in classes of T;-, and Gj-oligomers: the triplet-deviations in
these sequences happen in opposite directions as above mentioned. Such binary
oppositions, which meet in different long genes, prokaryotic genomes, and viruses
regarding the classes of different Nj-oligomers (here N refers to A, T, C, or G),
should be specially studied in future since they bear important information and are
associated with other binary-opposition features of molecular genetic systems.

The following Fig. 8.4 shows the OS-sequences of the total amounts of n-plets,
which start with two other nucleotides A and C in the 7NT gene. This gene contains
26373 nucleotides A and 17097 nucleotides C; correspondingly Sa = 26373 and S¢ =
17097 for the model hyperbolic progressions (2.2).
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Fig. 8.4. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human 7NT gene regarding the sequences of the total
amounts of n-plets, which start with the nucleotide A (left) and the nucleotide C
(right). Here n =1, 2, 3,..., 20 (at the absciss axes). Upper row: the red lines refer to
model hyperbolic progressions Sa/n = 26373/n and Sc/n =17097/n correspondingly.
The ordinate axes show the total amounts of appropriate n-plets. The class of C;-
oligomers has regular sequences of the significant triplet-deviations at 3m-plets
shown by the blue line. Bottom row: percentage representations of the sequences of
deviations of the real total amounts of n-plets of these classes from the appropriate
model hyperbolic values 26373/n and 17097/n (the ordinate axes show these
percentages). The model values are taken as 100%.

One can see in Fig. 8.4 that the class of C;-oligomers has regular sequences of
the significant triplet-deviations at 3m-plets shown by the blue line. The class of A;-
oligomers has not such regular sequences of significant deviations; besides, its
deviations are essentially less than deviations in the class of C;-oligomers. In the class
of A;-oligomers, the real and model values differ little from each other, and therefore,
in Fig. 8.4, the red line of model values covers the line of real values.

Fig. 8.5 shows the numeric results of the analysis of the TNT gene by the
oligomer sums method.

n 1 2 3 4 5 6 7 8 9 10
A

Real 26373 13334 8848 6656 5346 4463 3805 3315 2924 2724

Model 26373 13187 8791 6593 5275 4396 3768 3297 2930 2637
A% 0 -1.119 -0.648 -0.952 | -1.354 -1.536 -0.993 | -0.557 0.216 -3.287
T

Real 19569 9677 3993 4857 3885 1964 2755 2426 1332 1943

Model 19569 | 9784.5 6523 4892 3914 3262 2796 2446 2174 1957
A% 0 1.099 38.786 0.721 0.736 39.782 1.451 0.823 38.740 0.710
C

Real 17097 8522 4876 4199 3426 2431 2458 2101 1617 1707

Model 17097 8549 5699 4274 3419 2850 2442 2137 1900 1710
A% 0 0.310 14.441 1.761 -0.193 14.687 -0.638 1.690 14.880 0.158
G

Real 18901 9437 9596 4773 3731 4798 2687 2400 3231 1820

Model 18901 9451 6300 4725 3780 3150 2700 2363 2100 1890
A% 0 0.143 -52.309 | -1.011 1.302 -52.309 0.487 -1.582 | -53.849 | 3.709
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n 11 12 13 14 15 16 17 18 19 20
A

Real 2403 2219 1989 1956 1819 1683 1499 1454 1415 1384

Model 2398 2198 2029 1884 1758 1648 1551 1465 1388 1319
A% -0.228 -0.967 1.957 -3.833 -3.458 -2.104 3.375 0.762 -1.941 | -4.956
T

Real 1782 986 1563 1339 788 1224 1160 660 1032 974

Model 1779 1631 1505 1398 1305 1223 1151 1087 1030 978
A% -0.169 39.537 -3.833 4.206 39.598 -0.077 | -0.772 39.292 -0.199 | 0.455
C

Real 1548 1207 1258 1227 963 1024 1038 803 932 849

Model 1554 1425 1315 1221 1140 1069 1006 950 900 855
A% 0.404 15.283 4.346 -0.474 15.511 4.170 -3.211 15.459 -3.574 | 0.684
G

Real 1716 2416 1493 1330 1892 1190 1123 1635 933 890

Model 1718 1575 1454 1350 1260 1181 1112 1050 995 945
A% 0.132 -53.389 | -2.688 1.487 -50.151 -0.735 -1.005 -55.706 6.211 5.825

Fig. 8.5. Real and model values to the OS-representations of the classes of
Ai-, Ti-, Ci-, and Gj-oligomers in the human 7NT gene are shown forn =1, 2, ..., 20.
The real total amounts of n-plets, which start with a certain nucleotide (A, T, C, or G),
are indicated jointly with their model values Ha () = 26373/n , Hr,1(n) = 19569/n,
Hci(n) = 17097/n, and Hgi(n) = 18901/n (in red). The symbol A% refers to
deviations of real values from model values in percent (the model values are taken as
100%).

The coordinated deviations of all four OS-sequences from their model
harmonic progressions can be conveniently represented by the general sequence of
harmonic mean values, which are calculated for their four corresponding members at
each fixed n. Fig. 8.6 shows such a sequence for the human 7NT gene. One can see
the very regular rhythmic nature of this general sequence of harmonic mean values,
expressively reflecting the phenomenon of agreed triplet-deviations under 3m-plets in

this gene.
0.245
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0.21

0 5 10 15 20

Fig. 8.6. The sequence of harmonic mean values of agreed deviations of all
four OS-sequences from their model harmonic progressions Ha i(n) = 26373/n,
Hrt,1(n) = 19569/n, Hc1(n) = 17097/n, and Hg 1(n) = 18901/n in the human TNT gene.
n=1,2,..., 20 are plotted along the abscissa axes. The ordinate axes show harmonic
mean values.

Let us show briefly, for comparison, also the OS-representations of two long
human genes: NEB gene and SYNE1 gene.

Figs. 8.7 and 8.8 show graphs with the results of the NEB gene by the oligomer
sums  method. Initial data on this gene were taken from
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https://www.ncbi.nlm.nih.gov/nuccore/X83957. This gene contains 7071 nucleotides
A, 4478 nucleotides T, 4578 nucleotides C, and 4754 nucleotides G, that is Sp =
7071, St = 4478, Sc = 4578, and Sg = 4754 for the model hyperbolic progressions
(2.2). It can be especially noted that, in this gene, the amounts of nucleotides A and T
are significantly different (7071 and 4478), that is, the second Chargaff's rule on their
approximate equality in long sequences is not fulfilled here since this nucleotide
sequence is not enough long for the Chargaff’s rule.

The class of Aj-oligomers The class of G;-oligomers
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Fig. 8.7. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human NEB gene: the sequences of the total amounts
of n-plets, which start with the nucleotide A (left) and the nucleotide G (right) are
shown. Here n =1, 2, 3,..., 20 (at the absciss axes). Upper row: the red lines refer to
model hyperbolic progressions Sa/n = 7071/n (left) and Sg/n = 4754/n (right). The
ordinate axes show the total amounts of appropriate n-plets. The highly regular
sequences of the significant triplet-deviations at 3m-plets shown by the green line
(left) and the blue line (right). Bottom row: percentage representations of the
sequences of deviations of the real total amounts of n-plets of these classes from the
appropriate model hyperbolic values 7071/n and 4754/n (the ordinate axes show these
percentages). The model values are taken as 100%.

Fig. 8.8. additionally draws attention to the phenomenon of long-range
correlations in the NEB gene between sequences of the triplet-deviations in classes of
Ai-, and Gj-oligomers: the triplet-deviations in these sequences happen in opposite
directions.
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Fig. 8.8. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human NEB gene: the sequences of the total amounts
of n-plets, which start with the nucleotide T (left) and the nucleotide C (right) are
shown. Here n =1, 2, 3,..., 20 (at the absciss axes). Upper row: the red lines refer to
model hyperbolic progressions St/n = 4478/n (left) and Sc/n = 4578/n (right). The
ordinate axes show the total amounts of appropriate n-plets. The weakly regular
sequences of the significant triplet-deviations at 3m-plets shown by the green line
(left) and the blue line (right). Bottom row: percentage representations of the
sequences of deviations of the real total amounts of n-plets of these classes from the
appropriate model hyperbolic values 4478/n and 4578/n (the ordinate axes show these
percentages). The model values are taken as 100%.

By analogy with Fig. 8.6, Fig. 8.9 shows the sequence of harmonic mean values
of agreed deviations of all four OS-sequences from their model harmonic
progressions for the case of the human NEB gene. One can see the very regular
rhythmic nature of this general sequence of harmonic mean values, reflecting the
phenomenon of agreed triplet-deviations under 3m-plets in this gene.
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Fig. 8.9. The sequence of harmonic mean values of agreed deviations of all four
OS-sequences from their model harmonic progressions in the human NEB gene.
n=1,2,...,20 are plotted along the abscissa axes. The ordinate axis shows harmonic
mean values.

Figs. 8.10 and 8.11 show graphs with the results of the human SYNE! gene by
the oligomer sums method. Initial data on this gene were taken from
https://www.ncbi.nlm.nih.gov/nuccore/NM_182961. This gene contains 8697
nucleotides A, 6032 nucleotides T, 5940 nucleotides C, and 7039 nucleotides G, that
is Sp = 8697, St = 6032, Sc = 5940, and Sg = 7039 for the model hyperbolic
progressions (2.2). It can be especially noted that, in this gene, the amounts of
nucleotides A and T are significantly different, as are the amounts of nucleotides C
and G, and therefore the second Chargaff's rule for long nucleotide sequences is not
satisfied here since this nucleotide sequence is not enough long.
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Fig. 8.10. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human SYNE! gene: the sequences of the total
amounts of n-plets, which start with the nucleotide A (left) and the nucleotide G
(right) are shown. Here n = 1, 2, 3,..., 20 (at the absciss axes). Upper row: the red
lines refer to model hyperbolic progressions Sa/n = 8697/n (left) and Sg/n = 7039/n
(right). The ordinate axes show the total amounts of appropriate n-plets. The highly
regular sequences of the significant triplet-deviations at 3m-plets shown by the blue
line (left) and the green line (right). Bottom row: percentage representations of the
sequences of deviations of the real total amounts of n-plets of these classes from the
appropriate model hyperbolic values 7071/n and 4754/n (the ordinate axes show these
percentages). The model values are taken as 100%.

Fig. 8.10 additionally draws attention to the phenomenon of long-range
correlations in the SYNEI gene between sequences of the triplet-deviations in classes
of A;-, and G;-oligomers: the triplet-deviations in these sequences happen in opposite

directions.
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Fig. 8.11. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human SYNE! gene: the sequences of the total
amounts of n-plets, which start with the nucleotide T (at left) and the nucleotide C (at
right) are shown. Here n = 1, 2, 3,..., 20 (at the absciss axes). Upper row: the red
lines refer to model hyperbolic progressions St/n = 6032/n (left) and Sc/n = 5940/n
(right). The ordinate axes show the total amounts of appropriate n-plets. The triplet-
deviations in both of these classes are small in magnitude, and therefore, on these
graphs, the model hyperbolic progressions (in red) practically hide under themselves
the sequences of real total amounts of 3m-plets. Bottom row: percentage
representations of the sequences of deviations of the real total amounts of n-plets of
these classes from the appropriate model hyperbolic values 6032/n and 5940/n (the
ordinate axes show these percentages). The model values are taken as 100%.

The author notes else that not all long genes have regular sequences of the
pronounced triplet-deviations in their OS-representations. The comparison analysis of
the OS-representations of different genes is a new research field.

One of the interesting topics for comparative analysis of genes by the oligomer
sums method relates to the structure of histones, which is highly conservative in
evolution. Histones are highly basic proteins found in eukaryotic cell nuclei that pack
and order the DNA into structural units called nucleosomes. Histones are the chief
protein components of chromatin, acting as spools around which DNA winds, and
playing a role in gene regulation.

Figs. 8.12 and 8.13 show results of the analysis of one of the short genes of
human histones by the OS-method (this gene was randomly selected from multiple
histone genes for analysis): H.sapiens H1.1 gene for histone H1, 1034 bp DNA
(GenBank: X57130.1, https://www.ncbi.nlm.nih.gov/nuccore/X57130.1). The results
confirm the implementation of the hyperbolic (harmonic) rule Ne 1 for this gene.
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Fig. 8.12. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human histone H/./ gene regarding its classes of C;-
and G;-oligomers. The sequences of its total amounts of n-plets, which start with the
nucleotide C (left) and the nucleotide G (right), jointly with model hyperbolic
progressions are shown. Top graphic row: the red lines refer to model hyperbolic
progressions Sc¢/n and Sg/n correspondingly, where Sc = 268 and Sg = 256 are the
quantities of nucleotides C and G in the gene; n = 1, 2, 3, ..., 20 as shown at the
abscissa axes. The green line (left) and the blue line (right) with dots on them refer to
the real OS-sequences of the total amounts of such n-plets. The ordinate axes indicate
the total amounts of n-plets. Middle graphic row: the graph combining both graphs
from the top row. Bottom row: graphs indicate the sequences of percent deviations of
the real total amounts of n-plets, which start with appropriate nucleotides C and G in
the gene, from the model hyperbolic values Sc/n (left) and Sg/n (right) under n =1, 2,
3, ..., 20 (at the absciss axis). The ordinate axis indicates values of percent deviations.
The model values are taken as 100%.

One can see in Fig. 8.12. the existence in this short histone gene some analog
of those triplet-deviations related to 3m-plets that were described above for long
genes and shown in Figs. 8.1-8.10. In particular, the correlation exists in this short
gene between two sequences of the triplet-deviations in the considered classes of C;-
and Gj-oligomers: the triplet-deviations in these sequences happen in opposite
directions.

Fig. 8.13 shows the results of a similar analysis of the same histone gene
regarding its classes of A;- and T-oligomers.
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Fig. 8.13. Graphical representations of the results of the analysis - by the
oligomer sums method — of the human histone H/./ gene regarding its classes of Aj-
and T;-oligomers. Top graphic row: the red lines with red dots refer to model
hyperbolic progressions Sa/n and St/n correspondingly, where S =317 and St = 193
are the quantities of nucleotides A and T; n =1, 2, 3, ..., 20 as shown at the abscissa
axes. The green line (left) and the blue line (right) with dots on them refer to the real
OS- sequences of the total amounts of such n-plets. The ordinate axes indicate the
total amounts of n-plets. Bottom row: graphs indicate the sequences of percent
deviations of the real total amounts of n-plets, which start with appropriate
nucleotides A and T in the gene, from the model hyperbolic values Sa/n and St/n
under n = 1, 2, 3, ..., 20 (at the absciss axis). The ordinate axis indicates values of
percent deviations. The model values are taken as 100%.

One can see from Fig. 8.13 that rhythmic deviations in the classes of A;- and
T;-oligomers are less regular and stable than in the classes of C;- and G;-oligomers in
Fig. 8.12. To clarify the general picture of such properties of histone genes,
systematic studies of a wide set of histone genes in their OS-representations are
required.

By analogy with Figs. 8.6 and 8.9, Fig. 8.14 shows the sequence of harmonic
mean values of agreed deviations of all four OS-sequences from their model harmonic
progressions for the case of the human histone /1.7 gene. One can see the regular
rhythmic nature of this general sequence of harmonic mean values, reflecting the
phenomenon of agreed triplet-deviations under 3m-plets in this gene.
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Fig. 8.14. The sequence of harmonic mean values of agreed deviations of all
four OS-sequences from their model harmonic progressions in the human histone
HI.lgene. n =1, 2, ..., 20 are plotted along the abscissa axes. The ordinate axis
shows harmonic mean values.

Certain triplet-deviations between real and model values under 3m-plets are
also found in the OS-representations of entire chromosomes of humans and other
organisms, but in a much less pronounced form than shown in this Section for
individual genes.

9. The hyperbolic rules in bacterial genomes of different groups both from
Bacteria and Archaea.

Let us turn now to prokaryotic genomes. The Section represents results of the
analysis of nucleotide sequences of all 19 bacterial genomes of different groups both
from Bacteria and Archaea, which are listed in the article on the second Chargaff’s
rule [Rapoport, Trifonov, 2012, p. 2]: “Nucleotide disparities for prokaryotic coding
sequences were taken from bacterial genomes of different groups both from Bacteria
and Archea. All together 19 genomes were used: Aquifex aeolicus, Acidobacteria
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bacterium, Bradyrhizobium japonicum, Bacillus subtilis, Chlamydia trachomatis,
Chromobacterium violaceum, Dehalococcoides ethenogenes, Escherichia coli,
Flavobacterium  psychrophilum, Gloeobacter violaceus, Helicobacter pilory,
Methanosarcina acetivorans, Nanoarchaeum equitans, Syntrophus aciditrophicus,
Streptomyces coelicolor, Sulfolobus solfataricus, Treponema denticola, Thermotoga
maritima and Thermus thermophiles”.

Fig. 9.1 shows the results of the analysis of these prokaryotic genomes by the
oligomer sums method. These results demonstrate that the hyperbolic rule No. 1 is
fulfilled for all the listed genomes of prokaryotes: the model hyperbolic progressions
Ha 1(n) = Sa/n, Hr1(n) = St/n, Hc.1(n) = Sc/n, and Hg 1(n) = Sg/n from the expression
(2.2) practically coincide with the OS-sequences of real total amounts of n-plets from
the classes Aj-, T;-, C;-, and G;-oligomers at n = 1, 2, 3, ..., 20. Because of this
coincidence, the model hyperbolic progressions, which are represented by red lines in
the graphs of Fig. 9.1, almost completely cover the sequences of real values (the blue
lines in the lower graphs show in percent slight alternating deviations of real values
from model values).

SA=440779 St=436095 Sc=336361 Sg=338100
500000 500000 400000 350000
400000 « | 400000 ::::x isgm
300000 300000 250000 200000

200000 150000
200000 200000
so0nc0 o
100000 100000 50000 30000
0 e e 0 0 0
1 1.3 5 7 9 1113 1517 19 13 5 7 9 1113 1517 19 13 5 7 9 1113 15 17 19 1357 91113151719
1.5 0.4 1 15
0.2 0.8
1 o 0.6 Rq ’\ !
0.4 0.5
0.5 0.2 A
Sl Y N 0"
0 04 o V‘& 0 o 20
° s 1 0 06 020 5 k1 15 0 | o5
-0.5 ’ -0.4
-0.8 06 -1
-1 1 0.8 1.5

Sa =1076577 St =1084801 Sc = 1426653 Sg = 1408353
1200000 1200000 1600000 1600000
1000000 1000000 1400000 1400000

1200000 1200000
800000 800000 1000000 1000000
600000 600000 800000 800000
400000 400000 600000 600000
400000 400000
200000 200000 200000 200000
2 1357 91113151719 0135791113151719 0135791113151719 0135791113151719
0.8 1 1.5 0.4
0.6 0.8 02
0.4 06 1 .
0.2 0.4 0.5 0 1 20
0 0.2 0.2
02 0 1 '0 °
-0.: -0.4
.o: ) 02 0 5 10 os 0 5 10 15 ' 0
8 - -0.6
0.8 -0.4
-1 -0.6 -1 -0.8
SA=1677669 St=1674356 Sc=2936912 Sg =2935271
2000000 2000000 3000000 3000000
2500000 2500000
1500000 1500000
2000000 2000000
1000000 1000000 1500000 1500000
1000000 1000000
500000 500000 500000 500000
0 0 0 0

13 5 7 9 11131517 19 13 5 7 9 1113151719 1357 91113151719 1357 91113151719



https://doi.org/10.20944/preprints202005.0471.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202005.0471.v2

1.2 15 0.2 0.4
3 1 0.2
0.8 1 0 0
::i 05 02 ° * 02 9 2
0.2 -0.4 -0.4
0 07 0.6 0.6
-02 0 5 10 5 20 0 10 5
0.4 05 -0.8 -08
.
SA=1129118 St=1129396 Sc = 882500 S = 884272
1200000 1200000 1000000 1000000
1000000 1000000 800000 800000
800000 800000
600000 eoo00o 600000
:m 400000 Aooo00 400000
200000 200000 200000 200000
4 0135791113151.,19 0135791113151719 0135791113151719 0‘135‘7911‘13151719
0.5 0.2 0.6
0.4 01 0.4
0.3
0.2 o 0.2
o1 o1 ® 10 0 .
0 02 [ 10 0
01 0 5 ol/ 15 20 - -0.2
0.2 -0.3 -0.4
0.3 -0.4 | 06
SA=301793 St=300618 ‘ Sc=212019 Sg=211409
350000 300000 250000 250000
zm 250000 200000 200000
200000 200000 150000 150000
150000
150000 100000 100000 100000
5 lzm 50000 50000 50000
0 0 0 ) : :
13 5 7 911131517 19 1357 91113151719 13 5 7 911131517 19 13 5 7 9 1113151719
15 0.4 0.8 0.5
1 0.2 0.6 o
° 04 ) ° 10 [lisgy 20
0.5 -0.2 L 2 0 1 0.2 °
o -0.4 0 ¢ B
0 5 10 \/15 20| -06 020 510 0| s )
-05 0.8 04 2
Sy =21274 St=23172 Sc =38842 S =44089
25000 25000 40000 50000
20000 20000 30000 40000
15000 15000 30000
10000 10000 20000 20000
5000 5000 10000 10000
0 v =
6 01357911131517,9 u135791113151719 135 7 91113151719 u135791113151719
2 1 4 a
3
0 o 3
0 ) 15 2
L0 o | . :
-4 2 : : 0 20
r -3 0
s [ 5 1 15 20| 2
-8 -4 = 3
Sa =405227 St=402383 Sc =355663 Sg =358014
500000 500000 400000 400000
350000 350000
400000 400000 300000 300000
300000 300000 250000 250000
200000 200000
200000 200000 150000 150000
7 | o e e
0135791113151719 l,135791113151719 n1357!‘1113151719 0‘1 3‘5‘7 9 1113 15 17 19



https://doi.org/10.20944/preprints202005.0471.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020

d0i:10.20944/preprints202005.0471.v2

0.5 1 2.5 15

0 0 2 1

[¢] 5 .5 15

-0.5 : 05

-1 0

0 1 0.5 0

-1.5 05 v 0 o 5 10 |j15 20

2 ’ 050 54 10 \gs I O
2.5 -1 -1 ] -1

Sa =1297551 St=1293044 Sc=1321325 S =1319228

1400000 1400000 1400000 1400000
1200000 1200000 1200000 1200000
1000000 1000000 1000000 1000000

800000 800000 800000 800000

600000 600000 600000 600000
400000 400000 400000 400000

200000 200000 200000 200000

o T
8 0135791113151719 0135791113151719 u135791113151719 1357 91113151719

0.2 0.2 0.6 0.8

0.1

-0.1

-0.2

=

-0.3

-0.4

-0.2
-0.4
-0.6
-0.8

0.5
0.4
03
0.2
0.1
]
-01 0 10 1 20
-0.2

0.6
0.4
0.2

-0.4
-0.6

°
N o
=3
w
w

Sa=945771

St=975318

Sc =468718

Sg =458213

1 3 5 7 9 11131517 19

13 5 7 911131517 19

1 3 5 7 9 1113 15 17 19

1000000 1000000 500000 500000
800000 800000 400000 400000
600000 600000 300000 300000
400000 400000 200000 200000
9 200000 200000 100000 100000
0 0 0 0 . . ;
1357 91113151719 1357 911151719 1357911151719 1357 91113151719
0.3 15 1 1
0.2 05
0.1 1 o5 0
0 0 -05 0
01 0 5 1 20 0.5 [} 5| 10 15 20 1
0.2 05 15
0.3 0 a 2
0.4 0 5 10 15|/ 20 25
-0.5 -0.5 -1.5 .3
Sa = 887941 St = 882586 Sc = 1444547 S = 1443945
1000000 1000000 1600000 1600000
1400000 1400000
800000 800000 1200000 1200000
600000 600000 1000000 1000000
800000 800000
400000 400000 600000 600000
200000 200000 m: poon
10 0135791113151719 0135791113151719 0135791113151719 01‘3579‘1113‘151719
1 0.8 0.4 0.8
0.8 0.6 02 06
0.6 0.4
0.4 02 °7 N 0.4
0.2 0 0.2 0.2
0 02 0 1 20| |
020 1 1 0.4 o4 ° ° B 0" 15 20
04 06 0.6 - 0.2
-0.6 -0.8 -0.8 , -0.4
Sa=498514 St=501121 Sc=323770 S =320426
500000 500000 350000 350000
300000
400000 400000 z:x 250000
300000 300000 200000 200000
200000 200000 150000 150000
100000
100000 e lzm 50000
0 o °

1 3 5 7 9 11131517 19



https://doi.org/10.20944/preprints202005.0471.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020

d0i:10.20944/preprints202005.0471.v2

1 3 5 7 9 11131517 19

0
135 7 91113151719

0
13 5 7 9 1113151719

0.8 1 15
T ;
0.4 0.5
05
0.2
o 0 0
° s 0 0 5 10 1 0
02 o ] 20 os -0.5
0.4 1
0.6 a 1.5
Sa =1638004 St=1658700 Sc=1228410 Sg =1226378
2000000 2000000 1400000 1400000
1200000 1200000
1500000 1500000 1000000 1000000
800000 800000
1000000 1000000 600000 600000
500000 500000 400000 400000
200000 200000
1 2 [ o 0 0 T T T T
1 3 5 7 9 11 13 15 17 19 135 7 91113151719 1 3 5 7 9 11131517 19 135 7 91113151719
1 0.6 0.6 0.6
0.8 04 0.4 0.4
0.6 0.2
0.4 02 0 o2
0.2 0 020 0 0
0| o2 0 5 0 0 .04 02 0 15 0
020 541 20 ’ -06
-0.4 04 0.8 o4
-0.6 -0.6 1 -0.6
L
Sa=167981 St=167983 Sc=77361 S =77560
200000 200000 80000 80000
150000 150000 60000 60000
100000 100000 40000 40000
50000 50000 20000 20000
0 0 0 T T
13 13 5 7 911131517 19 1357 9113151719 1357 91113151719 1357 91113151719
1 15 2 2
15
0.5 1 1 1
0.5
0 0.5 0 o
0 5 10 5| /120 0 1 05 0 5 o 1 20
-0.5 0 -1 b 1
0 5 20
1 -0.5 -2 'lj
15 1 -3 -25
Sa =772747 St=770484 Sc=812772 S = 823297
800000 800000 800000 800000
600000 600000 600000 600000
400000 400000 400000 400000
200000 200000 200000 200000
14 ) 0 [] 0 T T Plot Area 't : T
135 7 9 11131517 19 135 7 911131517 19 135 7 9 1113151719 135 7 91113151719
0.6 0.4 0.8 12
0.4 1
0.2 02 06 08
0 017 04 06
020 ) 20| 029 0 o2 04
- 0.2
-0.4 -0.4 | o
-0.6 0.6 0 0 a 1 o| 020 5 1 15 20
-0.8 .0.8 -0.2 .04
1 1 -0.4
Sa=1203558 St=1213059 Sc=3121252 Sg=3129638
1200000 1200000 3500000 3500000
1000000 1000000 3000000 3000000
800000 800000 :::z:: ::::x
600000 600000 1500000 1500000
400000 400000 1000000 1000000
1 5 200000 200000 500000 500000
0

0 v v T
1 3 5 7 9 1113151719



https://doi.org/10.20944/preprints202005.0471.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020

d0i:10.20944/preprints202005.0471.v2

AL

14
12
1
0.8
0.6
0.4
0.2
0
020 5 10 5 20

0.2

-0.2
-0.4
-0.6

-0.8

Sa = 867639

St = 881683

Sc =490453

Sg = 487562

0
1 3 5 7 9 11 13 15 17 19

135 7 91113151719

13 5 7 9 1113151719

1000000 1000000 500000 500000
800000 800000 400000 400000
600000 600000 300000 300000
400000 400000 200000 200000
200000 200000 100000 100000
[ 0 0 0 T } -
16 1357 91113151719 1357 91113151719 135 7 91113151719 1357 91113151719
0.8 08 0.8 05
0.6 0.6 0.6
0.4 . 0
0.2 o4 04 0 1 0
0 0.2 0.2 -05
02 0 1 0
-0.4 ° 0 15 ° -1 .
o6 02 . oz [} 5 20
-0.8 0.4 -1.5
-0.4
Sa =570544 St =1572448 Sc =346447 Sg =353748
600000 600000 350000 350000
500000 500000 300000 300000
400000 400000 250000 250000
200000 200000
300000 300000 150000 150000
1 7 200000 200000 100000 100000
100000 100000 50000 50000
0 0 ) : ;

1 3 5 7 9 1113 15 17 19

1 3 5 7 9 11131517 19

1 3 5 7 9 11131517 19

13 5 7 91113151719|

15 0.8 2 05
0.6
1 0.4 s o
02 1 os ¢ 20
o -0.
05 020 ol |1 o 05 .
0 0.4 0 i
0 5 10 15 o| 06 05 ] ! B2 s
0.8
-0.5 a 1 -1 -2
SA=501112 ST—498004 Sc=424115 Sg =436351
500000 500000 500000 500000
400000 400000 400000 400000
300000 300000 300000 300000
200000 200000 200000 200000
100000 100000 100000 100000
1 8 0 0 0 0
1357 91113151719 1357 91113151719 1357 9151719 W 35 7 8 1113151718
0.6 1 0.8 1
0.4 os 0.6
0.2 0.4 0.5
o °7 9 0.2 o
02 ¢ ® s 0 0 5 10 1 20
-0.4 02 0 1 20 | g5
-0.6 * 0.4
08 -15 -0.6 1
Sa =327251 St=330338 Sc=734285 Sg =729652
350000 350000 800000 800000
300000 300000 700000 700000
250000 250000 600000 500000
200000 200000 i:m i::x
150000 150000 300000 300000
100000 100000 200000 200000
1 9 50000 50000 100000 100000
° 0 0 0 ‘ ‘ =

1 3 5 7 9 1113 1517 19



https://doi.org/10.20944/preprints202005.0471.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020

d0i:10.20944/preprints202005.0471.v2

25
2
15
1
0.5

05 0

0 4

5

10

15

20

0.6
0.4
0.2

o

-0.2
-0.4
-0.6
-0.8

1

(1]

-1.5

Fig. 9.1. Graphical representations of the results of the analysis - by the oligomer
sums method — of 19 bacterial genomes of Bacteria and Archaea mentioned in
[Rapoport, Trifonov, 2012, p. 2]. For each of genomes two rows of resulting data are
shown at n = 1, 2, ..., 20 plotted along the abscissa axes: the top rows demonstrate
that model hyperbolic progressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost
completely cover the OS-sequences of real values (the ordinate axes show appropriate
values); the bottom blue lines show in percent slight alternating deviations of real
values from model values. The left column indicates numbers denoted the genomes as
explained in the text.

The genomes are enumerated in Fig. 9.1 by numbers 1-19:

1) Aquifex aeolicus VF5, complete genome, 1551335 bp, accession AE000657,
version AE000657.1,
https://www.ncbi.nlm.nih.gov/nuccore/AE000657.1?report=genbank ;

2) Acidobacteria bacterium KBS 146
MO15DRAFT scf7180000000004 quiver.l C, whole genome shotgun
sequence, 4996384 bp, accession JHVA01000001,
https://www.ncbi.nlm.nih.gov/nuccore/JHVA01000001.1?report=genbank;

3) Bradyrhizobium japonicum strain E109, complete genome, 9224208 bp,
accession CP010313,
https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank ;

4) Bacillus subtilis strain UD1022, complete genome, 4025326 bp, accession
CP011534,
https://www.ncbi.nlm.nih.gov/nuccore/CP011534.1?report=genbank;

5) Chlamydia trachomatis strain QH111L, complete genome, 1025839 bp,
accession CP018052,

https://www.ncbi.nlm.nih.gov/nuccore/CP018052.1?report=genbank;

6) Chromobacterium violaceum strain LK30 1, whole genome shotgun sequence,
127377 bp, accession LDUX01000001 version LDUX01000001.1,
https://www.ncbi.nlm.nih.gov/nuccore/LDUX01000001.1?report=genbank:

7) Dehalococcoides mccartyi strain CG3, complete genome, NCBI Reference
Sequence: NZ CP013074.1, 1521287 bp,
https://www.ncbi.nlm.nih.gov/nuccore/NZ CP013074.1?report=genbank;

8) Escherichia coli CFT073, complete genome, GenBank: AE014075.1, 5231428
bp, https://www.ncbi.nlm.nih.gov/nuccore/AE014075.17report=genbank;

9) Flavobacterium psychrophilum JIP02/86, complete genome, 2860382 bp,
accession NC_009613, https://www.ncbi.nlm.nih.gov/nuccore/NC_009613.3;

10) Gloeobacter violaceus PCC 7421 DNA, complete genome, GenBank:
BA000045.2, 4659019 bp, accession BA000045 AP006568-AP006583
version BA000045.2,
https://www.ncbi.nlm.nih.gov/nuccore/BA000045.2?report=genbank:

11) Helicobacter pilory, NCBI Reference Sequence: NC 000921.1, complete

genome, 1643831 bp, accession NC 000921 NZ AE001440-NZ_ AE001571
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version NC _000921.1, https://www.ncbi.nlm.nih.gov/nuccore/NC _000921.1;

12) Methanosarcina acetivorans str. C2A, complete genome, 5751492 bp,
accession AE010299 AE010656-AE011189 version AE010299.1,
https://www.ncbi.nlm.nih.gov/nuccore/AE01029;

13) Nanoarchaeum equitans Kin4-M, complete genome, 490885 bp, accession
AE017199 AACL01000000 AACL01000001 version AE017199.1,
https://www.ncbi.nlm.nih.gov/nuccore/AE017199.1?report=genbank;

14) Syntrophus aciditrophicus SB, complete genome, 3179300 bp, accession
CP000252,
https://www.ncbi.nlm.nih.gov/nuccore/CP000252.1?report=genbank;

15) Streptomyces coelicolor A3(2) complete genome, 8667507 bp, accession
AL645882,

https://www.ncbi.nlm.nih.gov/nuccore/AL645882.27report=genbank;

16) Sulfolobus solfataricus strain SULA, complete genome, 2727337 bp,
accession CP011057,
https://www.ncbi.nlm.nih.gov/nuccore/CP011057.1?report=genbank:

17) Treponema denticola SP33 supercontl.1, whole genome shotgun sequence,
NCBI Reference Sequence: NZ KB442453.1, 1850823 bp, accession
NZ KB442453 NZ_AGDZ01000000 version NZ KB442453.1,
https://www.ncbi.nlm.nih.gov/nuccore/NZ KB442453.17report=genbank;

18) Thermotoga maritima strain Tma200, complete genome, 1859582 bp,
accession CP010967,
https://www.ncbi.nlm.nih.gov/nuccore/CP010967.1?report=genbank:

19) Thermus thermophilus DNA, complete genome, strain: TMY, 2121526 bp,
accession AP017920,
https://www.ncbi.nlm.nth.gov/nuccore/AP017920.1?report=genbank

One can see from Fig. 9.1 that in some prokaryotic genomes (for example in
NeNe 3,7, 9, and 15) the alternating small deviations of real values from model values
are systematic and related to 3m-plets; it seems to be analogous to the much stronger
triplet-deviations described above for human genes in Figs. 8.1-8.7. Can a sign of the
presence of such triplet-deviations in the genomes of some bacteria serve as a
criterion for the selection of bacterial species for genetic engineering problems? It is
one of many new questions arisen due to the discovery of the represented hyperbolic
rules and the applications of the oligomer sums method.

Fig. 9.2 shows examples of sequences of the harmonic mean values for two of
these bacterial genomes. One can see triplet-deviations in these sequences at dots
corresponding to 3m-plets.
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Fig. 9.2. The sequences of harmonic mean values of agreed deviations of all
four OS-sequences from their model harmonic progressions in the genomes of
Bradyrhizobium japonicum strain E109 (left) and Escherichia coli CFT073 (right).
n=1,2,..., 20 are plotted along the abscissa axes. The ordinate axes show harmonic
mean values.

10. Analysis of genomes of microorganisms living in extreme environments

Of particular interest is the analysis of the genetic characteristics of microorganisms
(extremophiles) living under extreme conditions of high and low temperatures,
radiation, acidic and alkaline environments, drying, etc. Study of extremophiles is
useful for many practical and theoretical problems. The
https://en.wikipedia.org/wiki/Extremophile website contains a table of extremophiles.
For the analysis of their genomes by the oligomer sums method, the author used 1-2
organisms from each category of the table. The initial data on the genomes were taken
from the GenBank. Figs. 10.1-10.8 show the results of their analysis.
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Fig. 10.1. The results of the analysis - by the oligomer sums method — the
extremophile Pyrolobus fumarii 14, complete genome, 1843267 bp (this extremophile
lives in submarine hydrothermal vents),
https://www.ncbi.nlm.nih.gov/nuccore/NC 015931.1. All abscissa axes show the
values n =1, 2, ..., 20. The top row demonstrates that model hyperbolic progressions
Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real
values (the ordinate axes show appropriate values). The bottom row show in percent
slight alternating deviations of real values of the OS-sequences from model values.
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Fig. 10.2. The results of the analysis - by the oligomer sums method — the
extremophile Pyrococcus furiosus DSM 3638, complete genome, 1908256 (this
extremophile lives in submarine hydrothermal vents),
https://www.ncbi.nlm.nih.gov/nuccore/NC 003413.1
The explanation of these graphs is identical to the explanation to Fig. 10.1.
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Fig. 10.3. The results of the analysis - by the oligomer sums method — the
extremophile Synechococcus lividus PCC 6715 chromosome, complete genome,
2659739 bp (this extremophile lives in low temperature conditions),
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP018092.1). The explanation of
these graphs is identical to the explanation to Fig. 10.1.
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Fig. 10.4. The results of the analysis - by the oligomer sums method — the
extremophile Psychrobacter alimentarius strain PAMC 27889 chromosome,
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3332539 bp (this extremophile lives in soda lakes),

https://www.ncbi.nlm.nih.gov/nuccore/NZ CP014945.1. The explanation of these

graphs is identical to the explanation to Fig. 10.1.
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Fig. 10.5. The results of the analysis - by the oligomer sums method — the
extremophile Clostridium paradoxum JW-YL-7 = DSM 7308 strain JW-YL-7 ctgl,
whole genome shotgun sequence, 1855173 bp (this extremophile lives in volcanic

springs, acid mine drainage),
https://www.ncbi.nlm.nih.gov/nuccore/LSFY01000001.1The explanation of
these graphs is identical to the explanation to Fig. 10.1.
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Fig. 10.6. The results of the analysis - by the oligomer sums method — the
extremophile Deinococcus radiodurans R1 chromosome 1, complete sequence,

2648638 bp,

(this extremophile lives in conditions of cosmic rays, X-rays,

radioactive decay), https://www.ncbi.nlm.nih.gov/nuccore/NC 001263.1. The
explanation of these graphs is identical to the explanation to Fig. 10.1.
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Fig. 10.7. The results of analysis - by the oligomer sums method — the
extremophile Halobacterium sp. NRC-1, complete genome, 2014239 bp (this
extremophile  lives in  conditions of high salt concentration),
https://www.ncbi.nlm.nih.gov/nuccore/NC_002607.1. The explanation of these
graphs is identical to the explanation to Fig. 10.1.
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Fig. 10.8. The results of the analysis - by the oligomer sums method — the
extremophile Chroococcidiopsis thermalis PCC 7203, complete genome, 6315792
bp, (this extremophile lives in conditions of  desiccation),
https://www.ncbi.nlm.nih.gov/nuccore/NC_019695.1. The explanation of these
graphs is identical to the explanation to Fig. 10.1.

The resulting data in Figs. 10.1- 10.8 shows the fulfillment of the hyperbolic
rule Nel of oligomeric sums for all studied and presented extremophiles. The extremal
living conditions of these microorganisms do not affect the subordination of their
genomes to the described hyperbolic (harmonic) rules of algebraic invariance, which
are true for the genomes of other prokaryotes and eukaryotes.
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11. Analysis of giant viruses by the oligomer sums method

This Section represents examples of studying genomes of different viruses by
the oligomer sums method. The focus is on giant viruses (Figs. 11.1-11.4).
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Fig. 11.1. The results of the analysis - by the oligomer sums method — the giant virus
Pithovirus sibericum isolate P1084-T, complete genome, 610033 bp, NCBI
Reference Sequence: NC 023423.1
https://www.ncbi.nlm.nih.gov/nuccore/NC 023423.1. All abscissa axes show the
values n =1, 2, ..., 20. The top row demonstrates that model hyperbolic progressions
Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real
values (the ordinate axes show appropriate values). The bottom row show in percent
slight alternating deviations of real values of the OS-sequences from model values.
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Fig. 11.2. The results of the analysis - by the oligomer sums method — the giant virus
Acanthamoeba castellanii mamavirus strain Hal-V, complete genome, 1191693 bp,
GenBank: JF801956.1, https://www.ncbi.nlm.nih.gov/nuccore/JF801956.1. The
explanation of these graphs is identical to the explanation to Fig. 11.1.
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Fig. 11.3. The results of the analysis - by the oligomer sums method — the giant virus
Megavirus chiliensis, complete genome, 1259197 bp, NCBI Reference Sequence:
NC 016072.1, https://www.ncbi.nlm.nih.gov/nuccore/NC _016072.1. The explanation
of these graphs is identical to the explanation to Fig. 11.1.
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Fig. 11.4. The results of the analysis - by the oligomer sums method — the giant virus
Cafeteria roenbergensis virus BV-PW1, complete genome, 617453 bp, NCBI
Reference Sequence: NC 014637.1,
https://www.ncbi.nlm.nih.gov/nuccore/NC _014637.1. The explanation of these graphs
is identical to the explanation to Fig. 11.1.
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The results, presented in this Section, show the fulfillment of the hyperbolic
(harmonic) rule No. 1 for the viruses considered and provide material for comparative
analysis of different OS-sequences.

11. Analysis of the COVID-19 virus by the oligomer sums method

Let us turn now to the analysis - by the oligomeric sums method - of the COVID-19
virus, which led to a pandemic. The initial data on its nucleotide sequence was taken
by the author from the site https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3,
where the following is written about it: severe acute respiratory syndrome coronavirus
2 isolate Wuhan-Hu-1, complete genome, GenBank: MN908947.3, LOCUS
MN908947, 29903 bp ss-RNA linear VRL 18-MAR-2020.
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Figs. 12.1-12.5 show some results of such an analysis of the virus.
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Fig. 12.1. The graphs for the case of the OS-sequences of n-plets from the class A ;-
oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank:
MNO908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis
represents the values n = 1, 2, 3, ..., 20 (in top row) and n = 1, 2, 3, ..., 100 (in
bottom row). Top left: the ordinate axis represents the set of phenomenological total
amounts Xa ,1 of n-plets beginning with the nucleotide A. Top right, and bottom:
deviations of real OS-sequences X, from model hyperbolic progressions Sa/n =
8954/n in percentages.
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Fig. 12.2. The graphs for the case of the OS-sequences of n-plets from the class T;-
oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank:
MNO908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis
represents the values n = 1, 2, 3, ..., 20 (in top row) and n = 1, 2, 3, ..., 100 (in
bottom row). Top left: the ordinate axis represents the set of phenomenological total
amounts Xr,; of n-plets beginning with the nucleotide T. Top right, and bottom:
deviations of the real OS-sequence Xt from the model hyperbolic progression St/n
=9594/n in percentages.
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Fig. 12.3. The graphs for the case of the OS-sequences of n-plets from the class C;-
oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank:
MNO908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis
represents the values n = 1, 2, 3, ..., 20 (in top row) and n = 1, 2, 3, ..., 100 (in
bottom row). Top left: the ordinate axis represents the set of phenomenological total
amounts Xc, of n-plets beginning with the nucleotide C. Top right, and bottom:
deviations of the real OS-sequences X¢ 1 from the model hyperbolic progression Sc/n
= 5492/n in percentages.
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Fig. 12.4. The graphs for the case of the OS-sequences of n-plets from the class G-
oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank:
MNO908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis
represents the values n = 1, 2, 3, ..., 20 (in top row) and n = 1, 2, 3, ..., 100 (in
bottom row). Top left: the ordinate axis represents the set of phenomenological total
amounts Xg, of n-plets beginning with the nucleotide G. Top right, and bottom:
deviations of the real OS-sequence X, from the model hyperbolic progression Sg/n
= 5863/n in percentages.

In particular, Figs. 12.1-12.4 show that this virus in its OS-representations has
under n = 3, 6, 9, ..., 3m such deviations of real values from model values, which
resemble the triplet-deviations in human genes, which were described above in Figs.
8.1-8.10. Perhaps the harmfulness of this virus to humans is related to this similarity.
It should also be noted that - in the classes of pyrimidines C;- and T;-oligomers (Figs.
12.2 and 12.3) - these deviations occur in opposite directions in a coordinated manner,
which indicates a particular consistency in the structure of the nucleotide sequence of
this virus concerning pyrimidines classes.

By analogy with Figs. 8.6, 8.9, and 8.14, Fig. 12.5 shows the sequence of
harmonic mean values of agreed deviations of all four OS-sequences from their model
harmonic progressions for the case of the coronavirus 2 isolate Wuhan-Hu-1. Two
cases are shown: forn=1,2,...,20 and n =1, 2, ..., 100. One can see the regular
rhythmic nature of this general sequence of harmonic mean values, reflecting the
phenomenon of agreed triplet-deviations under 3m-plets in this coronavirus.
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Fig. 12.5. The sequence of harmonic mean values of agreed deviations of all four
OS-sequences from their model harmonic progressions in the coronavirus 2 isolate
Wuhan-Hu-1. The ordinate axes show harmonic mean values. The left and right
graphs show the cases of n =1, 2, ..., 20 and n =1, 2, ..., 100, which are plotted
along the abscissa axes.
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13. DNA epi-chains and the hyperbolic rules for oligomer sums

This Section presents some results of the study of special subsequences of long
nucleotide sequences in single-stranded DNA by the oligomer sums method. These
subsequences are termed «DNA epi-chains» [Petoukhov, 2019a]. The author's initial
results testify that the above described hyperbolic rules of oligomer sums for genomes
are also fulfielld for these epi-chains; it gives new materials to a known theme of
fractal-like structures in genetics.

By definition, in a nucleotide sequence N; of any DNA strand with sequentially
numbered nucleotides 1, 2, 3, 4, ... (Fig. 13.1a), epi-chains of different orders n are
those subsequences that contain only those nucleotides, whose numeration differ from
each other by natural number n = 1, 2, 3, ... . For example, in any single-stranded
DNA, epi-chains of the second order are two nucleotide subsequences N,/ and Ny in
which their nucleotide sequence numbers differ by » = 2: the epi-chain N,;; contains
nucleotides with odd numerations 1, 3, 5, ... (Fig. 13.1b), and the epi-chain Ny
contains nucleotides with even numerations 2, 4, 6, ... (Fig. 13.1¢). By analogy, epi-
chains of the third order are those three nucleotide subsequences N3/, N3z, and Ny,
each of which has sequence numbers that differ by n = 3: these epi-chains contain
nucleotides with numerations 1,4, 7, ... or 2, 5, 8, ... or 3, 6, 9, ... , respectively (Figs.
13.1d-f). The epi-chain of the first order N; coincides with the nucleotide sequence of
the DNA strand (Fig. 13.1a).

a
18
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Fig. 13.1. A schematic representation of a single-stranded DNA and its initial epi-
chains of nucleotides, denoted by black circles. a, a sequence N; of numerated
nucleotides of the DNA strand. b, an epi-chain of the second order N,/ beginning
with nucleotide number 1. ¢, an epi-chain of the second order Ny, beginning with
nucleotide number 2. d, an epi-chain of the third order N3/ beginning with nucleotide
number 1. e, an epi-chain of the third order N3/, beginning with nucleotide number 2.
f, an epi-chain of the third order N3/ beginning with nucleotide number 3.

The term "epi-chain" was coined from the Ancient Greek prefix epi-, implying
features that are "on top of' DNA strands. In any DNA strand, each nucleotide
belongs to many epi-chains having different orders k. The symbol “N” in the
designation of DNA epi-chains corresponds to the first letter in the word
“nucleotides”. In the designation “N,”~ of single-stranded DNA epi-chains, the
numerator "£" in the index indicates the order of the epi-chain, and the denominator
"m" indicates the numeration of the initial nucleotide of this epi-chain along the DNA
strand (Fig. 13.1a). For example, the symbol Nj, refers to the epi-chain of the third
order with the initial nucleotide having the number 2 in the DNA strand: 2-5-8-...
(Fig. 13.1e).

Each DNA epi-chain of k-th order (if £ = 2, 3, 4, ....) contains k times fewer
nucleotides than the DNA strand and has its own arrangements of nucleobases A, T,
C, and G. Each DNA epi-chain of the order & (if £ =2, 3, 4, ....) contains & times fewer
nucleotides than the DNA strand and has its own arrangements of nucleobases A, T,
C and G. But unexpectedly, despite on these differences, OS-sequences of the total
amounts of those n-plets, which start with a nucleotide A, or T, or C, or G, are
modeled by very similar hyperbolic progressions as in the complete DNA strand and
as in its epi-chains (at this stage of the research, the author studied OS-representations
of epi-chains only in cases of epi-chains with relatively small orders k).

Figs. 13.2-13.6 explains these results in graphical forms by examples of the
OS-representations of epi-chains Ny, N3, Naji, Njgiq, and Nsgy in the human
chromosome Nel (the OS-representation of this complete chromosome was presented
above in Figs. 2.1-2.3).
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Fig. 13.2. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the second order Ny, (Fig. 13.1b), which
consists of nucleotides with serial numerations 1-3-5-7-9-... in the DNA sequence of
the human chromosome Ne 1. All abscissa axes show the values n =1, 2, ..., 20. The
top row demonstrates that the model hyperbolic progressions Sa/n, St/n, Sc/n, Sc/n
(red lines) almost completely cover the OS-sequences of real total amounts of those n-
plets, which start with a nucleotide A, or T, or C, or G in this epi-chain
correspondingly (the ordinate axes show appropriate amounts). The bottom row show
in percent slight alternating deviations of real values of the OS-sequences from model
values.
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Fig. 13.3. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the third order N3, (Fig. 13.1d), which
consists of nucleotides with serial numerations 1-4-7-10-13-... in the DNA sequence
of the human chromosome Ne 1. The top row demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A,
or T, or C, or G in this epi-chain correspondingly. The bottom row show in percent
slight alternating deviations of real values of the OS-sequences from model values.
All denotations are the same as in Fig. 13.2.
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Fig. 13.4. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the 4th order Ng;, which consists of

nucleotides with serial numerations 1-5-9-13-...

in the DNA sequence of the human

chromosome Ne 1. The top row demonstrates that the model hyperbolic progressions
Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real
total amounts of those n-plets, which start with a nucleotide A, or T, or C, or G in this
epi-chain correspondingly. The bottom row show in percent slight alternating
deviations of real values of the OS-sequences from model values. All denotations are
the same as in Fig. 13.2.
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Fig. 13.5. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the 10th order Nj¢;, which consists of
nucleotides with serial numerations 1-11-21-31-41-... in the DNA sequence of the
human chromosome Ne 1. The top row demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A,
or T, or C, or G in this epi-chain correspondingly. The bottom row show in percent
slight alternating deviations of real values of the OS-sequences from model values.
All denotations are the same as in Fig. 13.2.
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Fig. 13.6. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the 50th order Nsy;, which consists of
nucleotides with serial numerations 1-51-101-151-201-... in the DNA sequence of the
human chromosome Ne 1. The top row demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-
sequences of real total amounts of those n-plets, which start with a nucleotide A, or T,
or C, or G in this epi-chain correspondingly. The bottom row show in percent slight
alternating deviations of real values of the OS-sequences from model values. All
denotations are the same as in Fig. 13.2.

Figs. 13.2-13.6 show that in these epi-chains, which are sparse subsequences
of the complete DNA sequence, the same hyperbolic rule No. 1 is fulfilled, which was
formulated above for complete DNA sequences in eukaryotic and prokaryotic
genomes. The rule is fulfilled in these epi-chains with the same high accuracy as in
the complete DNA of the sequence.

Similar results were obtained by the author in study of epi-chains in the single-
stranded DNA of other analyzed genomes (see some corresponding data in
[Petoukhov, 2019a]). These results allow formulating the fourth hyperbolic (or
harmonic) rule of eukaryotic and prokaryotic genomes, which is considered by the
author as a candidate for the role of a universal genetic rule (it is necessary to further
investigate the widest variety of genomes to verify a degree of its universality).

The fourth hyperbolic rule (about interrelations of oligomers in epi-chains of
long DNA sequences):

* In any nuclear chromosome of eukaryotic genomes and in prokaryotic
genomes, the hyperbolic rules NeNe 1 and 2 are fulfielld not only for the
complete nucleotide sequences but also for their epi-chains of the order &
(where £ = 2, 3, 4, ... is not too large compared to the full length of the
nucleotide sequence).

Appendix I shows the numeric data represented in the graphs in Figs. 13.2.-13.6.
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14. The quantum-information model of the oligomer cooperative
organization in genomes and its confirmed predictions

The Section is devoted to the connections of the described phenomenological
hyperbolic (harmonic) rules in genomes with the concepts and mathematical
formalisms of quantum informatics.

One of the creators of quantum mechanics P.Jordan in his work on quantum
biology claimed that life's missing laws were the rules of chance and probability of
the quantum world [Jordan, 1932; McFadden, Al-Khalili, 2018]. From the standpoint
of Jordan’s statement, the study of probabilities or frequencies of n-plets (monoplets,
doublets, triplets, etc.) in long DNA sequences is important for discovering hidden
biological laws and for developing quantum biology. The phenomenological
hyperbolic rules about the total amounts of certain oligomers in the genomes
described above allow us to study their connection with the probability rules of these
groups of oligomers in the genomes. Let us explain this.

Till now we considered the total amounts Xy, ; of certain n-plets, which start
with the first nucleotide N (A, T, C, or G), and we discovered that, in different
genomes, these amounts correspond to hyperbolic OS-sequences Sn/n with a high
accuracy, where Sy refers to the total number of the nucleotide N. The whole
sequence of nucleotides in a long single-stranded DNA can be considered as a
sequence of oligomers of a certain length n, whose amount is equal to S/n. Each such
oligomer starts with one of four nucleotides A, T, C, or G. Therefore the total amount
S/n of consecutive oligomers of length 7 in the analyzed DNA sequence is the sum of
all oligomers of length » starting with A, or T, or C, or G:

Sin=Zan1+Zrp1+ Zcu1+ 261 (14.1)

The collective probability (percentage, or frequency) P,(N;) of all Xx,; n-plets
starting with the nucleotide N, relative to the amount S/n (14.1), is determined by the
expression (14.2):

P,(Nj) = Zn,1/(S/n) = (Sn/n)/(S/n) = Si/S = P(N) (14.2)

The expression (14.2) shows that the collective probability P,(N;) is independent of n
and is approximately equal to the probability (frequency) P(N) = Sx/S of the
nucleotide N in the genomic sequence having S nucleotides.

For example, the human chromosome Nel, which was considered above in
Section 1 (Figs. 2.1-2.3), has the total amount of nucleotides S = SpA+St+Sc+Sg =
67070277 + 67244164 + 48055043 + 48111528 = 230481012. The probability P(A)
of the nucleotide A is equal to SA/S = 67070277 / 230481012 = 0.2910. From the data
in Fig. 2.3, one can verify that, in this chromosome, the collective probabilities P,(A)
of total amounts of n-plets (n = 2, 3, ..., 20) starting with the nucleotide A are also
equal to this value P(A) = 0.2910 with a high level of accuracy independently of n. A
similar situation holds with respect to the nucleotides T, C, and G.

It is also useful to note the opposite: if, for a genome, the phenomenological
probabilities of n-plets Pn(N;) (where n = 1, 2, 3, ...) are initially known, and their
compliance with the rule - of type P(N) = P,(N;) - of approximate equality of
collective probability of n-plets is also known, then connection (14.2) allows us to
construct a hyperbolic OS-sequence of the sums Xy, ; of n-plets (14.3):
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2N = Pu(N1)*S/n (14.3)

This is noted here because the author previously discovered and published
[Petoukhov, 2018b] the rules of the approximate equality of the collective
probabilities of n-plets for n = 1, 2, 3,... Given the expressions (14.2) and (14.3), the
hyperbolic rules of the OS- sequences and these rules for the approximate equality of
the collective probabilities of n-plets are equivalent. Both of them reflect in different
languages the oligomeric cooperative organization of genomes. This is useful to note
because the author has published an effective mathematical model for the rules of
collective probability, which is obviously applicable also to the above formulated
hyperbolic rule Ne 1 [Petoukhov, 2018b; Petoukhov, Petukhova, Svirin, 2019].

One should emphasize the following important aspect of the OS-
representations of genomic sequences. Each nucleotide of a DNA sequence is a
participant of those sets of its different n-plets (doublets, triplets, etc.), whose total
amounts are members of OS-sequences of this DNA; in other words, each DNA
nucleotide makes its small contribution immediately to many members of the OS-
sequences. Figuratively speaking, each DNA nucleotide is "smeared" (or distributed)
over many members of the DNA OS-sequence (this “smearing” over many members
of the OS-sequence is also true for each DNA doublet, triplet, etc.). Correspondingly,
OS-sequences reflect a sort of an interrelation over all #-plets in DNA sequences. Or,
in other words, the oligomer sums method represents any long nucleotide sequence as
a multi-partite (or many-body) system having a cooperative state regarding many its
interrelated oligomers of different lengths n =1, 2, 3,...

This has some analogies with the well-known problem of multi-partite entanglement
in quantum informatics described, for example, in [Walter, Gross, Eisert, 2017;
Horodecki, Horodecki, et al., 2009; Giihne, T6th, 2009; Amico, Fazio, et al., 2008].

Quantum entanglement is the physical phenomenon that occurs when a pair or
group of particles is generated, interact, or share spatial proximity in a way such that
the quantum state of each particle of the pair or group cannot be described
independently of the state of the others. In quantum informatics, entangled states
play very important roles. The study and use of entangled states are one of the
main problems of quantum computing: “...entanglement is a key element in effects
such as quantum teleportation, fast quantum algorithms, and quantum error-
correction. It is, in short, a resource of great utility in quantum computation and

quantum information. ... entangled states play a crucial role in quantum
computation and quantum information” [Nielsen, Chuang, 2010, p. XXIII and p.
96].

Quantum systems with many degrees of freedom are ubiquitous in nature,
particularly in the context of condensed matter theory. “It is hence not surprising that
important classes of states, such as ground states of local Hamiltonians, are multi-
partite entangled states. ... Recent years have seen an enormous increase in interest
at the intersection of quantum information and condensed matter theory that stems
from the insight that notions of entanglement are crucial in the understanding of
quantum phases of matter .... Another family of quantum many-body states that can
be efficiently described is the classes of bosonic and fermionic Gaussian states. They
both arise naturally in the context of quantum many-body models in condensed matter
physics, but their bosonic variant is also highly useful in quantum optics when it
comes to describing systems constituted of several quantum modes of light...
Relatedly, multi-partite entangled states serve as resources to a number of important
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protocols in quantum information theory in which more than two parties come
together. A prominent example of such a multi-party quantum protocol is quantum
secret sharing, in which a message is distributed to several parties in such a way that
no subset is able to read the message, but the entire collection of parties is. .... Multi-
partite entanglement does not only facilitate processing or transmission of
information but also allow for applications in metrology” [Walter, Gross, Eisert,
2017, pp. 15, 18, 20, 23]. The entanglement refers to the nonlocal properties of
quantum states that cannot be explained classically.

Distinguish entanglement of distinguishable and indistinguishable (identical)
particles. The state of the system K of distinguishable particles in a pure state is
determined by the state vector |> in the Hilbert space H, which is the tensor product
of the subspaces corresponding to each particle:

H=H1®H2®...®HK (143)

If the particles are not entangled, then the state of the system is defined as the tensor
product of the state vectors |y”> of the subsystems:

y>=y">QyP>® ... @ [y"> (14.4)

If the vector cannot be expressed in this form (14.4), then they say that the particles
are quantum entangled.

The tensor product gives a way of putting separate vector spaces together to
form larger vector spaces and it is one of the basis instruments in quantum
informatics. The following quotation speaks about the meaning of the tensor product:
“This construction is crucial to understanding the quantum mechanics of
multiparticle systems > [Nielsen, Chuang, 2010, p. 71]. But above Section 3 described
that the DNA alphabets of 4 nucleotides, 16 doublets, 64 triplets,..., 4" n-plets, which
have binary-oppositional systems of molecular traits, are interrelated by the tensor
product of matrices representing them: these genetic matrices of DNA alphabets are
members of a single tensor family [G, T; C, A]" (Fig. 3.1). This fact is one of the
arguments in favor of the adequacy of the quantum-information approach to the study
of genetic informatics and living bodies as informational entities.

One can suppose that in eukaryotic and prokaryotic genomes we have some
special case of multi-partite entangled states, but not in groups of many particles, but
in genomic systems of many oligomers. This can be termed as “the genomic
entanglement” or as “the genomic tetra-entanglement” since genomic sequences
contain 4 kinds of nucleotides A, T, C, and G. It should be emphasized that the author
doesn't declare an existence of ordinary physical quantum entanglement in the
genomes, but only that the mathematical apparatus of the theory of quantum
informatics is suitable for a modelling the considered genetic sequences.

Let us turn to the above-mentioned author's model of properties of genomic
sequences expressed by the expressions (14.2) and (14.3) [Petoukhov, 2018b;
Petoukhov, Petukhova, Svirin, 2019]. This model is based on the tensor products and
some other formalisms of quantum informatics and concerns, first of all, the
hyperbolic rule Nel of the oligomer cooperative organization of genomes. The model
introduced the notion “genetic qubits" based on different pairs of binary-oppositional
molecular traits of adenine A, guanine G, cytosine C, and thymine T. Appropriate
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2n-qubit systems in separable pure states were constructed, where nucleotides A, T,
C, and G (and also DNA doublets and other n-plets) were represented by appropriate
computational basis states in Hilbert spaces of corresponding dimensionalities. For
example, cytosine C was represented as the computational basis state |00> of the
2-qubit system in the 4-dimensional Hilbert space, thymine T - as the computational
basis state |01>, guanine G — as the computational basis state |10>, and adenine A - as
the computational basis state |11> of the same 2-qubit system. Correspondingly,
16 doublets were represented as 16 computational basis states of the 4-qubit system in
the 16-dimensional Hilbert space: for example, the doublet CC was represented as the
computational basis state [0000>, the doublet CT — as |0001>, ..., etc. This model can
be used for a deeper understanding of the genomic entanglement.

An effective model should not only explain known phenomenological data but
also predict unknown data to search them in natural systems. Let us show now that
the proposed quntum-informational model has predictive power, allowing us to open
previously unknown properties of genomic DNA sequences. Really, the noted model
allowed a prediction not only the hyperbolic rule Nel described above but also many
other non-trivial interrelations in genomic structures. In a limited volume of this
article, the author can show only a few following brief examples.

About additional confirmations of the model predictions. For example, the
model predicts the following. Till now we considered OS-sequences, whose members
are total amounts of n-plets, which start with a certain «attributive» nucleotide, for
example, with the nucleotide A. In this case, we calculate the total amounts of
oligomers in the following sets: 4 doublets AT, AC, AG, AA; 16 triplets ATT, ATC,
ATG, ACC, ....; and so on. But what results arise if one calculates, in the same
genome, the total amounts in quite other sets of n-plets having the same attributive
nucleotide A at their second positions, that is the following sets: 4 doublets TA, CA,
GA, AA; 16 triplets TAT, TAC, TAG, CAC,...; and so on forn = 2, 3, 4,...7 And
what results arise if one calculates, in the same genome, total amounts in the sets of
n-plets, which have the same nucleotide at their third positions, that is the following
sets: 16 triplets TTA, TCA, TGA, CCA, ...; 64 tetraplets TTTA, TCTA, TGCA, ...;
and so on for n =3, 4, 5, ...? The quantum-information model predicts that in all such
cases the resulting OS-sequences will be practically identical to the hyperbolic-like
OS-sequence of the total amounts of n-plets with the same attributive nucleotide at
their first position. These model predictions also apply to cases of sets of n-plets,
which have the same attributive nucleotide at their 4th, Sth, 6th, ..., kth positions for
n =k, k+1, k+2, ... (here k is not too large compared to the full length of the genomic
sequence).

These model predictions are confirmed by direct calculations of total amounts
of corresponding sets of n-plets in different genomes. Figs. 14.1 and 14.2 show
examples of such confirmations by the comparisons of different OS-sequences
calculated for the human chromosome Nel in three cases of locations of attributive
nucleotides in its n-plets: 1) at the first position in n-plets (data on the appropriate
OS-sequences are taken from Fig. 2.3); 2) at the second position; 3) at the third
position.

One can see from the shown results that the differences A% of the
corresponding members of these three OS-sequences from each other are less than
0.1%, that is these OS-sequences are practically identical. These differences were
calculated for each n by the formulas A% = 100(1 - Posl/Pos2)% and A% =
100(1 - Pos1/Pos3)% where Pos1, Pos2, and Pos3 refer to values indicated in the rows

d0i:10.20944/preprints202005.0471.v2
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Pos. 1, Pos. 2, and Pos. 3. Here the results are presented only for n = 2, 3, 4, ..., 10
but similar situations of practical coincidences of the corresponding members of the
considered OS-sequences are also true for larger n.

Al
| Pos. 1 | 67070277 | 33537501 | 22360413 | 16768845 | 13413532 | 11179286 | 9584038 | 8383461 | 7453552 | 6706672
| Pos. 2 - 33532776 | 22353979 | 16767465 | 13413514 | 11174459 | 9578118 | 8383936 | 7452356 | 6704047
A% 0.014 0.029 0.008 0.000 0.043 0.062 -0.006 0.016 0.039
T
| Pos. 1 | 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359
| Pos. 2 - 33623666 | 22411166 | 16811071 | 13445910 | 11206100 | 9610249 | 8405351 | 7472348 | 6724456
A% 0.009 -0.008 0.013 0.004 -0.010 0.036 0.004 0.029 0.001
C
Pos. 1 | 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919
Pos. 2 - 24030140 | 16021444 | 12015843 | 9615911 | 8012553 | 6865662 | 6005986 | 5338638 | 4808410
A% 0.022 0.055 0.018 0.038 0.085 -0.004 -0.037 0.031 0.093
G
Pos. 1 | 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156
Pos. 2 - 24053922 | 16040412 | 12025875 | 9620866 | 8020389 | 6871831 | 6014853 | 5345656 | 4811187
A% -0.015 -0.003 -0.025 -0.044 -0.011 0.039 0.024 -0.050 -0.041

Fig. 14.1. The comparison of the OS-sequences of the total amounts of
n-plets, which have the nucleotide N (A, T, C, or G) at their first position (the row
“Pos. 17) and at their second position (the row “Pos. 2”) in the human chromosome
Nel. A% shows the percentage of differences between the corresponding total
amounts of n-plets from each other. The comparison begins with doublets, since there
is no second position in monoplets.

Pos. 1 | 67070277 | 33537501 | 22360413 | 16768845 | 13413532 | 11179286 | 9584038 | 8383461 | 7453552 | 6706672 ||
Pos. 3 - - 22355885 | 16768656 | 13414900 | 11178695 | 9578685 | 8383657 | 7450656 | 6710255 ||
A% ! 0.020 0.001 -0.010 0.005 0.056 | -0.002 | 0.039 | -0.053
T

[ Pos. 1 | 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359 ||

| Pos.3 - - 22420005 | 16811636 | 13448900 | 11208158 | 9604848 | 8406144 | 7472996 | 6723773 ||

| A% 0.031 | -0.017 | -0.026 | -0.008 | 0.20 | -0.013 | -0.038 | 0.009
C

[ Pos. 1 | 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919 ||

| Pos.3 - - 16020888 | 12011279 | 9611721 | 8010304 | 6867877 | 6005835 | 5342246 | 4803498 ||

| A% -0.051 0.020 0.005 0.057 | -0.028 | 0.040 | -0.099 | 0.009 |
G 2

[ Pos. 1 | 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156 ||

| Pos.3 - - 16030227 | 12028682 | 9620676 | 8016348 | 6874449 | 6014493 | 5343102 | 4810570 ||

[ A% 0.066 0.002 0.046 0.061 | -0.077 | -0.018 | 0.098 | 0.054 ||

Fig. 14.2. The comparison of the OS-sequences of the total amounts of
n-plets, which have the nucleotide N (A, T, C, or G) at their first position (the row
“Pos. 1) and at their third position (the row “Pos. 3”) in the human chromosome Nel.
A% shows the percentage of differences of the corresponding total amounts of n-plets
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from each other. The comparison begins with triplets since there is no third position in
monoplets and doublets.

These predictions about the oligomer cooperative organization and their
confirmations in eukaryotic and prokaryotic genomes give a significant extension to
the hyperbolic rule Nel regarding the hyperbolic-like OS-sequences of the total
amounts of n-plets, which have the same attributive nucleotide at their kth position
(not only in their first position). These results and the extended rules additionally
open up the deep connections of genomic sequences with the harmonic progression
(2.4) and discover new aspects of the algebraic harmony of living bodies.

Another large bunch of predictions about genomic sequences is given by the
quantum-information model for quantitative interrelations of different n-plets, which
start from the same doublet, or from the same triplet, etc. The model predicts, in
particular, that the amount S, of any of 16 doublets NN is algebra-harmonically
interrelated with the total amounts S;, S4, Ss, ... of oligomers in the following sets: 4
triplets, which start with this attributive doublet NN; 16 tetraplets, which start with
this attributive doublet NN; 64 pentaplets, which start with this attributive doublet
NN; and so on. This interrelation is again based on the harmonic progression (2.4).
More precisely, according to the model prediction, the ratios of these total amounts
S,/S3, S2/Sa, S»/Ss, ... should be correspondingly equal to the ratios of the second
member 1/2 of the harmonic progression (2.4) to its subsequent members 1/3, 1/4,
1/5, ... that is to values 3/2, 4/2, 5/2, ....

Fig. 14.3 presents the confirmation of this model prediction by the comparison
of the amount S, of each of 16 doublets to the total amounts S3, S4, Ss of n-plets (n =
3,4, 5), which start with this doublet, in the human chromosome Nel.

DOUBLETS | TRIPLETS | TETRAPLETS | PENTAPLETS | S)/S; | Si/S; | S)/Ss

S,=X(AA) | S3=X(AAN), | Si=Z(AANN);s | Ss=X(AANNN)g,

10952057 7300222 5476855 4381298 1.50 | 2.00 | 2.50
S,=X(AT) | S;=X(ATN), | S;=X(ATNN);s | Ss=Z(ATNNN)

8561194 5706906 4280647 3420561 1.50 | 2.00 | 2.50
S,=X(AC) | S;=X(ACN), | S;=X(ACNN);s | Ss=Z(ACNNN)y,

5799729 3868541 2899991 2322063 1.50 | 2.00 | 2.50
S,=X(AG) | S;=X(AGN), | S,=X(AGNN);s | Ss= Z(AGNNN),

8224510 5484720 4111320 3289579 1.50 | 2.00 | 2.50
S,=X(TA) | S;=X(TAN), | S,=X(TANN);; | Ss=X(TANNN)

7274275 4849731 3636741 2909412 1.50 | 2.00 | 2.50
S,=X(TT) | S;=X(TTN); | Ss=X(TTNN);s | Ss= (TTNNN)s,

11026157 7346507 5511908 4409900 1.50 | 2.00 | 2.50
S,=X(TC) | S;=X(TCN), | S;=X(TCNN);s | Ss= Z(TCNNN)

6923689 4617788 3461837 2768794 1.50 | 2.00 | 2.50
S,=X(TG) | S;=X(TGN); | S;=X(TGNN);s | Ss=X(TGNNN)g

8396349 5598933 4198342 3357218 1.50 | 2.00 | 2.50
S,=X(CA) | S;=X(CAN), | S;=>(CANN);s | Ss=X(CANNN)y,

8382478 5591208 4191829 3354600 1.50 | 2.00 | 2.50
S,=X(CT) | S;=X(CTN), | S4=X(CTNN);s | Ss= Z(CTNNN)u

8221421 5477836 4111963 3289510 1.50 | 2.00 | 2.50
S,=%(CC) | S;=3(CCN), | S;=X(CCNN);s | Ss=3(CCNNN)g,

6233384 4153642 3117570 2492824 1.50 | 2.00 | 2.50
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S,=X(CG) | S3=X(CGN), | S4=X(CGNN);s | Ss= Z(CGNNN)g

1187593 789995 592235 475262 1.50 | 2.01 | 2.50
Sz = Z(GA) S3 = 2(GAN)4 S4 = Z(GANN)M SS = 2(GANNN)(,4

6923938 4612792 3462012 2768171 1.50 | 2.00 | 2.50
Sz = Z(GT) S3 = Z(GTN)4 S4 = Z(GTNN)M S5 = 2(GTNNN)(,4

5814874 3879880 2906516 2325903 1.50 | 2.00 | 2.50
S,=X(GC) | S;=X(GCN), | S4=X(GCNN)is | Ss= Z(GCNNN)g

5073325 3381454 2536422 2032200 1.50 | 2.00 | 2.50
S,=X(GG) | S;=X(GGN), | Ss=X(GGNN);s | Ss= Z(GGNNN)g,

6245451 4166742 3123944 2498784 1.50 | 2.00 | 2.50

Fig. 14.3. The comparison of total amounts S, = X(NN) of each of 16 doublets
NN to the total amounts S3 of 4 triplets, S4 of 16 tetraplets, and Ssof 64 pentaplets,
which start with such attributive doublet NN, is shown for the human chromosome
Nel. The left part of the table indicates the values of the corresponding total amounts.
The right part contains appropriate values of the ratios S»/Ss, S»/S4, and S,/Ss, which
are equal to the same magnitudes 1.5, 2.0, and 2.5 for the cases of all 16 doublets.
Here N refers to any of nucleotides A, T, C, and G.

The rows in the left part of Fig. 14.3 shows very different numeric series of
total amounts, which are individual in each of rows. But the right part shows that in
each row its amounts are interrelated identically based on the numeric series of the
ratios 1.5, 2.0, and 2.5, which serves here as a general invariant for the cases of all 16
doublets. But this sequence of ratios exists in the harmonic progression (2.4): 1, 1/2,
1/3, 1/4, 1/5, ... , where the ratios of its second member 1/2 to its third, fourth and
fifth members (that is, 1/3, 1/4, and 1/5) give this series 3/2, 4/2, and 5/2. Similar
results are true for all other human chromosomes and for all those genomes, which
were analyzed by the author.

The model predicts similarly the following numeric interconnections in the
complete genomic sequences:

* The amount S3 of any of 64 triplets NNN is algebra-harmonically interrelated
with the total amounts S4, Ss, S, ... of oligomers in the following sets: 64
tetraplets, which start with this attributive triplet NNN; 256 pentaplets, which
start with this attributive triplet NNN; 1024 six-plets, which start with this
attributive triplet NNN;.... The ratios of these total amounts S;/Ss, S3/Ss,
S3/Ss, ... should be correspondingly equal to the ratios of the third member 1/3
of the harmonic progression (2.4) to its subsequent members 1/4, 1/5, 1/6, ...,
that is to values 4/3, 5/3, 6/3, ...

* The amount S; of any of 256 tetraplets NNNN is algebra-harmonically
interrelated with the total amounts of Ss, S¢, S7, ... of oligomers in the
following sets: 256 pentaplets, which start with this attributive tetraplet
NNNN; 1024 six-plets, which start with this attributive tetraplets NNNN;
4906 seven-plets, which start with this attributive tetraplets NNNN,... . The
rations of these total amounts S4/Ss, S4/Se, S4/S,... should be correspondingly
equal to the ratios of the fourth member 1/4 of the harmonic progression (2.4)
to its subsequent members 1/5, 1/6, 1/7, ..., that is to values 5/4, 6/4, 7/4, ...

* And so on (the length of attributive oligomers NN...N in the considered sets
of n-plets should not be too large compared to the full length of the genomic
sequence).
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Similar model predictions exist not only for the listed cases, when the
considered attributive nucleotides, or attributive doublets, or attributive triplets, etc.
occupy the first positions in n-plets of the considered sets, but also for cases when
these attributive nucleotides or oligomers occupy there the second positions, or the
third positions, etc (see corresponding rules about collective probabilities in oligomer
tetra-groups for cases of locations of attributive oligomers in different positions of n-
plets in the article [Petoukhov, 2018b].

Most of the long list of predictions, stemming from this quantum information
model, is still awaiting their checking through analysis of various genomes. So far,
the author has conducted only a relatively small number of checks of such predictions
and has not found a single case of a phenomenological refutation of these predictions.
The author will be grateful to those members of the scientific community who will
find in the full-length sequences of different genomes such cases where these model
predictions are not fulfilled.

These and other confirmed predictions of the model enlarge significantly the
list of hyperbolic rules in genomes and lead to new tools and opportunities to study
genetic structures. The obtained phenomenological data and the set of confirmed
predictions of the quantum-information model testify that the eukaryotic and
prokaryotic genomes represent a regular algebraic fractal-like net with important
participation of the harmonic progression (2.4) in interconnections of its parts. This
allows us to say about the algebraic harmony in living bodies. In theoretical biology,
the quantum-information model has appeared, which allows one to predict with high
accuracy a large number of quantitative interconnections between different kinds and
sets of oligomers in eukaryotic and prokaryotic genomes.

15. Regarding the application of the oligomer sums method to long protein
sequences

Till now we considered applications of the oligomer sums method to the analysis
of long single-stranded DNA sequences of nucleotides. Such DNA sequences consist
of 4 kinds of nucleotides, and corresponding 4 equivalency classes of A;-, T-, Ci-,
Gi-oligomers are analyzed. This Section discusses opportunities to apply this method
for the similar revealing of possible algebra-harmonic features of primary structures
of sequences of 20 amino acids in long proteins.

Each long sequence of amino acids (for example, ArgSerThrGlyPheLysLeuSer
MetAla...) can be represented either as a sequence of monomers (Arg-Ser-Thr-Gly-
Phe-Lys-Leu-Ser-Met-Ala-...), or as a sequence of amino acid doublets (ArgSer-
ThrGly-PheLys-LeuSer-MetAla-...), or as a sequence of amino acid triplets
(ArgSerThr-GlyPheLys-LeuSerMet-... ), and so on. Analyzing above long DNA
sequences of nucleotides, which consist of 4 kinds of nucleotides A, T, C, and G, we
considered 4 equivalency classes of Aj-, T;-, C;-, Gj-oligomers. By analogy, in the
case of sequences of 20 kinds of amino acids, we will analyze 20 equivalency classes,
each of which is defined by corresponding amino acid and combines all oligomers,
which start with this amino acid. For example, the amino acid Ala defines the
equivalency class of Ala;-oligomers, which includes all n-plets starting with this
amino acid: the set of Ala;-doublets contains all 20 doublets, which start with the Ala
(AlaAla, AlaArg, AlaAsn, ..., Ala Cys); the set of Ala;-triplets contains all 400
triplets, which start with the Ala (AlaAlaAla, AlaAla Arg, ...., AlaCysCys), and so
on.
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The application of the oligomer sums method to the analysis of any long amino
acid sequence and their 20 classes of the oligomer equivalency is as follows (by
analogy with the above-described application of the method to analyze long
nucleotide sequences and their 4 classes of the oligomer equivalency):

* For any of the 20 classes of the oligomer equivalency, the total amount X of its
defining amino acid and total amounts of all those n-plets (n = 2, 3, 4, ...), that
have this acid in their first position (or in other fixed position), are calculated;

* The sequence of these phenomenological amounts is compared with the model
hyperbolic sequence X/n of this equivalency class, where n =1, 2, 3, ...

Let us explain the proposed application of the OS-method by an example of the
analysis of the primary amino acid sequence of the protein Titin, which is one of the
longest proteins. Titin is important in the contraction of striated muscle fibers and is
the third most abundant protein in the muscle (after myosin and actin). Below some
results of the author's analysis of the human protein Titin by the OS-method are
presented. Fig. 15.1 shows 20 graphs demonstrating the OS-sequences for each of 20
amino acids combined in the single general amino acid sequence of the Titin. Each of
these 20 graphs presents data for one of the kinds of amino acids and shows number X
of this amino acid in Titin and also two sequences: one of them (in blue) corresponds
to the sequence of the real total amounts of those n-plets, which start with this amino

acid, and the second sequence (in red) corresponds to the model hyperbolic sequence
¥/n(heren=1,2,3,..., 10).
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Fig. 15.1. Graphs of analysis results of the human protein Titin by the oligomer sums
method for each of 20 equivalency classes, which are defined by its 20 kinds of amino
acids. Each graph shows a sequence (in blue) of real total amounts of n-plets, which
start with this amino acid, and also a model hyperbolic sequence X/n (in red), where
refers to a number of this amino acid (n = 1, 2,..., 10). The abscissa axes show the
values n; the ordinate axes show total amounts of the corresponding n-plets, which
start with this amino acid. Initial data on this protein are taken on the site
https://www.ncbi.nlm.nih.gov/protein/ACN81321.1.

One can see from Fig. 15.1 that, in the protein Titin, for each of all 20 amino
acids its sequence (in blue) of phenomenological values of total amounts of those n-
plets, which start with this amino acid, approximately coincides with the
corresponding model hyperbolic sequence X/n (in red) or slightly fluctuates around it.
In the considered case of Titin, the accuracy of the coincidence of the sequences of
real and model values is lower than in the case of genomes described above. This
seems to be due to the relatively short length of the titin amino acid sequence
compared to the lengths of genomic nucleotide sequences. The graphs in the figure
show that the largest deviations of the sequences of real values from sequences of
model values occur in cases of amino acids, whose number is minimal: the number of
amino acids His is 463, Met - 384, Trp - 462, Cys - 498. Moreover, the deviations of
the real values of oligomer sums from model values are relatively small for small
values n = 2, 3, but with an increase in the length of oligomers at n =4, 5, ..., 10, these
deviations can increase (the number of corresponding n-plets decreases with
increasing n).

Fig. 15.2 gives examples of real and model numeric values for the classes
Ala;- and Arg;-oligomers from the first graphs in Fig. 15.1.

n 1 2 3 4 5 6 7 8 9 10

Ala
Real 2026 | 1016 | 698 | 506 394 (343 | 287 |261 232 | 206
Model | 2026 1013 675 | 506.5 405 | 338 |289 | 253 225 | 203

A% -0.3 -3.4 0.1 |28 -16 (0.8 |-3.1 |-3.1 |-1.7 |-0.3
T —
Arg

Real 1623 | 777 564 | 379 346 | 254 | 234 | 177 192 | 170
Model | 1623 | 812 541 | 406 325 | 271 | 232 | 203 180 | 162
A% 0 4.3 -43 | 6.6 -6.6 |61 |-09 |128 |-6.5 |-4.7

Fig. 15.2. Examples of numeric data about OS-sequences concerning two equivalency
classes of Alaj-oligomers and Arg;-oligomers in the human protein Titin. Graphic
presentations of corresponding OS-sequences are shown in Fig. 15.1 at the very top.
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The study of the amino acid sequences of long proteins by this OS-method
should be continued to allow comparative analysis of various proteins.

16. Hyperbolic rules in phonetic sequences of long Russian literary texts
revealed by the oligomer sums method

Leading experts in the field of structural linguistics have long believed that
languages of human dialogue were formed not by random processes but by a
continuation of genetic language or, are, at least, closely connected with genetic
language, suggesting the compelling possibility that all organisms may utilize their
genetic code in communication mechanisms. Analogies between systems of genetic
and linguistic information are of wide and important scientific interest. Such direction
of thoughts touches on the fundamental issues of intellectual activity and suggests that
the principles of informational activity of the brain, reflected in human speech, did not
arise from an empty place, but are a continuation of the principles of organization of
genetic informatics. The Section is devoted to deep structural analogies between
genomic nucleotide sequences and the phonetic features of long literary Russian texts
related to the binary-oppositional phonetic structure of the Russian alphabet. These
new analogies are connected with the described above hyperbolic rules and the
harmonic progression (2.4).

One should note here the works by Roman Jakobson, one of the most famous
linguistics experts and an author of an in-depth theory of binary phonetic oppositions
in human languages [Jakobson, 1987, 1999; Jakobson, Fant, Halle, 1951; Jakobson,
Halle, 1971; Jakobson, Waugh, 2002; Holenstein, 1975]. Jointly with F. Jacob, Nobel
Prize winner in molecular genetics, and with other linguistic specialists holding the
same views, Jakobson proposed that genetic language is the structural basis of
linguistic languages [Jacob et al., 1968; Jakobson, 1985].

According to Jakobson, all relations among linguistic phonemes are decomposed
into a series of binary oppositions of elementary differential attributes (or traits). By
analogy, the set of the four nucleotides (“letters” of DNA texts) of the genetic
alphabet contains the binary sub-alphabets, which allow creating new mathematical
models in molecular genetics [Petoukhov, 2017, 2018a]. As Jakobson wrote, the
genetic code system is the basic simulator, which underlies all verbal codes of human
languages. “The heredity in itself is the fundamental form of communications ...
Perhaps, the bases of language structures, which are imposed on molecular
communications, have been constructed by its structural principles directly”
[Jakobson, 1985, p. 396]. These questions had arisen to Jakobson as a consequence of
his long-term research into the connections between linguistics, biology, and physics.
Such connections were considered at a united seminar of physicists and linguists,
organized by Niels Bohr and Roman Jakobson, jointly, at the Massachusetts Institute
of Technology.

“Jakobson reveals distinctly a binary opposition of sound attributes as underlying
each system of phonemes... The subject of phonology has changed by him: the
phonology considered phonemes (as the main subject) earlier, but now Jakobson has
offered that distinctive attributes should be considered as “quantums” (or elementary
units of language)... Jakobson was interested especially in the general analogies of

language structures with the genetic code, and he considered these analogies as
indubitable” [Ivanov, 1985].
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This connection between linguistics and the genetic code interests many
researchers, and some even perceive linguistic language as a living organism. In his
book, “Linguistic Genetics”, Makovsky says: "4 look at language as a living
organism, subject to the natural laws of nature, ascends to deep antiquity ... Research
of nature, of disposition and of reasons of isomorphism between genetic and linguistic
regularities is one of the most important fundamental problems for linguistics of our
time" [Makovsky, 1992].

Wanting to advance in the study of the relationship between genetic language
and linguistic languages, let's concentrate on Jakobson's fundamental theory about a
binary opposition of sound attributes as underlying each system of phonemes and
about distinctive attributes considered as “quantums” (or elementary units of various
languages). In the Russian alphabet, a one-to-one correspondence between the letters
and the phonemes exists. For this reason, analyzing long literary Russian texts,
researches can study their phonetic structures (only a few human languages have in
their alphabets a one-to-one correspondence between the letters and the phonemes).
Below the author presents the results of his studying the phonetic structures of long
Russian literary texts by L.N.Tolstoy, F.M.Dostoevsky, A.S.Pushkin, and others.

The DNA alphabet has the two-level binary-oppositional structure: it contains
two sub-alphabets of purines (A, G) and pyrimidines (T, C). Each sub-alphabet
dichotomously divides into two sub-sub-alphabets according to the signs of 2 or 3
hydrogen bonds in the complementary nucleotide pairs A-T and C-G (Fig. 16.1, at
left).

The Russian alphabet, like the DNA alphabet, is phonetically based on binary
oppositions and divided into sub-alphabets of vowels and consonants. In turn, the sub-
alphabet of vowels dichotomously divided into sub-sub-alphabets of long and iotated
vowels, and the sub-alphabet of consonants - into sub-sub-alphabets of voiced and
deaf consonants (Fig. 16.1, at right). The soft sign “p” and the hard sign “»” in the
Russian alphabet do not convey any sound, and therefore they are not taken into
account in its phonologic structure.

DNA Russian
alphabet alphabet
(A CG,T)
'Vowels | Consonants
Purine Pyrimidine M
AG T, C : , o~
Long Short Deaf Voiced
/\ vowels:| | (iotated) consonants: consonants:
2 H.bonds | | 3 H.bonds 3 H.bonds | |2 H.bonds a,H,0, | vowels: m, ¢, K, T,m, | 0,B,T, ], K 3,
A G C T Y, bl,3. | | & ¢& 10, 5. ¢ X, I, Y, 1L | | i, J1, M, H, .
~ W - W
A T G C

Fig. 16.1. The two-level binary-oppositional structure of the DNA alphabet of
4 nucleotides A, T, C, and G (at left) and the similar two-level binary-oppositional
structure of the Russian alphabet, consisting of 4 phonetic classes denoted by symbols
A, T, C, and G (at right), are shown.

As is well known, the Russian alphabet according to the phonetic features of
its shown 31 phonetic letters consists of the following four classes of the phonetic
equivalency of letters (Fig. 16.1, at right):


https://doi.org/10.20944/preprints202005.0471.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202005.0471.v2

- The first class of the phonetic equivalency combines all letters, which are long
vowels (a, u, 0, y, I, 3). Any letter from this class will be denoted by the
general symbol A, which we will call the phonetic monomer representing the
first class;

- The second class of the phonetic equivalency combines all letters, which are
short (iotated) vowels (e, €, 1o, s1). Any letter from this class will be denoted by
the general symbol T, which we will call the phonetic monomer representing
the second class;

- The third class of the phonetic equivalency combines all letters, which are
deaf consonants (1, ¢, k, T, I, ¢, X, 1, 4, 11). Any letter from this class will be
denoted by the general symbol G, which we will call the phonetic monomer
representing the third class;

- The fourth class of the phonetic equivalency combines all letters, which are
voiced consonants (0, B, T, 1, X, 3, i, 1, M, H, p). Any letter from this class will
be denoted by the general symbol C, which we will call the phonetic monomer
representing the fourth class.

Leaving only these letters from the 4 classes in a studied literary text and
replacing each letter by its appropriate symbol A, or T, or G, or C, we represent the
literary text into a sequence of the phonetic monomers, for example, CAGGTCTAG...
We will call such sequence «the phonetic literary sequence" (or simply "the phonetic
sequence") representing this literary text.

Below the author shows the results of studying the phonetic sequences, which
represent long Russian literary texts, by the same oligomer sums method that was
used above to study genomic sequences of nucleotides. These results reveal deep
analogies of long genomic sequences and long phonetic literary sequences from the
point of view of regularly interrelated oligomeric sums. Both of them are similarly
related to the harmonic progression (2.4) and obey corresponding hyperbolic rules.
Both of them show themselves as holistic cooperative essences, whose parts are
interrelated by ratios of the algebraic harmony.

- 16.1. The analysis of the Russian novel «<Anna Karenina» by L.N. Tolstoy

Let us start with an analysis of the Russian novel “Anna Karenina” by Leo Tolstoy
(the original literary text was accessed from http://samolit.com/books/62/). This novel
contains 1309047 phonetic letters from Fig. 16.1. Its phonetic literary sequence can be

considered as a chain of 4 phonetic monomers A, T, G, and C; or as a chain of 16
phonetic doublets AA, AT, AG, ..., CC; or as a chain of 64 phonetic triplets AAA,
AAT, AAG, ....; and so on. By analogy the analysis of genomic nucleotide sequences
by the oligomer sums method (see Section 2), this phonetic literary sequence can be
also analyzed by this method using the following steps:

* Firstly, one should calculate phenomenological quantities Sz, St, S¢, and Sg
of phonetic monomers A, T, G, and C in the considered phonetic literature
sequence. In the phonetic sequence of the novel «Anna Kareninay» the
following quantities exist: Sx = 419490, St = 154800, S¢ = 452716, and
S¢ =282041.

* Secondly, to construct the phonetic oligomer sums sequences (or briefly,
phonetic OS-sequences), one should calculate the total amounts Xz 1, Zt.,.1,
L1, and Xgyuy of phonetic n-plets in equivalence classes of As- ohgomers
T)-oligomers, C;-oligomers, and G-oligomers at n = 1, 2, 3, 4, ... (here, for
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example, the symbol Xj 3, refers to the total amount of triplets, which start
with the phonetic monomer A). These total amounts regarding each of the
classes are members of the appropriate phonetic OS-sequence of the class.
At the final step, such phenomenological amounts Xx 1, Zt,1, Z¢n1, and
XG.q1 are compared with their model values from the corresponding hyperbolic
sequence Si/n, or St/n, or S¢, or Sg/n.
Fig. 16.2 shows sequences of amounts X .1, 1,1, 2¢n.1, and Zg 1 of all phonetic
monomers, doublets, and other n-plets (at n =1, 2, 3, ..., 10), representing the
phonetic sequence of this famous Russian novel. The real amounts of phonetic n-plets
are compared with their appropriate model values Si/n, or Si/n, or S¢, or Sg/n.

n 1 2 3 4 5 6 7 8 9 10
A
Real | 419490 | 209616 | 138897 | 104787 | 83861 | 69392 | 59842 | 52350 | 46457 | 41852
Sa/n | 419490 | 209745 | 139830 | 104872.5 | 83898 | 69915 | 59927 | 52436 | 46610 | 41949
A% 0.00 0.06 0.67 0.08 0.04 0.75 0.14 0.16 0.33 0.23
[ m————————————————————————————————————————————————————————————
T
Real | 154800 | 77480 | 51959 38958 | 31065 | 26088 | 22123 | 19525 | 17203 | 15467
Si/n 154800 | 77400 | 51600 38700 | 30960 | 25800 | 22114 | 19350 | 17200 | 15480
A% 0.00 -0.10 -0.70 -0.67 -0.34 | -1.12 | -0.04 | -0.90 | -0.02 | 0.08
[ m———————————————————————————————————————————————————————
C
Real | 452716 | 226508 | 151043 | 113054 | 90448 | 75588 | 64753 | 56664 | 50397 | 45424
Se/n | 452716 | 226358 | 150905 | 113179 | 90543 | 75453 | 64674 | 56590 | 50302 | 45272
A% 0.00 -0.07 -0.09 0.11 0.11 | -0.18 | -0.12 | -0.13 | -0.19 | -0.34
——————————————————————————————————————————————————————
G
Real | 282041 | 140919 | 94450 70462 | 56435 | 47106 | 40288 | 35091 | 31392 | 28161
Se/n | 282041 | 141021 | 94014 70510 | 56408 | 47007 | 40292 | 35255 | 31338 | 28204
A% 0 0.07 -0.46 0.07 -0.05 | -0.21 | 0.01 047 | -0.17 | 0.15

Fig. 16.2. Real values and model values Sa/n, or St/n, or S¢, or Sg/n (in red) in
the case of the oligomer sums representations of the phonetic sequence of the Russian
novel «Anna Karenina» by L. Tolstoy. Symbols A, T, G, and C refer to the phonetic
monomers (Fig. 16.1, at right). The symbol A% denotes deviations of real values from
model values in percent (the model values are taken as 100%).

One can see in Fig. 16.2 that the deviations of real values X4 .1, Zt..1, Z¢.n1, and
Y.q.1 of the phonetic oligomeric sums - from their model values in the corresponding
hyperbolic sequences Si/n, or Si/n, or S¢, or Sg/n - are small and lie within one
percent. Thus, the deviations in the phonetic representations of the Russian text of the
novel "Anna Karenina" have the same order of smallness as the deviations in the
nucleotide sequences of eukaryotic and prokaryotic genomes shown above in Figs.
2.3,24,4.1,5.1, 6.1, 7.1, 9.1, 10.1-10.8. In other words, long genomic nucleotide
sequences and long phonetic sequences of this Russian novel are structurally akin and
obey the similar hyperbolic rules related to the harmonic progression (2.4). This holds
not only for the named Russian novel but also for other Russian long texts, whose
phonetic literary sequences were analyzed by the oligomer sums method as it is
described below. This gives evidence in favor of the deep algebra-harmonic relation
of the phonetic structurization of the Russian language to the structurization of
eukaryotic and prokaryotic genomes.
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The results of the analyses of phonetic representations of the Russian texts of not
only the novel «Anna Karenina» but also of other long Russian literary works by L.N.
Tolstoy, F.M. Dostoevsky, and A.S. Pushkin, which are described below, testify in
favor of the following hyperbolic phonetic rule about interrelations of oligomer sums
in phonetic representations of such Russian works:

The first hyperbolic phonetic rule:

 For any of the phonetic classes of A -oligomers, Ti-oligomers, C-oligomers,

and Gj-oligomers in the phonetic representations of long Russian literary
texts, the total amounts Xy, (n) of their phonetic n-plets, corresponding
different n, are interrelated each other through the hyperbolic expression Xy, 1
~ Sx/n with a high level of accuracy (here N denotes any of 4 phonetic
monomers A, T, G, and C; Sx denotes the number of the phonetic monomer
N;n=1,2,3,4,...1is not too large compared to the full length of the phonetic
sequence). The phenomenological points with coordinates [n, Xx.1]
practically lie on the hyperbola in its points Hx ; = Sx/n.

This phonetic hyperbolic rule for long Russian texts is analogical to the first
hyperbolic rule of eukaryotic and prokaryotic genomes formulated above in Section 2.
Fig. 16.3 shows graphically the phonetic oligomer sums sequences XA .1, Ztn.1, 2Cn.l,
whose numeric data are given in Fig. 16.2.

5x1o5

C,
ar M
3 &l
2,

T ¢
1,

—

o T T
0 2 4 6 8 10

Fig. 16.3. Graphs of the hyperbolic-like sequences of the phonetic oligomer
sum X1, Ztal, a1, and Xg,1, which are shown numerically in Fig. 16.2 and
which practically coincide with the model hyperbolic sequences Si/n (in blue), Si/n
(in red), S¢,(in brown), and S¢/n (in green).

Let us continue to list those deep algebra-structural analogies between
phonetic sequences of long Russian texts and nucleotide sequences of eukaryotic and
prokaryotic genomes, which are revealed by the oligomer sums method. As shown
above in Figs. 13.1-13.6, the genomic DNA sequences have a fractal-like structure
revealed by the oligomer sums method at the analysis of their epi-chains, i.e.
shortened subsequences consisting of every second nucleotide, or every third
nucleotide, or of every fourth nucleotide, and so on. By analogy, you can numerate
members in the phonetic sequence D; of any Russian text by numbers 1, 2, 3, ... in
their sequent order. Further, you can consider its phonetic epi-chains that is shortened
subsequences con51st1ng of every second member (the epi-chains Do, Dap), or every
third member (the epi-chains D3/1, D3/2 D3/3) or of every fourth member, and so on
(Fig. 16. 4). In the designation “Dy,” of such phonetic epi-chains, the numerator "k"
indicates the order of the phonetic epi-chain, and the denominator "m" indicates the
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numeration of the initial member of this epi-chain in the holistic phonetic sequence
D;. Fig. 16.4 shows examples of phonetic epi-chains Dy, D3/, D4y, and of their

compositions.

D;: 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17
Dyy: 1 3 5 7 9 11 13 15 17
Dy 1 4 7 10 13 16
Day: 1 5 9 13 17

Fig. 16.4. Compositions of the phonetic epi-chains Dy1, D31, D41 compared to
the composition of the full phonetic sequence D;.

Figs. 16.5-16.7 show numeric and graphical results of the analysis of these
phonetic epi-chains Dy/1, D3y, D4y in the phonetic representation of the Russian novel
«Anna Karenina» by the oligomer sums method. The full phonetic_sequence D,
contains 1309047 phonetic letters; its epi-chains Do, D3/1 D4y contains
correspondingly 654524, 436349, and 327262 phonetic letters. They all differ from
each other not only in the number of members but also in the sequence of different
phonetlc oligomers in them. But one can see in 16.5-16.7 that in all these phonetic
epi-chains Dy, D31, Dy/1 the sequences of oligomeric sums are hyperbolic sequences
with high accuracy. From this point of view, the considered phonetic epi-chains Do,
D3/1 Da/ are practically no different from the full phonetic chain Dl(Flgs 16.2 and
16.3); the hyperbohc rule of phonetic sequences, associated with harmonic
progression (2.4), is for them a general algebraic rule or a general algebraic invariant.

Similar results are valid for other epi-chains Dap, D3/2 Dss, Dan, Das, Dasa,
and not only for the novel «Anna Kareninay, but also for all other long Russian texts
by L.N. Tolstoy, F.M. Dostoevsky, and A.S. Pushkin, analyzed by the author and
presented below. These results testify in favor of the following hyperbolic phonetic
rule, which is an analoq of the fourth hyperbolic rule of eukaryotic and prokaryotic
genomes formulated above in Section 13.

The second hyperbolic phonetic rule (about interrelations of phonetic
oligomer sums in epi-chains of phonetic sequences of long Russian literary texts):

* In any of the phonetic sequences, representing long Russian literary texts, the
first hyperbolic phonetic rule is fulfilled not only for oligomer sums of the full
phonetic sequence but also for its epi-chains of the order k (where k =2, 3, 4,

.. 1s not too large compared to the length of the full phonetic sequence).

Real | 209617 | 104788 | 69392 52351 41852 | 34802 | 29866 | 26297 | 23331 | 20924
Sa/m | 209617 | 104809 | 69872 | 52404.25 | 41923 | 34936 | 29945 | 26202 | 23291 | 20962

A% 0 0.02 0.69 0.10 0.17 0.38 0.26 -0.36 | -0.17 0.18
—————————————————————————————————————————————————
T

Real | 77480 38958 | 26088 19525 15467 | 13172 | 11037 | 9705 8591 7789
Si/n | 77480 38740 | 25827 19370 15496 | 12913 | 11069 | 9685 8609 7748
A% 0 -0.56 -1.01 -0.80 0.19 -2.00 0.29 -0.21 0.21 -0.53
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C
Real | 226508 | 113054 | 75588 56664 45424 | 37776 | 32434 | 28240 | 25258 | 22579
Se/n | 226508 | 113254 | 75503 56627 45302 | 37751 | 32358 | 28314 | 25168 | 22651
A% 0.00 0.18 -0.11 -0.07 -0.27 | -0.07 | -0.23 0.26 -0.36 0.32
G
Real | 140919 | 70462 | 47106 35091 28161 | 23337 | 20166 | 17573 | 15544 | 14160
Se/n | 140919 70460 46973 35230 28184 | 23487 | 20131 17615 | 15658 | 14092
A% 0 0.00 -0.28 0.39 0.08 0.64 -0.17 0.24 0.73 -0.48
25><105
c
ol A
15/ o
1l
T
0.5} \
o :
0 2 4 6 8 10

Fig. 16.5. Numeric and graphical representations of the series of the phonetic
oligomer sum X4, (in blue), Zt,; (in red), ¢, (in brown), and Z¢,,; (in green) in
the epi-chain D, of the second order, which is the subsequence of the phonetic
sequence D representing the Russian text of the novel «Anna Karenina» by

L.N.Tolstoy.
n 1 2 3 4 5 6 7 8 9 10
A
Real | 138897 | 69392 | 46457 34802 27650 | 23331 | 19807 | 17255 | 15585 | 13876
Si/n | 138897 69449 | 46299 | 34724.25 | 27779 | 23150 | 19842 | 17362 | 15433 | 13890
A% 0 0.08 -0.34 -0.22 0.47 -0.78 0.18 0.62 -0.98 0.10
P —
T
Real | 51959 26088 17203 13172 10526 | 8591 7517 6657 5746 5257
S¢/n | 51959 | 25979.5 | 17320 12990 10392 | 8660 7423 6495 5773 5196
A% 0 -0.42 0.67 -1.40 -1.29 0.79 -1.27 | -2.50 0.47 -1.18
e —
[¢
Real | 151043 | 75588 | 50397 37776 30103 | 25258 | 21573 | 19009 | 16772 | 15059
Se/mn | 151043 | 75521.5 | 50348 37761 30209 | 25174 | 21578 | 18880 | 16783 | 15104
A% 0.00 -0.09 -0.10 -0.04 0.35 -0.33 0.02 -0.68 0.06 0.30
e —
G
Real | 94450 47106 | 31392 23337 18990 | 15544 | 13438 | 11622 | 10380 | 9442
Sa/n | 94450 47225 31483 23613 18890 | 15742 | 13493 | 11806 | 10494 | 9445
A% 0.00 0.25 0.29 1.17 -0.53 1.26 0.41 1.56 1.09 0.03
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Fig. 16.6. Numeric and graphical representations of the series of phonetic oligomer
sum 24,1 (in blue), Xt (in red), Z¢,n, (in brown), and Zg,,,1 (in green) in the epi-
chain D3, of the third order, which is the subsequence of the phonetic sequence D,
representing the Russian text of the novel «Anna Karenina» by L.N.Tolstoy.

n 1 2 3 4 5 6 7 8 9 10
A
Real | 104788 | 52351 | 34802 | 26297 | 20924 | 17255 | 14877 | 13008 | 11765 10485
Sa/n | 104788 | 52394 | 34929 | 26197 | 20958 | 17465 | 14970 | 13099 | 11643 10479
A% 0 0.08 0.36 -0.38 0.16 1.20 0.62 0.69 -1.05 -0.06
e —
T
Real | 38958 19525 | 13172 | 9705 7789 6657 5600 4894 4322 3930
Si/n 38958 19479 | 12986 9740 7792 6493 5565 4870 4329 3896
A% 0.00 -0.24 -1.43 0.35 0.03 -2.53 -0.62 -0.50 0.15 -0.88
e —
[¢
Real | 113054 | 56664 | 37776 | 28240 | 22579 | 19009 | 16157 | 14237 | 12645 11253
Se/n | 113054 | 56527 | 37685 | 28264 | 22611 18842 16151 14132 12562 11305
A% 0 -0.24 -0.24 0.08 0.14 -0.88 -0.04 -0.74 -0.66 0.46
G
Real | 70462 | 35091 | 23337 | 17573 | 14160 | 11622 | 10117 | 8768 7630 7058
Se/n 70462 35231 23487 17616 | 14092 11744 10066 8808 7829 7046
A% 0 0.40 0.64 0.24 -0.48 1.04 -0.51 0.45 2.54 -0.17
x10%
1275
10} A
8
G
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Fig. 16.7. Numeric and graphical representations of the series of phonetic
oligomer sum X4, (in blue), Zt,; (in red), X¢ 1 (in brown), and Z¢,,; (in green) in
the epi-chain Dy of the fourth order, which is the subsequence of the phonetic
sequence D, representing the Russian text of the novel «Anna Karenina» by
L.N.Tolstoy.
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Many other deep analogies exist between oligomer sums organization of long
genomic nucleotide sequences and phonetic sequences, presenting long Russian
literary texts. But various connections of long genomic sequences with the harmonic
progression (2.4) and appropriate hyperbolic rules were predicted by the mentioned
quantum-information model [Petoukhov, 2018b; Petoukhov, Petukhova, Svirin,
2019], as it was noted above in Section 14. Correspondingly one should think that a
similar quantum-information model is appropriate also for phonetic sequences,
presenting long Russian literary texts. This idea is correct: many predictions of this
author’s model hold also for oligomer structures of the phonetic sequences
representing long Russian literary texts. The author should here emphasize that he is
talking about the similarity between the mathematical apparatus of quantum
informatics and the mathematical apparatus of the cooperative organization of the
considered long genomic and phonetic sequences, but not at all about physical
quantum entanglement in these genomic and phonetic sequences.

One should remark that for reformulating the genomic quantum-information
model into the phonetic-oriented quantum-information model, the computational basis
states of the considered phonetic systems should be connected not with the binary-
oppositional indicators (or molecular attributes) of the DNA bases A, T, C, and G, but
with binary-oppositional elementary phonetic attributes, which were noted by R.
Jakobson as the basis of all relations among linguistic phonemes (see the beginnings
of this Section).

Let us show an example of the model predictions regarding the phonetic
sequence representing the Russian novel ,,Anna Karenina”. It was shown above in
Section 14, that one of the model predictions concerns quantitative interrelations of
different n-plets, which start from the same doublet, or from the same triplet, etc. The
model predicted, in particular, that the amount S; of any of 16 doublets NN was
algebra-harmonically interrelated with the total amounts Ss, S4, Ss, ... of nucleotide
oligomers in the following sets: 4 triplets, which start with this attributive doublet
NN; 16 tetraplets, which start with this attributive doublet NN; 64 pentaplets, which
start with this attributive doublet NN; and so on. This interrelation is again based on
the harmonic progression (2.4). More precisely, according to the model prediction, the
ratios of these total amounts S,/Ss3, S»/S4, So/Ss, ... should be correspondingly equal to
the ratios of the second member 1/2 of the harmonic progression (2.4) to its
subsequent members 1/3, 1/4, 1/5, ... that is, equal to values 3/2, 4/2, 5/2, ....

Regarding the phonetic sequences of long Russian literary texts, this model
predicts correspondingly that the amount S, of any of 16 phonetic doublets NN was
algebra-harmonically interrelated with the total amounts S3, S4, Ss, ... of phonetic
oligomers in the following sets: 4 triplets, which start with this attributive phonetic
doublet NN; 16 tetraplets, which start with this attributive doublet NN; 64 pentaplets,
which start with this attributive doublet NN; and so on. This interrelation is again
based on the harmonic progression (2.4). More precisely, according to the model
prediction, the ratios of these total amounts S,/S;, S»/S4, Si/Ss, ... should be
correspondingly equal to the ratios of the second member 1/2 of the harmonic
progression (2.4) to its subsequent members 1/3, 1/4, 1/5, ... that is, to be equal to
values 3/2,4/2,5/2, ....

The analysis of the phonetic sequence representing the text of the novel “Anna
Karenina” completely confirmed this prediction as Fig. 16.8 shows by analogy with
similar results for the genomic sequence in the human chromosome Nel (Fig. 14.3.).
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DOUBLETS | TRIPLETS | TETRAPLETS | PENTAPLETS S2/Ss | S2/S4 | S2/Ss
S,=X(AA) | S;=3(AAN), | S;=Z(AANN);;, | Ss=Z(AANNN),
13387 8918 6718 5435 1.5 | 2.0 | 2.5
S,=3(AT) | S;=X(ATN), | S;=X(ATNN)js | Ss5=Z(ATNNN)g,
14447 9449 7307 5758 1.5 | 2.0 | 2.5
S;=2(AC) | S3=3(ACN); | S;=Z(ACNN)js | Ss=Z(ACNNN)g4
116714 77660 58438 46642 1.5 | 2.0 | 2.5
S, =X(AG) | S;=3(AGN), | S;=Z(AGNN);s, | Ss=Z(AGNNN)g,
65068 42870 32324 26026 1.5 | 2.0 | 2.5
S,=X(TA) | S;=X(TAN), | S;=X(TANN)), | Ss=X(TANNN)g,
5842 3932 2929 2297 1.5 | 2.0 | 2.5
S,=X(TT) S;=X(TTN), | S;=X(TTNN);s | Ss=3(TTNNN)g,
3627 2480 1820 1464 1.5 | 2.0 | 2.5
S,=X(TC) | S;=%(TCN), | S;=X(TCNN);s | Ss=Z(TCNNN)g,
44390 29806 22271 17877 15 | 20 | 2.5
S,=3(TG) | S;=X(TGN), | S;=X(TGNN)js | Ss=X(TGNNN)g,
23621 15741 11938 9427 1.5 | 2.0 | 2.5
S,=X(CA) | S3=3(CAN); | S;=3(CANN);s | Ss=Z(CANNN)4
126038 84179 62831 50474 15 | 20 | 2.5
$,=X(CT) | S;=%(CTN), | S;=XCTNN);s | Ss=(CTNNN)g,
38951 26030 19477 15672 1.5 | 2.0 | 2.5
S, =2(CC) | S3=3(CCN); | S4=%(CCNN)js | S5=Z(CCNNN)g,
37438 24916 18755 14719 1.5 | 2.0 2.5
S;=2(CG) | S3=3(CGN); | S4=3(CGNN);s | Ss=Z(CGNNN)g4
24081 15918 11991 9583 15 | 20 | 2.5
S,=X(GA) | S;=3(GAN), | S;=3(GANN);;, | Ss=Z(GANNN)g,
64606 43428 32482 25899 1.5 | 2.0 | 2.5
S,=3(GT) | S;=X(GTN), | S;=X(GTNN)js | S5=Z(GTNNN)g,
20295 13692 10085 8214 15 | 20 | 2.5
S, =2(GC) | S3=3(GCN); | S4=3(GCNN)js | Ss=Z(GCNNN)g4
27666 18370 13717 11045 1.5 | 2.0 | 2.5
S, =X(GG) | S3=3%(GGN); | S4=2(GGNN);s | Ss=Z(GGNNN)g,
28352 18960 14178 11277 15 | 20 | 2.5

Fig. 16.8. The confirmation of the quantum-information model prediction by
the comparison of the amount S, of each of 16 phonetic doublets to the total amounts
S3, S4, Ss of phonetic n-plets (n = 3, 4, 5), which start with this doublet, in the
phonetic sequence, representing the Russian novel «Anna Karenina» by L.Tolstoy.
Tabular data present total sums of each kind of phonetic oligomers: for example, the
total sum S4= Z(AANN);¢0f all 16 phonetic tetraplets, which start with the phonetic
doublet AA, is equal to 6718. The symbol N denotes any of phonetic monomers A, T,
G, and C.

Numeric data in Fig. 16.8 show that really - for each of the considered 16
phonetic doublets - the ratios of the total amounts S,/Ss3, S»/S4, S»/Ss, ... are equal to
the ratios of the second member 1/2 of the harmonic progression (2.4) to its
subsequent members 1/3, 1/4, 1/5, that is, to be equal to values 3/2, 4/2, 5/2. Similar
results hold for the phonetic sequences representing other long Russian literary texts
by L.N.Tolstoy, F.M.Dostoevsky, A.S.Pushkin noted below.

The idea of a possible connection of intellectual brain activity with the
principles of quantum mechanics and quantum informatics has long worried
researchers. For example, an article [Bruza, Kitto, Nelson, McEvoy, 2009] presents a
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quantum model of a word association system with word entanglement in human
memory.

For such researches about possible connections of brain activities with the
mathematics of quantum mechanics, the oligomer sums method, algebra-harmonic
hyperbolic rules, and the mentioned author's quantum-information model give new
effective research instruments and important phenomenological materials. In
particular, they can be useful for developing new approaches to the creation of
artificial intelligence, maximal resembling features of intellectual systems of
eukaryotes and prokaryotes including humans. As is known, all living bodies have
inborn intellectual-like systems providing solutions to many vital tasks: food search,
rescue from predators, coordinated movements of body elements, etc. These inborn
abilities for intellectual activities are connected with structural features of the genetic
system.

- 16.2. The analysis of the Russian novel «War and Peace» by L.N. Tolstoy

Now we present results of the analysis of the phonetic sequence representing
the Russian text of Tolstoy's novel «War and Peace», Book I, by the oligomer sums
method. This text contains 1068479 phonetic letters, and it was taken from the web
site http://samolit.com/books/64/. These results are shown in Figs. 16.9-16.13, and
they are similar to the described results of the analysis of the novel “Anna Karenina”
in all essential aspects.

Fig. 16.9 shows - in numeric and graphical forms - phonetic sequences of amounts
YAals a1, 2c¢al, and Zg 1 of all appropriate phonetic monomers, doublets, and
other n-plets (at n =1, 2, 3, ..., 10), representing the phonetic sequence of this famous
Russian novel. The real amounts of phonetic n-plets are compared with their
appropriate model values Sa/n, or St/n, or S¢, or Sg/n.

n 1 2 3 4 5 6 7 8 9 10
A | 342653 | 170997 | 114314 85601 68755 | 56889 | 48985 | 42864 | 38177 | 34182
Real | 342653 | 171327 | 114218 | 85663.25 | 68531 | 57109 | 48950 | 42832 | 38073 | 34265
Sa/n 0 0.19 -0.08 0.07 -033 | 038 | -0.07 | -0.08 | -0.27 | 0.24
A% | 342653 | 170997 | 114314 85601 68755 | 56889 | 48985 | 42864 | 38177 | 34182
t—————————————————————————————————————————————————————
T
Real | 120471 60122 40309 30177 | 23900 | 20240 | 17225 | 15015 | 13336 | 12013
Si/n | 120471 | 60235.5 | 40157 30118 24094 | 20079 | 17210 | 15059 | 13386 | 12047
A% 0.00 0.19 -0.38 -0.20 0.81 -0.80 | -0.09 | 0.29 0.37 0.28
————————————————————————————————————————————————————————————
¢
Real | 375043 | 187598 | 125137 | 93713 75431 | 62716 | 53710 | 46871 | 41595 | 37645
Se¢/n | 375043 | 187521.5 | 125014 | 93761 75009 | 62507 | 53578 | 46880 | 41671 | 37504
A% 0.00 -0.04 -0.10 0.05 -0.56 | -0.33 | -0.25 | 0.02 0.18 | -0.38
mt————————————————————————————————————————————
G
Real | 230312 | 115522 76399 57628 | 45609 | 38234 | 32719 | 28809 | 25611 | 23007
Sa/n | 230312 | 115156 | 76771 57578 46062 | 38385 | 32902 | 28789 | 25590 | 23031
A% 0 -0.32 0.48 -0.09 0.98 0.39 0.56 | -0.07 | -0.08 | 0.11
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Fig. 16.9. Numeric and graphical representations of the sequences of phonetic
oligomer sum X4, (in blue), Zt,; (in red), ¢, (in brown), and Z¢,,; (in green) in
the full phonetic sequence D, representing the Russian text of the novel «War and
Peace».

Figs. 16.10-16.12 show results of the analysis of the phonetic epi-chains Dy,
D31, D41 (see Fig. 16.4) in the phonetic representation of this Russian novel by the
oligomer sums method (by analogy with Figs. 16.5-16.7 for the novel «Anna

Kareninay).
n 1 2 3 4 5 6 7 8 9 10
A

Real | 170998 | 85602 | 56890 | 42865 | 34183 | 28519 | 24392 | 21411 | 19093 | 17109
Sa/n | 170998 | 85499 | 56999 | 42749.5 | 34200 | 28500 | 24428 | 21375 | 19000 | 17100
A% 0 -0.12 0.19 -0.27 0.05 -0.07 0.15 -0.17 -0.49 | -0.05

Real | 60122 | 30177 | 20240 15015 12013 | 10187 | 8586 7395 6716 6062
Si/n | 60122 | 30061 | 20041 15031 12024 | 10020 | 8589 7515 6680 6012
A% 0.00 -0.39 -0.99 0.10 0.09 -1.66 0.03 1.60 -0.54 | -0.83

Real | 187598 | 93713 | 62716 | 46871 37645 | 31384 | 26860 | 23460 | 20791 | 18696
Se¢/n | 187598 | 93799 | 62533 | 46900 | 37520 | 31266 | 26800 | 23450 | 20844 | 18760
A% 0 0.09 -0.29 0.06 -0.33 -0.38 -0.22 | -0.04 0.26 0.34

>

Real | 115522 | 57628 | 38234 | 28809 | 23007 | 18950 | 16482 | 14514 | 12760 | 11557
Sa/n | 115522 | 57761 | 38507 | 28881 23104 | 19254 | 16503 | 14440 | 12836 | 11552
A% 0 0.23 0.71 0.25 0.42 1.58 0.13 -0.51 0.59 -0.04
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Fig. 16.10. Numeric and graphical representations of the sequences of
phonetic oligomer sums X4, (in blue), X1, (in red), X¢ 1 (in brown), and X¢ .1 (in
green) in the epi-chain Dy of the second order, which is the subsequence of the full
phonetic sequence D, representing the Russian text of the novel «War and Peace».

n 1 2 3 4 5 6 7 8 9 10

<

A
Real | 114314 | 56890 | 38177 | 28519 | 22911 | 19093 | 16399 | 14318 | 12629 | 11273
Sa/m | 114314 | 57157 | 38105 | 28578.5 | 22863 | 19052 | 16331 | 14289 | 12702 | 11431

A% 0 0.47 -0.19 0.21 -0.21 -0.21 | -0.42 | -0.20 0.57 1.39
—————————————————————————————————————————————————————————
T

Real | 40309 20240 | 13336 | 10187 7981 6716 | 5818 5028 | 4480 | 4044
Si/n | 40309 | 20154.5 | 13436 10077 8062 6718 5758 5039 | 4479 4031

A% 0 -0.42 0.75 -1.09 1.00 0.03 -1.03 0.21 -0.03 | -0.32
—————————————————————————————————————————————————————————————
¢

Real | 125138 | 62716 | 41595 | 31384 | 25065 | 20791 | 17834 | 15700 | 13906 | 12643
Se/n | 125138 | 62569 | 41713 | 31285 | 25028 | 20856 | 17877 | 15642 | 13904 | 12514

A% 0 -0.23 0.28 -0.32 -0.15 0.31 0.24 -0.37 | -0.01 -1.03
———————————————————————————————————————————————————————
G

Real | 76399 38234 | 25612 18950 | 15275 | 12760 | 10829 | 9474 8558 7656
Sa/n | 76399 38200 | 25466 19100 | 15280 | 12733 | 10914 | 9550 8489 7640

A% 0 -0.09 -0.57 0.78 0.03 -0.21 0.78 0.79 -0.82 -0.21
4
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Fig. 16.11. Numeric and graphical representations of the sequences of
phonetic oligomer sums X4, (in blue), X1, (in red), X¢ 1 (in brown), and X¢ 1 (in
green) in the epi-chain D3, of the third order, which is the subsequence of the full
phonetic sequence D, representing the Russian text of the novel «War and Peace».

Real | 85602 42865 28519 21411 17109 | 14318 | 12241 | 10651 | 9586 | 8534
Sa/n | 85602 42801 28534 | 21400.5 | 17120 | 14267 | 12229 | 10700 | 9511 | 8560

A% 0.00 -0.15 0.05 -0.05 0.07 -0.36 -0.10 0.46 -0.79 | 0.31
————————————————————————————————————————————————————————
T

Real | 30177 15015 10187 7395 6062 5028 4231 3700 3378 | 3012
Si/n | 30177 | 15088.5 | 10059 7544 6035 5030 4311 3772 3353 | 3018
A% 0 0.49 -1.27 1.98 -0.44 0.03 1.86 1.91 -0.75 | 0.19
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C
Real | 93713 46871 31384 23460 18696 | 15700 | 13377 | 11812 | 10336 | 9381
Se¢/n | 93713 | 46856.5 | 31238 23428 18743 | 15619 | 13388 | 11714 | 10413 | 9371
A% 0 -0.03 -0.47 -0.14 0.25 -0.52 0.08 -0.84 0.74 -0.10
G
Real | 57628 28809 18950 14514 11557 | 9474 8311 7227 6380 | 5785
S¢/n | 57628 28814 19209 14407 11526 | 9605 8233 7204 6403 5763
A% 0 0.02 1.35 -0.74 -0.27 1.36 -0.95 -0.33 0.36 -0.39
4
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Fig. 16.12. Numeric and graphical representations of the sequences of
phonetic oligomer sums X4, (in blue), X1, (in red), X¢ 1 (in brown), and X¢ 1 (in
green) in the epi-chain Dy of the fourth order, which is the subsequence of the full
phonetic sequence D, representing the Russian text of the novel «War and Peace».

Now let us return to the prediction of the quantum-information model that the
amount S, of any of 16 phonetic doublets NN was algebra-harmonically interrelated
on the basis of the harmonic progression (2.4) with the total amounts Ss, S4, Ss, ... of
phonetic oligomers in the following sets: 4 triplets, which start with this attributive
phonetic doublet NN; 16 tetraplets, which start with this attributive doublet NN; 64
pentaplets, which start with this attributive doublet NN; and so on. More precisely,
according to the model prediction, the ratios of these total amounts S,/Ss3, S»/S4, S»/Ss,

. should be correspondingly equal to the ratios of the second member 1/2 of the
harmonic progression (2.4) to its subsequent members 1/3, 1/4, 1/5, ... that is, equal to
values 3/2,4/2,5/2, ... .

Numeric data in Fig. 16.13 show that - for each of the considered 16 phonetic
doublets - the ratios of the total amounts S,/Ss, S»/S4, So/Ss are equal to the ratios of
the second member 1/2 of the harmonic progression (2.4) to its subsequent members
1/3, 1/4, 1/5, that is, they are equal to values 3/2, 4/2, 5/2 in the case of the novel
“War and Piece” (by analogy with the novel “Anna Karenina” in Fig. 16.8).

DOUBLETS | TRIPLETS | TETRAPLETS | PENTAPLETS S»/Ss | S2/S4 | Sa/Ss
S,=3(AA) | S;=X(AAN), | S;=Z(AANN);s | Ss=Z(AANNN)g
9899 6683 5040 3988 1.5 | 20 | 25
S,=3(AT) | S;=X(ATN), | S;=X(ATNN)js | Ss5=Z(ATNNN)g,
10528 7175 5340 5340 1.5 | 20 | 25
S, =2(AC) | S3=3(ACN), | S;=3Z(ACNN);s | Ss=Z(ACNNN)g
95923 63779 47943 38202 1.5 | 2.0 | 25
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S;=X(AG) | S;=3(AGN), | S;=2Z(AGNN);s, | S;=Z(AGNNN)g,
54647 36677 27278 22284 1.5 | 2.0 | 2.5
S,=x(TA S;=X(TAN), | S,=X(TANN);s | Ss=X(TANNN)4
423(6 : 2§33 : 2(109 : (1677 : 1.5 | 2.0 | 2.5
S,=X(TT) S;=X(TTN), | S;=X(TTNN);s | Ss=3(TTNNN)g,
2430 1595 1197 969 1.5 | 2.0 | 2.5
S,=X(TC) | S;=x(TCN), | S;=X(TCNN);s | Ss==(TCNNN)g,
36093 24260 18135 14208 15 | 20 | 2.5
S,=X(TG S;=X(TGN), | S,=X(TGNN);s | Ss=S(TGNNN)4
173(63 : 11(621 : EE736 : (7046 : 1.5 | 2.0 | 2.5
S,=X(CA) | S3=3(CAN), | S;=3(CANN);s | Ss=Z(CANNN)4
103846 69288 51766 41636 15 | 20 | 2.5
S,=3(CT) | S;=x(CTN), | S4=X(CTNN);s | Ss==(CTNNN)g,
31266 20667 15675 12615 1.5 | 2.0 | 2.5
S, =2(CC) | S$3=3(CCN); | S4=Z(CCNN)js | S5=Z(CCNNN)g,
31923 21436 16023 12826 1.5 | 2.0 2.5
S, =%(CG) | S3=3(CGN), | S;=3(CGNN);s | Ss=Z(CGNNN)g4
20563 13746 10249 8354 15 | 2.0 | 2.5
S,=X(GA) | S;=3(GAN), | S;=3(GANN);;, | Ss=Z(GANNN)g,
53674 35082 26823 21174 1.5 | 2.0 | 2.5
S, =X(GT) | S3=3GTN); | S4=3(GTNN);s | S5=Z(GTNNN)g,
16125 10744 8100 6381 1.5 | 2.0 | 2.5
S, =2(GC) | S3=3(GCN); | S4=3(GCNN)js | Ss=Z(GCNNN)g4
23506 15788 11713 9274 1.5 | 2.0 | 2.5
S, =X(GG) | S3=3(GGN), | S4=2(GGNN);s | Ss=Z(GGNNN)g,
22217 14785 10992 3780 1.5 | 2.0 | 2.5

Fig. 16.13. The confirmation of the quantum-information model prediction by
the comparison of the amount S, of each of 16 phonetic doublets to the total amounts
S;, S4, Ss of phonetic n-plets (n = 3, 4, 5), which start with this doublet, in the
phonetic sequence, representing the Russian novel «War and Peace». Tabular data
present total sums of each kind of phonetic oligomers: for example, the total sum S;=
Y(AANN);4 of all 16 phonetic tetraplets, which start with the phonetic doublet AA, is
equal to 5040. The symbol N denotes any of phonetic monomers A, T,G,andC.

Similar results were received at such an analysis of other famous long Russian
literary texts, some of which are presented in the next subsection.

- 16.3. The analysis of Russian novels by F.M. Dostoevsky and A.S.Pushkin

This subsection gives some results of the analysis - by the oligomer sums method
- of the phonetic sequences representing a few long Russian literary works by F.M.
Dostoevsky and A.S. Pushkin, as well as the Russian text of the Bible. Here, for
brevity, the author shows only the initial data of the analysis of the named phonetic
sequences without presenting many additional results that are similar to those shown
above for Tolstoy’s novels in Figs. 16.5-16.8, 16.10-16.13.

Fig. 16.14 gives numeric and graphic results of the named analysis of the phonetic
sequence of the Russian text of the novel "Crime and Punishment" by Dostoevsky.
The text contains 818099 phonetic letters, and it was taken from
http://samolit.com/books/57/ .
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Real | 258836 | 129490 | 86219 | 64656 | 51620 | 43194 | 36976 | 32292 | 28640 | 25813
Sa/n | 258836 | 129418 | 86279 | 64709 | 51767 | 43139 | 36977 | 32355 | 28760 | 25884
A% 0.00 -0.06 0.07 0.08 0.28 -0.13 0.00 0.19 0.42 0.27

Real | 95575 47872 | 31935 | 24008 | 19116 | 15893 | 13569 | 12172 | 10699 | 9561
Si/m | 95575 | 47787.5 | 31858 | 23894 | 19115 | 15929 | 13654 | 11947 | 10619 | 9558
A% 0 -0.18 -0.24 -0.48 -0.01 0.23 0.62 -1.88 -0.75 -0.04

Real | 279404 | 139555 | 93348 | 69630 | 56055 | 46631 | 40085 | 34827 | 30937 | 28035
Se/n | 279404 | 139702 | 93135 | 69851 | 55881 | 46567 | 39915 | 34926 | 31045 | 27940
A% 0 0.11 -0.23 0.32 -0.31 -0.14 -0.43 0.28 0.35 -0.34

Real | 184284 92132 61197 | 46230 | 36828 | 30631 | 26241 | 22971 | 20623 | 18400
Sa/n | 184284 92142 61428 | 46071 | 36857 | 30714 | 26326 | 23036 | 20476 | 18428
A% 0 0.01 0.38 -0.35 0.08 0.27 0.32 0.28 -0.72 0.15

x10°
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Fig. 16.14. The table shows real values and model values Si/n, or St/n, or S¢, or Sg/n
(in red) in the case of the oligomer sums representations of the phonetic sequence of
the Russian novel «Crime and Punishment» by F. Dostoevsky. Symbols A, T, G, and
C refer to the phonetic monomers (Fig. 16.1, at right). The symbol A% denotes
deviations of real values from model values in percent (the model values are taken as
100%). Graphs show the hyperbolic-like sequences of the phonetic oligomer sums
YAals Ztal, 2Cn1, and g1, which practically coincide with the model hyperbolic
sequences Si/n (in blue), St/ (in red), S¢,(in brown), and S¢/n (in green).

Fig. 16.15 gives numeric and graphic results of the named analysis of the
phonetic sequence of the Russian text of the novel "Idiot" by Dostoevsky. The text
contains 1001129 phonetic letters; it was taken from http://samolit.com/books/56/.

n 1 2 3 4 5 6 7 8 9 10

Real | 310571 | 155325 | 103572 | 77647 | 61814 | 51742 | 44356 | 38820 | 34503 | 30853
Sa/n | 310571 | 155286 | 103524 | 77643 | 62114 | 51762 | 44367 | 38821 | 34508 | 31057

A% 0 -0.03 -0.05 -0.01 0.48 0.04 0.03 0.00 0.01 0.66
——————————————————————————————————————————————————————————
T

Real | 122981 | 61401 41058 | 30847 | 24641 | 20461 | 17617 | 15426 | 13705 | 12389
Si/n | 122981 | 61490.5 | 40994 | 30745 | 24596 | 20497 | 17569 | 15373 | 13665 | 12298
A% 0 0.15 -0.16 -0.33 -0.18 0.17 -0.27 | -0.35 | -0.30 | -0.74
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C
Real | 344200 | 172087 | 114890 | 86125 | 69127 | 57432 | 49224 | 42913 | 38386 | 34655
S¢/n | 344200 | 172100 | 114733 86050 68840 | 57367 | 49171 | 43025 | 38244 | 34420
A% 0 0.01 -0.14 -0.09 -0.42 -0.11 -0.11 0.26 -0.37 -0.68
G
Real | 223377 | 111751 | 74189 55663 44643 | 37219 | 31821 | 27982 | 24642 | 22215
Sg/n | 223377 | 111689 | 74459 55844 44675 | 37230 | 31911 | 27922 | 24820 | 22338
A% 0 -0.06 0.36 0.32 0.07 0.03 0.28 -0.21 0.72 0.55
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Fig. 16.5. The table shows real values and model values Si/n, or St/n, or S¢,
or Sg/n (in red) in the case of the oligomer sums representations of the phonetic
sequence of the Russian novel «Idiot» by F. Dostoevsky. Symbols A, T, G, and C
refer to the phonetic monomers (Fig. 16.1, at right). The symbol A% denotes
deviations of real values from model values in percent (the model values are taken as
100%). Graphs show the hyperbolic-like sequences of the phonetic oligomer sums
YAnl, a1, 2¢a1, and X1, Which practically coincide with the model hyperbolic
sequences Si/n (in blue), St/ (in red), S¢,(in brown), and S¢/n (in green).

Fig. 16.16 gives numeric and graphic results of the named analysis of the
phonetic sequence of the Russian text of the novel "Evgenij Onegin" by A.S. Pushkin.
The text is relatively short and contains 107146 phonetic letters; it was taken from
http://tululu.org/b57798/.

n 1 2 3 4 5 6 7 8 9 10
A
Real | 31725 15781 10683 7862 6436 | 5304 | 4561 | 3849 | 3536 | 3182
Sa/n | 31725 15863 10575 7931.25 | 6345 | 5288 | 4532 | 3966 | 3525 | 3173
A% 0 0.51 -1.02 0.87 -1.43 | -031 | -0.64 | 2.94 | -031 | -0.30
—————————————————————————————————————————————————————————
T
Real | 12602 6380 4207 3211 2483 | 2114 | 1799 | 1599 | 1392 | 1263
Si/n | 12602 6301 4201 3151 2520 | 2100 | 1800 | 1575 | 1400 | 1260
A% 0.00 -1.25 -0.15 -1.92 148 | -0.65 | 0.07 | -1.51 | 0.59 | -0.22
———————————————————————————————————————————————————————
C
Real | 40301 20225 13348 10126 8062 | 6680 | 5728 | 5105 | 4441 | 4065
Se¢/n | 40301 20150.5 13434 10075 8060 | 6717 | 5757 | 5038 | 4478 | 4030
A% 0.00 -0.37 0.64 -0.50 -0.02 | 0.55 0.51 | -134 | 0.82 | -0.87
———————————————————————————————————————————————————————————————
G
Real | 22518 11187 7477 5587 4448 | 3759 | 3218 | 2840 | 2536 | 2204
Sa/n | 22518 11259 7506 5630 4504 | 3753 | 3217 | 2815 | 2502 | 2252
A% 0.00 0.64 0.39 0.75 1.23 | -0.16 | -0.04 | -0.90 | -1.36 | 2.12
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Fig. 16.16. The table shows real values and model values Si/n, or St/n, or S¢,
or Sg/n (in red) in the case of the oligomer sums representations of the phonetic
sequence of the Russian novel «Evgenij Onegin» by A.S. Pushkin. Symbols A, T, G,
and C refer to the phonetic monomers (Fig. 16.1, at right). The symbol A% denotes
deviations of real values from model values in percent (the model values are taken as
100%). Graphs show the hyperbolic-like sequences of the phonetic oligomer sums
YAnl, a1, 2¢a1, and X1, Which practically coincide with the model hyperbolic

Fig. 16.17 gives numeric and graphic results of the named analysis of the

phonetic sequence of the Russian text of the novel "Dubrovsky" by A.S. Pushkin. The
text contains 106891 phonetic letters; it was taken from http://samolit.com/books/61/ .

n 1 2 3 4 5 6 7 8 9 10
A
Real | 34341 17293 11514 8570 6953 | 5735 | 4889 | 4238 | 3814 | 3493
Sa/n | 34341 17171 11447 8585.25 6868 | 5724 | 4906 | 4293 | 3816 | 3434
A% 0 -0.71 -0.59 0.18 -1.23 | -0.20 | 0.34 1.27 0.04 | -1.72
——————————————————————————————————————————————————————
T
Real | 12135 6071 4050 3085 2367 | 2065 | 1720 | 1540 | 1374 | 1148
Si/n | 12135 6067.5 4045 3034 2427 | 2023 | 1734 | 1517 | 1348 | 1214
A% 0.00 -0.06 -0.12 -1.69 2.47 -2.10 | 0.78 | -1.52 | -1.90 | 5.40
—————————————————————————————————————————————————
¢
Real | 37714 18772 12456 9436 7557 | 6200 | 5471 | 4778 | 4178 | 3766
Se/n | 37714 18857 12571 9429 7543 | 6286 | 5388 | 4714 | 4190 | 3771
A% 0 0.45 0.92 -0.08 -0.19 136 | -1.55 | -1.35 | 0.30 0.14
——————————————————————————————————————————————————————————
G
Real | 22701 11309 7610 5631 4501 3815 | 3190 | 2805 | 2510 | 2282
Sa/n | 22701 11351 7567 5675 4540 | 3784 | 3243 | 2838 | 2522 | 2270
A% 0 0.37 -0.57 0.78 0.86 -0.83 | 1.63 1.15 0.49 | -0.52
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Fig. 16.17. The table shows real values and model values Si/n, or St/n, or S¢, or Sg/n
(in red) in the case of the oligomer sums representations of the phonetic sequence of
the Russian novel «Dubrovsky» by A.S. Pushkin. Symbols A, T, G, and C refer to the
phonetic monomers (Fig. 16.1, at right). The symbol A% denotes deviations of real
values from model values in percent (the model values are taken as 100%). Graphs
show the hyperbolic-like sequences of the phonetic oligomer sums Xx .1, .1, ZC.n.l»
and X1, which practically coincide with the model hyperbolic sequences Si/n (in
blue), St/n (in red), S¢,(in brown), and Sg/z (in green).

Fig. 16.18 gives numeric and graphic results of the named analysis of the
phonetic sequence of the Russian text of the Bible. The text contains 3122489 phonetic
letters; it was taken from http://petoukhov.com/bible.zip.

n 1 2 3 4 5 6 7 8 9 10

Real | 1026290 | 513013 | 342965 | 256527 | 205099 | 171465 | 146474 | 128448 | 114178 | 102399
Sa/n | 1026290 | 513145 | 342097 | 256572.5 | 205258 | 171048 | 146613 | 128286 | 114032 | 102629
A% 0 0.03 -0.25 0.02 0.08 -0.24 0.09 -0.13 -0.13 0.22

Real | 371375 185303 | 123591 92719 74407 | 61771 53044 | 46033 | 41276 | 37149
Si/n | 371375 185688 | 123792 92844 74275 61896 53054 | 46422 | 41264 | 37138
A% 0 0.21 0.16 0.13 -0.18 0.20 0.02 0.84 -0.03 -0.03

Real | 1072094 | 536374 | 357539 | 268263 | 214546 | 179095 | 153361 | 134208 | 119333 | 107098
Se/n | 1072094 | 536047 | 357365 | 268024 | 214419 | 178682 | 153156 | 134012 | 119122 | 107209
A% 0 -0.06 -0.05 -0.09 -0.06 -0.23 -0.13 -0.15 -0.18 0.10

Real | 652730 | 326554 | 216734 | 163113 | 130445 | 108083 | 93190 | 81622 | 72156 | 65602
Se/n | 652730 326365 | 217577 | 163183 | 130546 | 108788 | 93247 81591 72526 | 65273
A% 0 -0.06 0.39 0.04 0.08 0.65 0.06 -0.04 0.51 -0.50
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Fig. 16.18. The table shows real values and model values Si/n, or St/n, or S¢,
or Sg/n (in red) in the case of the oligomer sums representations of the phonetic
sequence of the Russian text of the Bible. Symbols A, T, G, and C refer to the
phonetic monomers (Fig. 16.1, at right). The symbol A% denotes deviations of real
values from model values in percent (the model values are taken as 100%). Graphs
show the hyperbolic-like sequences of the phonetic oligomer sums X .1, .1, ZC.nl»
and X1, which practically coincide with the model hyperbolic sequences Si/n (in
blue), St/n (in red), S¢,(in brown), and Sg/n (in green).

Let us explain additionally in more detail why we analyze long literary texts in
Russian specifically. This explanation uses the well-known facts about linguistics
and alphabet writing [Coulmas, 1996; https://en.wikipedia.org/wiki/Alphabet].
Alphabetical writing differs from pictographic (ideographic) writing, where signs
denote concepts (Sumerian cuneiform writing), and from morphemic and logographic
writing, where signs denote individual morphemes (Chinese writing) or words. The
Russian alphabet belongs to the class of consonant vocal alphabets, where letters
denote both vowels and consonants. When an alphabet is adopted or developed to
represent a given language, an orthography generally comes into being, providing
rules for the spelling of words in that language. In accordance with the principle on
which alphabets are based, these rules will generally map letters of the alphabet to the
phonemes (significant sounds) of the spoken language. In a perfectly phonemic
orthography, there would be consistent one-to-one correspondence between the letters
and the phonemes so that a writer could predict the spelling of a word given its
pronunciation, and a speaker would always know the pronunciation of a word given
its spelling, and vice versa. However this ideal is not usually achieved in practice;
some languages (such as Spanish and Finnish) come close to it, while others (such as
English) deviate from it to a much larger degree.

Languages may fail to achieve a one-to-one correspondence between letters and
sounds in different ways. For example, a language may represent a given phoneme by
a combination of letters rather than just a single letter. In this way, German uses the
tetragraphs (four letters) "tsch" for the phoneme [t[] and (in a few borrowed words)
"dsch" for [d3]. National languages sometimes elect to address the problem of dialects
by simply associating the alphabet with the national standard. Some national
languages like Russian, Finnish, Armenian, Turkish, Bulgarian have a very regular
spelling system with a nearly one-to-one correspondence between letters and
phonemes. French has silent letters. In English, the pronunciations of many words
simply have to be memorized as they do not correspond to the spelling in a consistent
way. For English, this is partly because the Great Vowel Shift occurred after the
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orthography was established, and because English has acquired a large number of
loanwords at different times, retaining their original spelling at varying levels.

In the Russian alphabet, a one-to-one correspondence between the letters and
the phonemes exists. For this reason, analyzing long literary Russian texts, researches
can study their phonetic structures. In this way, the author has received interesting
results described above. But he would very much like to continue the analysis - by the
method of oligomeric sums - of the phonetic representations of long literary texts in
all those languages, in which letters and phonemes are near to a one-to-one
correspondence. The results of such an analysis can more fully show the deep
connection of genetic and linguistic languages, testifying that linguistic languages are
a continuation and a superstructure over the general biological language of
eukaryotic and prokaryotic genomes.

Some concluding remarks

As is known, mutations and the pressure of natural selection influence the genomic
sequences of nucleotides. For these reasons, one can assume that as a result of many
millions of years of biological evolution, genomic sequences, due to various
influences, receive a completely random structure as a whole. This article provides
evidence that, despite mutations, the pressure of natural selection, and other
evolutionary factors, the nucleotide sequences of the eukaryotic and prokaryotic
genomes have universal algebraic invariants. One can believe that the algebraic unity
of living organisms is found (this should be tested further and further on more and
more number of genomes). New mathematical tools and approaches for an in-depth
study of this world and its evolution appear. In particular, the oligomer sums method
can be used for the analysis of amino acid primary sequences in long proteins (see an
example in Section 15).

The discovery of the algebraic genomic invariants gives new knowledge about
the unity of the world of all living organisms and about the features of biological
evolution. This concerns additionally the problem of the origin of life, since the
following natural question arises: where and how did these genomic algebraic
invariants come from, which are expressed in the described hyperbolic (harmonic)
rules and related to the quantum-information model if they exist even in the genomes
of archaea and bacteria? The received results are interesting also for discussions
concerning various well-known theories of biological evolution: Darwinism,
nomogenesis, orthogenesis, etc. Some of these results are briefly described in the
published author’s letter [Petoukhov, 2020d].

The genomic invariants, described in the article, are connected with hyperbolic
sequences and transformations of hyperbolic rotations that shift the hyperbolic
sequence along with itself. Hyperbolic rotations, which are also called Lorentz
transformations and known in the special theory of relativity, draw attention to the
structural connection of genetic phenomena with the hyperbolic geometry of the
Minkowski plane. One of the well-known models of two-dimensional hyperbolic
geometry is the Poincaré disk model, also called the conformal disk model. The
Poincaré disk model is connected with split-quaternions by J. Cockle and seems to be
interesting for studying some genetic structures and inherited physiological
phenomena as it was mentioned in previous author's publications on matrix genetics
(see, for example, [Petoukhov, 2012]).

Living organisms are informational entities, in which everything is
subordinate to the task of reliably transmitting genetic information to descendants. All
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inherited physiological systems as parts of a whole organism must be structurally
coupled with a genetic code for transmission to descendants in encoded form.
Therefore, inherited physiological macrostructures can bear the imprint of structural
features of the genetic code. For this reason, structural analogies exist between the
genetic system and the properties of inherited physiological systems, for example, the
unified properties of different sensor systems, which are reflected in the main
psychophysical Weber-Fechner law [Petoukhov, 2016, 2019b, 2020a-c]. These
problems are discussed at the International interdisciplinary seminar “Algebraic
Biology and Theory of Systems” in Moscow [Petoukhov, Tolokonnikov, 2020].

The question on a possible deep connection of physiology and brain
functioning with principles of quantum informatics is considered in publications on
many authors [Abbott, Davies, Pati, 2008; Altaisky, Filatov, 2001; Fimmel,
Petoukhov, 2020; Igamberdiev, 1993, 2004; Matsuno, Paton, 2000; Patel, 2001a-c;
Penrose, 1996; Petoukhov, 2018a, 2019b]. The results presented in this article give
new essential materials to this perspective direction of thoughts. For such thoughts
about possible connections of brain activities with the mathematics of quantum
mechanics, these oligomer sums method, algebra-harmonic hyperbolic rules, and the
mentioned author's quantum-information model give new effective research
instruments and phenomenological materials. In particular, these materials include
results on such intellectual brain activity as the writing of long Russian literary texts,
whose phonetic sequences obey the hyperbolic rules, which are similar to the
hyperbolic rules of eukaryotic and prokaryotic genomes and correspond to the
author's quantum-information model (see Section 16).

Researchers of the genetic system study the Nature system of storage,
processing, and transmission of information, which has no direct analogies in modern
science and technology, but which is studied on the basis of analogies with their
achievements. The disclosure of informational patents of living nature can make an
important contribution to scientific and technological progress.

It should be noted that the genomic hyperbolic rules are cardinally different
from well-known hyperbolic Zipf's law. Zipf's law was originally formulated in terms
of quantitative linguistics, stating that given some corpus of natural language
utterances, the frequency of any word is inversely proportional to its rank in the
frequency table (see, for example, [Fagan, Gengay, 2010]). In linguistics and other
fields, Zipf's law speaks on the frequency of encounter of separate words or other
separate objects. In contrast, the hyperbolic rules of the genomes focus on OS-
sequences of the total amounts of n-plets and the genomic tetra-entanglement, that is,
on the relative number of not separate oligomers, but the whole sums of sets of
different n-plets distributed inside the genomic sequence, where each separate
nucleotide is a part of many oligomers set existing simultaneously (each nucleotide is
a distributed participant of many members of the appropriate genomic OS-sequence at
once and makes a contribution to each of them). From the quantum-information
model, OS-sequences serve as quantum-information characteristics of genomic
sequences.

The proposed oligomer sums method and the quantum-information model give
new opportunities to study genetic systems and the inherited algebra-harmonic
organization of living bodies. The modern situation in the theoretic field of genetic
informatics, where many millions of nucleotide sequences are described, can be
characterized by the following citation: “We are in the position of Johann Kepler
when he first began looking for patterns in the volumes of data that Tycho Brahe had
spent his life accumulating. We have the program that runs the cellular machinery,
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but we know very little about how to read it.” [Fickett & Burks, 1989]. Kepler did not
make his astronomic observations, but he found — in the huge astronomic data of
Tycho Brahe - his Kepler’s laws of symmetric movements of planets relative to the
Sun along ellipses. The author is convinced that further studies of symmetries in
genetic and other physiological structures will reveal many more wonderful secrets of
living matter.

The presented study is a continuation of the author's researches on symmetries
in biological objects described in his publications (see References below). This study
further illustrates the effectiveness of symmetry analysis in natural systems. No
wonder the theory of symmetries is one of the foundations of modern mathematical
natural science. The presented results reveal the existence of a new broad class of
symmetries in eukaryotic and prokaryotic genomes. They are connected with previous
rules of a generalized symmetry for collective probabilities of sub-alphabets of n-plets
in long DNA sequences, which were described by the author in the article
[Petoukhov, 2018b] and whose importance were noted in the article “Petoukhov’s
rules on symmetries in long DNA-texts” [Darvas, 2018]. In this article, the head of
the International Institute “Symmetrion” (Budapest, Hungary) proposed to launch a
corresponding international project: “Now, Petoukhov’s above rules of symmetries are
candidates for the role of universal rules of long DNA-texts in living bodies. Further
researches are needed to determine the degree of universality of these rules. Taking
into account the huge number of species and long DNA-texts to be tested in these
relations, I propose to launch an international project to study these genetic
symmetries. Symmetrion initiates and can take part as a center of such an
international project” [Darvas, 2018].

Appendix I. Numeric data on some epi-chains of the human chromosome Ne 1.

This Appendix shows numeric data about epi-chains represented graphically
above in Figs. 13.2.-13.6.

n 1 2 3 4 5 6 7 8 9 10
A
Real | 33537501 16768845 | 11179286 | 8383461 | 6706672 | 5588773 | 4792078 | 4192017 | 3726860 | 3354107
Model | 33537501 16768751 11179167 | 8384375 | 6707500 | 5589584 | 4791072 | 4192188 | 3726389 | 3353750
A% 0 -0.001 -0.001 0.011 0.012 0.015 -0.021 0.004 -0.013 -0.011
[ —
T
Real | 33620498 | 16808862 | 11207274 | 8405040 | 6724359 | 5601854 | 4801395 | 4202773 | 3735327 | 3360459
Model | 33620498 16810249 11206833 | 8405125 | 6724100 | 5603416 | 4802928 | 4202562 | 3735611 | 3362050
A% 0 0.008 -0.004 0.001 -0.004 0.028 0.032 -0.005 0.008 0.047
[ —
C
Real | 24024903 | 12013624 8005708 | 6008215 | 4803919 | 4002753 | 3433636 | 3003511 | 2668499 | 2402186
Model | 24024903 | 12012451.5 | 8008301 | 6006226 | 4804981 | 4004151 | 3432129 | 3003113 | 2669434 | 2402490
A% 0 -0.010 0.032 -0.033 0.022 0.035 -0.044 -0.013 0.035 0.013
[ —
G
Real | 24057606 | 12028924 8021235 | 6013412 | 4813156 | 4013372 | 3435824 | 3006763 | 2673815 | 2407301
Model | 24057606 | 12028803 8019202 | 6014402 | 4811521 | 4009601 | 3436801 | 3007201 | 2673067 | 2405761
A% 0 -0.001 -0.025 0.016 -0.034 -0.094 0.028 0.015 -0.028 -0.064
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n 11 12 13 14 15 16 17 18 19 20
A
Real | 3049510 | 2793265 2579432 2394635 | 2235831 | 2095893 | 1974049 | 1863181 | 1766123 | 1677938
Model | 3048864 | 2794792 2579808 2395536 | 2235833 | 2096094 | 1972794 | 1863195 | 1765132 | 1676875
A% -0.021 0.055 0.015 0.038 0.000 0.010 -0.064 0.001 -0.056 -0.063
| —
T
Real | 3054627 | 2802390 2588494 2400749 | 2240133 | 2101692 | 1976639 | 1866079 | 1768246 | 1680401
Model | 3056409 | 2801708 2586192 2401464 | 2241367 | 2101281 | 1977676 | 1867805 | 1769500 | 1681025
A% 0.058 -0.024 -0.089 0.030 0.055 -0.020 0.052 0.092 0.071 0.037
| —
C
Real | 2185450 | 2001255 1845496 1718676 | 1600752 | 1501210 | 1413949 | 1335576 | 1263741 | 1200991
Model | 2184082 | 2002075 1848069 1716065 | 1601660 | 1501556 | 1413230 | 1334717 | 1264469 | 1201245
A% -0.063 0.041 0.139 -0.152 0.057 0.023 -0.051 -0.064 0.058 0.021
| —
G
Real | 2186817 | 2006465 1851228 1717404 | 1605990 | 1503735 | 1414212 | 1337414 | 1267181 | 1202700
Model | 2187055 | 2004801 1850585 1718400 | 1603840 | 1503600 | 1415153 | 1336534 | 1266190 | 1202880
A% 0.011 -0.083 -0.035 0.058 -0.134 -0.009 0.067 -0.066 -0.078 0.015

Fig. I.1. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the second order Ny; (Fig. 13.1b), which
consists of nucleotides with serial numerations 1-3-5-7-9-... in the DNA sequence of
the human chromosome Ne 1. The table demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (in red) almost completely coincide with the
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A,
or T, or C, or G in this epi-chain correspondingly. Differences between the
corresponding values in these numerical sequences are expressed by shown small
percentage values A%.

n 1 2 3 4 5 6 7 8 9 10

A

Real | AReal | 22360413 | 11179286 | 7453552 | 5588773 | 4472245 | 3726860 | 3196917 | 2793265 | 2483348
Model | Model | 22360413 | 11180207 | 7453471 | 5590103.25 | 4472083 | 3726736 | 3194345 | 2795052 | 2484490
A% A% 0 0.008 -0.001 0.024 -0.004 | -0.003 | -0.081 | 0.064 | 0.046
T —

T

Real | 22412993 | 11207274 | 7470145 | 5601854 | 4479492 | 3735327 | 3199876 | 2802390 | 2490602 | 2240133
Model | 22412993 | 11206496.5 | 7470998 | 5603248 | 4482599 | 3735499 | 3201856 | 2801624 | 2490333 | 2241299
A% 0 -0.007 0.011 0.025 0.069 0.005 | 0.062 | 0027 [ -0.011 [ 0.052
T —

C

Real | 16012711 | 8005708 | 5336968 | 4002753 | 3202830 | 2668499 | 2287279 | 2001255 | 1778911 | 1600752
Model | 16012711 | 80063555 | 5337570 | 4003178 | 3202542 | 2668785 | 2287530 | 2001589 | 1779190 | 1601271
A% 0 0.008 0.011 0.011 -0.009 0.011 | 0.011 0.017 | 0016 | 0.032
T —

G

Real | 16040889 | 8021235 | 5348337 | 4013372 | 3210839 | 2673815 | 2291215 | 2006465 | 1783466 | 1605990
Model | 16040889 | 8020445 | 5346963 | 4010222 | 3208178 | 2673482 | 2291556 | 2005111 | 1782321 | 1604089
A% 0 -0.010 -0.026 | -0.079 -0.083 0012 | 0015 | -0.068 | -0.064 | -0.119

n 11 12 13 14 15 16 17 18 19 20

A

Real | 2032220 | 1863181 | 1721074 | 1598554 | 1489212 | 1397489 | 1316829 | 1240400 | 1177210 | 1117975
Model | 2032765 | 1863368 | 1720032 | 1597172 | 1490694 | 1397526 | 1315318 | 1242245 | 1176864 | 1118021
A% | 0027 | 0010 | -0.061 | -0.087 | 0.099 [ 0003 | -0.115 | 0149 | -0.029 [ 0.004
T —

T

Real | 2038200 | 1866079 | 1723940 | 1598312 | 1493164 | 1401402 | 1318617 | 1245654 | 1178340 | 1119290
Model | 2037545 | 1867749 | 1724076 | 1600928 | 1494200 | 1400812 | 1318411 | 1245166 | 1179631 | 1120650
A% | -0032 | 0089 | 0008 [ 0.163 0.069 | -0.042 [ 0016 | -0.039 [ 0109 | 0.121
T —

C

Real | 1455982 | 1335576 | 1231496 | 1144356 | 1067083 | 999584 | 941265 | 889682 | 843256 | 800223
Model | 1455701 | 1334393 | 1231747 | 1143765 | 1067514 | 1000794 | 941924 | 889595 | 842774 | 800636

A% | -0.019 | 0089 | 0020 | -0.052 [ 0040 [ 0.121 0.070 | -0.010 | -0.057 | 0.052
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Real 1457871 | 1337414 | 1233259 | 1146423 | 1072344 | 1003210 | 942530 892426 844720 803863
Model | 1458263 | 1336741 | 1233915 | 1145778 | 1069393 | 1002556 | 943582 891161 844257 802044
A% 0.027 -0.050 0.053 -0.056 -0.276 -0.065 0.111 -0.142 -0.055 -0.227

Fig. 1.2. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the third order N3, (Fig. 13.1d), which
consists of nucleotides with serial numerations 1-4-7-10-13-... in the DNA sequence
of the human chromosome Ne 1. The table demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (in red) almost completely coincide with the
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A,
or T, or C, or G in this epi-chain correspondingly. Differences between the
corresponding values in these numerical sequences are expressed by shown small
percentage values A%.

n 1 2 3 4 5 6 7 8 9 10
A
Real | 16768845 | 8383461 | 5588773 4192017 3354107 | 2793265 | 2394635 | 2095893 | 1863181 | 1677938
Model | 16768845 | 8384423 | 5589615 | 4192211.25 | 3353769 | 2794808 | 2395549 | 2096106 | 1863205 | 1676885
A% 0 0.011 0.015 0.005 -0.010 0.055 0.038 0.010 0.001 -0.063
| —
T
Real | 16808862 | 8405040 | 5601854 4202773 3360459 | 2802390 | 2400749 | 2101692 | 1866079 | 1680401
Model | 16808862 | 8404431 | 5602954 4202216 3361772 | 2801477 | 2401266 | 2101108 | 1867651 | 1680886
A% 0 -0.007 0.020 -0.013 0.039 -0.033 0.022 -0.028 0.084 0.029
| —
C
Real | 12013624 | 6008215 | 4002753 3003511 2402186 | 2001255 | 1718676 | 1501210 | 1335576 | 1200991
Model | 12013624 | 6006812 | 4004541 3003406 2402725 | 2002271 | 1716232 | 1501703 | 1334847 | 1201362
A% 0 -0.023 0.045 -0.003 0.022 0.051 -0.142 0.033 -0.055 0.031
| —
G
Real | 12028924 | 6013412 | 4013372 3006763 2407301 | 2006465 | 1717404 | 1503735 | 1337414 | 1202700
Model | 12028924 | 6014462 | 4009641 3007231 2405785 | 2004821 | 1718418 | 1503616 | 1336547 | 1202892
A% 0 0.017 -0.093 0.016 -0.063 -0.082 0.059 -0.008 -0.065 0.016
n 11 12 13 14 15 16 17 18 19 20
A
Real 1524710 1397489 | 1290062 | 1196717 | 1117975 | 1047993 | 987755 930924 882614 839279
Model 1524440 1397404 | 1289911 | 1197775 | 1117923 | 1048053 | 986403 931603 882571 838442
A% -0.018 -0.006 -0.012 0.088 -0.005 0.006 -0.137 0.073 -0.005 -0.100
| —
T
Real 1527023 1401402 | 1293440 | 1199582 | 1119290 | 1049849 | 988367 934203 884323 839809
Model 1528078 1400739 | 1292989 | 1200633 | 1120591 | 1050554 | 988757 933826 884677 840443
A% 0.069 -0.047 -0.035 0.088 0.116 0.067 0.039 -0.040 0.040 0.075
| —
C
Real 1093622 999584 923273 860649 800223 751218 706684 667789 631744 601012
Model 1092148 1001135 | 924125 858116 800908 750852 706684 667424 632296 600681
A% -0.135 0.155 0.092 -0.295 0.086 -0.049 0.000 -0.055 0.087 -0.055
| —
G
Real 12028924 | 6013412 | 4013372 | 3006763 | 2407301 | 2006465 | 1717404 | 1503735 | 1337414 1202700
Model | 12028924 | 6014462 | 4009641 | 3007231 | 2405785 | 2004821 | 1718418 | 1503616 | 1336547 1202892
A% 0 0.017 -0.093 0.016 -0.063 -0.082 0.059 -0.008 -0.065 0.016
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Fig. 1.3. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the 4th order Ng;, which consists of
nucleotides with serial numerations 1-5-9-13-... in the DNA sequence of the human
chromosome Ne 1. The table demonstrates that the model hyperbolic progressions
Sa/n, St/n, Sc/n, Sg/n (in red) almost completely coincide with the OS-sequences of
real total amounts of those n-plets, which start with a nucleotide A, or T, or C, or G in
this epi-chain correspondingly. Differences between the corresponding values in these
numerical sequences are expressed by shown small percentage values A%.

n 1 2 3 4 5 6 7 8 9 10

Real 6706672 3354107 2235831 | 1677938 | 1341408 | 1117975 | 958626 | 839279 | 744475 | 670703
Model | 6706672 3353336 2235557 | 1676668 | 1341334 | 1117779 | 958096 | 838334 | 745186 | 670667
A% 0 -0.023 -0.012 -0.076 -0.005 -0.018 -0.055 -0.113 0.095 -0.005

Real 6724359 3360459 2240133 | 1680401 1344421 1119290 | 961102 | 839809 | 746575 | 672348
Model | 6724359 | 3362179.5 | 2241453 | 1681090 | 1344872 | 1120727 | 960623 | 840545 | 747151 | 672436
A% 0 0.051 0.059 0.041 0.034 0.128 -0.050 0.088 0.077 0.013

Real 4803919 2402186 1600752 | 1200991 961518 800223 686222 | 601012 | 533486 | 480738
Model | 4803919 | 2401959.5 | 1601306 | 1200980 960784 800653 686274 | 600490 | 533769 | 480392
A% 0 -0.009 0.035 -0.001 -0.076 0.054 0.008 -0.087 0.053 -0.072

Real 4813156 2407301 1605990 | 1202700 962275 803863 686639 | 600918 | 536368 | 481023
Model | 4813156 2406578 1604385 | 1203289 962631 802193 687594 | 601645 | 534795 | 481316

A% 0 -0.030 -0.100 0.049 0.037 -0.208 0.139 0.121 -0.294 0.061
n 11 12 13 14 15 16 17 18 19 20
A

Real 610306 559209 515854 479353 446769 420435 394716 371969 353254 335131
Model 609697 558889 515898 479048 447111 419167 394510 372593 352983 335334
A% -0.100 -0.057 0.008 -0.064 0.077 -0.303 -0.052 0.167 -0.077 0.060

Real 611496 559871 517229 480135 447813 419315 395062 372883 354165 336406
Model 611305 560363 517258 480311 448291 420272 395551 373576 353914 336218
A% -0.031 0.088 0.006 0.037 0.107 0.228 0.124 0.185 -0.071 -0.056

Real 436216 400115 369357 343754 320358 300365 282859 267188 252122 240344
Model 436720 400327 369532 343137 320261 300245 282583 266884 252838 240196
A% 0.115 0.053 0.047 -0.180 -0.030 -0.040 -0.098 -0.114 0.283 -0.062

Real 437262 401484 370485 343053 321595 300385 283136 268414 253519 240527
Model 437560 401096 370243 343797 320877 300822 283127 267398 253324 240658
A% 0.068 -0.097 -0.065 0.216 -0.224 0.145 -0.003 -0.380 -0.077 0.054

Fig. 1.4. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the 10th order Nj¢;, which consists of
nucleotides with serial numerations 1-11-21-31-41-... in the DNA sequence of the
human chromosome Ne 1. The table demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (in red) almost completely coincide with the
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A,
or T, or C, or G in this epi-chain correspondingly. Differences between the
corresponding values in these numerical sequences are expressed by shown small
percentage values A%.
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n 1 2 3 4 5 6 7 8 9 10

Real 1341408 670703 446769 | 335131 268213 223299 191485 167237 148619 133939
Model 1341408 670704 447136 | 335352 | 268282 223568 191630 167676 149045 134141
A% 0 0.000 0.082 0.066 0.026 0.120 0.076 0.262 0.286 0.150

Real 1344421 672348 447813 336406 | 269243 224202 192407 168101 149090 134818
Model 1344421 672210.5 448140 336105 268884 224070 192060 168053 149380 134442
A% 0 -0.020 0.073 -0.089 -0.133 -0.059 -0.181 -0.029 0.194 -0.280

Real 961518 480738 320358 | 240344 192359 160018 137048 120522 106967 96272
Model 961518 480759 320506 | 240380 192304 160253 137360 120190 106835 96152
A% 0 0.004 0.046 0.015 -0.029 0.147 0.227 -0.276 -0.123 -0.125

Real 962275 481023 321595 240527 192109 160749 137576 120343 107506 95930
Model 962275 481138 320758 240569 192455 160379 137468 120284 106919 96228

A% 0 0.024 -0.261 0.017 0.180 -0.231 -0.079 -0.049 -0.549 0.309
n 11 12 13 14 15 16 17 18 19 20
A
Real 121816 111840 103193 95771 89643 83769 78850 74151 70625 67280
Model 121946 111784 103185 95815 89427 83838 78906 74523 70600 67070
A% 0.107 -0.050 -0.008 0.040 -0.241 0.082 0.071 0.499 -0.035 -0.313

Real 122336 111872 103678 96184 89269 83822 79208 74638 71151 67505

Model 122220 112035 103417 96030 89628 84026 79084 74690 70759 67221
A% -0.095 0.146 -0.252 -0.160 0.401 0.243 -0.157 0.070 -0.554 -0.422
T —
C
Real 87210 79875 73792 68526 64277 60322 56542 53407 49983 48018
Model 87411 80127 73963 68680 64101 60095 56560 53418 50606 48076
A% 0.230 0.314 0.231 0.224 -0.274 -0.378 0.032 0.020 1.231 0.120
G
Real 87691 80548 73923 68766 64118 60188 56555 53892 50857 47678
Model 87480 80190 74021 68734 64152 60142 56604 53460 50646 48114
A% -0.242 -0.447 0.133 -0.047 0.052 -0.076 0.087 -0.809 -0.417 0.906

Fig. 1.5. The results of the analysis - by the oligomer sums method — the
nucleotide sequence of the epi-chain of the 50th order Nsy;, which consists of
nucleotides with serial numerations 1-51-101-151-201-... in the DNA sequence of the
human chromosome Ne 1. The table demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (in red) almost completely coincide with the OS-
sequences of real total amounts of those n-plets, which start with a nucleotide A, or T,
or C, or G in this epi-chain correspondingly. Differences between the corresponding
values in these numerical sequences are expressed by shown small percentage values
A%.

Fig. 1.6 shows that normalized values of amounts Sx, St, Sc, and Sg of each
nucleotide A, T, C, and G are practically identical in all considered epi-chains of the
human chromosome Nel, that is, they are independent of the epi-chain order.
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Epi-ch. | SA/(Sa+S1+Sc+S6) | St/(Sa+St+Sc+S6) | Sc/(Sa+S1+Sc+Sa) | Se/(Sa+St+Sc+S¢)
Nin 0.2910 0.2918 0.2085 0.2087
Non 0.2910 0.2917 0.2085 0.2088
Nin 0.2910 0.2917 0.2084 0.2088
Nun 0.2910 0.2917 0.2085 0.2088
Nion 0.2910 0.2918 0.2084 0.2088
Nson 0.2910 0.291 0.2086 0.2088

Fig. 1.6. The normalized values Sx/(Sa+St+Sc+Sg) of amounts S, St, Sc, and Sg
of each nucleotide A, T, C, and G are practically identical in all considered epi-chains
of different orders 1, 2, 3, 10, and 50 in the human chromosome Ne 1, that is, they are
independent of the epi-chain orders. Here N refers to any nucleotide.
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