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Abstract. The author's method of oligomer sums for analysis of oligomer 
compositions of eukaryotic and prokaryotic genomes is described. The use of this 
method revealed the existence of general rules for cooperative oligomeric 
organization of a wide list of genomes. These rules are called hyperbolic because they 
are associated with hyperbolic sequences including the harmonic progression 1, 1/2, 
1/3, .., 1/n. These rules are demonstrated by examples of quantitative analysis of 
many genomes from the human genome to the genomes of archaea and bacteria. The 
hyperbolic (harmonic) rules, speaking about the existence of algebraic invariants in 
full genomic sequences, are considered as candidates for the role of universal rules for 
the cooperative organization of genomes. The described phenomenological results 
were obtained as consequences of the previously published author's quantum-
information model of long DNA sequences. The oligomer sums method was also 
applied to the analysis of long genes and viruses including the COVID-19 virus;  this 
revealed, in characteristics of many of them, the phenomenon of such rhythmically 
repeating deviations from model hyperbolic sequences, which  are associated with 
DNA triplets. In addition, an application of the oligomer sums method are shown to 
the analysis of the following long sequences: 1) amino acid sequences in long proteins 
like the protein Titin; 2) phonetic sequences of long Russan literary texts (for 
checking of thoughts of many authors that phonetic organization of human languages 
is deeply connected with the genetic language). The topics of the algebraic harmony 
in living bodies and of the quantum-information approach in biology are discussed. 
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1. Introduction 
  

Living bodies are huge sets of various molecules, which have an amazing ability 
to inherit biological traits of organisms to the next generations. G. Mendel, in his 
experiments with plant hybrids, found that the transmission of traits under the 
crossing of organisms occurs by certain algebraic rules, despite the colossal 
heterogeneity and complexity of molecular structures of their bodies. This article 
represents new results of studying hidden algebraic rules in molecular genetic 
information structures. 

One of the founders of quantum mechanics, who introduced also the term 
“quantum biology,” P. Jordan noted the main difference between living and inanimate 
objects: inanimate objects are controlled by the average random movement of their 
millions of particles, whose individual influence is negligible, while in a living 
organism selected – genetic - molecules have a dictatorial influence on the whole 
living organism [McFadden and Al-Khalili, 2018]. Taking into account the dictatorial 
influence of DNA and RNA molecules on the whole body, the author focused his 
research on a special analysis of numeric parameters of nucleotide sequences in 
single-stranded DNA of different genomes and their parts. As a result of this research, 
a new method of analysis of nucleotide sequences was created, which has led to 
discovering new numeric rules of cooperative oligomer organization of eukaryotic 
and prokaryotic genomes. These materials are described below. All initial data on 
nucleotide sequences for this analysis were taken from the GenBank. 

 
It should be recalled that  genomic nucleotide sequences are not random 

sequences. These sequences carry information transmitted in a noise-immune manner 
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from generation to generation. They contain a great number of repeats and 
complementary palindromes. For example, in the human genome, about a third of 
DNA sequences are represented by complementary palindromes [Gusfield, 1997; 
McConkey, 1993]. In evolutionary biology, the abundance of such complementary 
palindromes in genomes is seen as evidence of not random DNA sequences, that is, 
their irreducibility to a set of random mutations (see additional data in [Fimmel, 
Gumbel, Karpuzoglu, Petoukhov, 2019; Petoukhov, Tolokonnikov, 2020]). 

For long nucleotide sequences of single-stranded DNA, the second Chargaff’s rule 
is well known, which states that in such sequences the amount of guanine G is 
approximately equal to the amount of cytosine C and the amount of adenine A is 
approximately equal to the amount of thymine T. Many authors have devoted their 
works to the analysis and discussion of this rule (see, for example, [Fimmel, Gumbel, 
Karpuzoglu, Petoukhov, 2019; Prabhu, 1993; Rapoport, Trifonov, 2012; Rosandic, 
Vlahovic, Gluncic, Paar, 2016; Shporer, Chor, Rosset, and Horn, 2016; Yamagishi, 
2017]). According to [Albrecht-Buehler, 2006], this rule applies to the eukaryotic 
chromosomes, the bacterial chromosomes, the double-stranded DNA viral genomes, and 
the archaeal chromosomes provided they are long enough. In connection with the hidden 
rules of long DNA sequences, Chargraff introduced the important term "a grammar of 
biology"[Chargaff, 1971], which is repeatedly used by his followers (see, for example, 
[Yamagishi, 2017]). 

Regarding the quantitative analysis of DNA sequences, researchers usually study 
quantities and percentages (or probability, or frequencies) of separate n-plets (that is 
separate oligomers, having their length n). For example, the second Chargaff’s rule is 
based on such a study of the quantities of separate nucleotides A, T, C, and G. The 
work [Prahbu, 1993] studies quantities of separate n-plets. In contrast to such analytic 
approaches, the author suggests for analysis of long nucleotide sequences another 
method called the oligomer sums method. It allows studying the oligomer cooperative 
organization by analysis of total amounts of all n-plets, having fixed length n, from 
the certain equivalence classes of oligomers.  

Below this analytic approach and the results of its application to many genomes 
and separate nucleotide sequences are represented (these results are briefly described 
in the published author’s letter [Petoukhov, 2020d]. In addition, this second version of 
this article additionally shows that the oligomer sums method can be usefully applied 
to the analysis not only genomic sequences of nucleotides but also to the analysis of 
the following long biological sequences: 1) amino acid sequences of long proteins 
(the example of the protein Titin is presented); 2) phonetic sequences representing 
long Russian literary novels by L.N. Tolstoy, F.M. Dostoevsky, A.S. Pushkin (for 
checking of thoughts of many authors that phonetic organization of linguistic 
languages is deeply connected with the genetic language; the Russian alphabet has a 
one-to-one correspondence between letters and phonemes, and by this reason, long 
Russian literary texts are appropriate for such checking). 

The presented study is a continuation of long term author's researches on 
biological symmetries. 
 

  2. The hyperbolic rule in the oligomer cooperative organization of all  
       human nuclear chromosomes 

 
The term “oligomer” refers to a molecular complex of chemical that consists of a 

few repeating units. Nucleobases - adenine A, thymine T, cytosine C, and guanine G - 
serve as such repeated units in DNA oligomers, which can have different lengths and 
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which are also called n-plets, where n refers to the oligomer length. Each of 
nucleotide sequences in eukaryotic and prokaryotic genomes can be considered as a 
sequence of monomers (like as A-C-A-T-G-T-…), or a sequence of doublets (like as 
AC-AT-GT-GG-…), or a sequence of triplets (like as ACA-TGT-GGA-…), etc. The 
article describes the numerical analysis of sets of n-plets, which belong to the 
equivalence classes (or cooperative groupings) of A1-oligomers, or T1-oligomers, or 
C1-oligomers, or G1-oligomers correspondingly (their index 1 indicates that all 
oligomers of each class start with the same nucleotide A, or T, or C, or G). For 
example, the class of the A1-oligomers contains the following n-plets: 4 doublets AA, 
AT, AC, and AG; 16 triplets AAA, AAT, AAC, AAG, ATA, …, AGG; etc. The total 
amount of different kinds of n-plets, which start with the same nucleotide, under fixed 
n is equal to 4n-1. 

To simplify a theoretical explanation, let us consider the example of an analysis of 
the oligomer cooperative organization of human chromosome №1 by the author’s 
method of oligomer sums (abbreviation, the OS-method). The totality of data obtained 
by analyzing a nucleotide sequence by thе OS-method is called its OS-
representations. This method gives numeric sequences called oligomer sums 
sequences (or briefly, OS-sequences). 

The application of the OS-method to the analysis of the human chromosome №1 
includes the  following steps, which are typical also for the analysis of other DNA and 
RNA sequences: 

• Firstly, one should calculate phenomenological quantities SA, ST, SC, and SG 
of monomers A, T, C, and G correspondingly in the considered nucleotide 
sequence. In the human chromosome № 1, the following quantities exist: SA = 
67070277, ST = 67244164, SC = 48055043, SG = 48111528; 

• Secondly, to construct the oligomer sums sequences, one should calculate the 
total amounts ΣA,n,1, ΣT,n,1, ΣC,n,1, and ΣG,n,1 of n-plets in equivalence classes of 
A1-oligomers, T1-oligomers, C1-oligomers, and G1-oligomers under n = 1, 2, 
3, 4, … (here, for example, the symbol  ΣA,3,1 refers to the total amount of 
triplets, which start with the nucleotide A). These total amounts regarding 
each of the classes are members of the appropriate OS-sequence of the class. 
For analysis of human chromosomes and various eukaryotic and prokaryotic 
genomes, the author usually takes n = 1, 2, 3, … ,19, 20 or, in special cases, n 
= 1, 2, 3, …, 99, 100. 

One can remind here that genomic sequences in the GenBank sites usually contain 
some letters N, indicating that there can be any nucleotide in this place 
(https://www.ncbi.nlm.nih.gov/books/NBK21136/). By this reason, the total amount 
of all monomers A, T, C, G (that is the sum SA + ST + SC + SG), calculated for the 
sequence from the GenBank, is slightly less than the complete length of the DNA 
sequence, which is indicated in the GenBank. But practically this is not essential for 
the results of the application of the OS-method to analyze genomic sequences. 

For human chromosome № 1, phenomenological values of the total amounts of n-
plets from the class of A1-oligomers are shown in the graphical form for n = 1, 2, 3, 
…, 20 in Fig.2.1, left (in blue). Here the abscissa axis represents the values of n, and 
the ordinate axis represents the values of the total amounts ΣA,n,1 of n-plets, which 
start with the nucleotide A. The amazing result is that all 20 phenomenological points     
[n, ΣA,n,1] lie - with a high level of accuracy - along with the hyperbola HA,1 = SA/n = 
67070277/n shown in red in Fig. 2.1, middle. Deviations of phenomenological 
quantities ΣA,n,1 from model values SA/n lie in the range -0.030%÷0.024%, that is, 
they comprise only one-hundredths of a percent (Fig. 2.1, right). Initial data on this 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2020                   doi:10.20944/preprints202005.0471.v2

https://doi.org/10.20944/preprints202005.0471.v2


chromosome were taken in the GenBank: 
https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11. 
 

  
 

 
Fig. 2.1. The graphs of data for the case of the OS-sequences of n-plets from the 

class A1-oligomers of the human chromosome №1. In these graphs, the abscissa axis 
represents the values n = 1, 2, 3, …, 20. Left: the ordinate axis represents the set of 
phenomenological total amounts ΣA,n,1 of n-plets beginning with the nucleotide A. 
Middle: the ordinate axis represents modeling values SA/n = 67070277/n. The dots 
with coordinates [n, SA/n] belong to the shown hyperbola HA,1 = SA/n = 67070277/n. 
Right: deviations of the real OS-sequence ΣA,n,1 from the model hyperbolic 
progression SA/n in percentages.  
 

This result is striking because it shows that knowing only the number of 
nucleotides A, that is, only one member of the number series shown in Fig. 2.1, at 
left, one can predict with the high accuracy all other 19 members, each of which is a 
sum of 4n-1 possible kinds of n-plets. The number of possible kinds of n-plets in these 
sums is growing rapidly, becoming astronomically huge: 4, 16, 64, 256, 1024, ..., 410, 
..., 419. Of course, in the human chromosome №1, for example, not all possible        
419 kinds of the mentioned 20-plets exist but the total amount of all those kinds of      
20-plets, which exist in this chromosome, is practically equal to SA/20 with a high 
level of accuracy shown below. 

Similar results were obtained when studying in this chromosome the total amounts 
of n-plets, which start with the nucleotide T (Fig. 2.2, at left), and with the nucleotide 
C (Fig. 2.2, at middle), and with the nucleotide G (Fig. 2.2, at right). The 
phenomenological values of the total amounts ΣT,n,1, ΣC,n,1, and ΣG,n,1 of n-plets are 
also modeled effectively by appropriate hyperbolic progressions  HT,1,  HC,1, HG,1 
(2.1), which differ from each other only by their numerators ST, SC, and SG: 
 
  HT,1=ST/n=67244164/n,    HC,1=SC/n=48055043/n,   HG,1=SG/n=48111528/n     (2.1) 
 
 

 
 

Fig. 2.2. Additional graph data to the OS-representation of the human 
chromosome №1. The abscissa axes represent the values n = 1, 2, 3, …, 20. Тhe 
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ordinate axes show model values  HT,1(n),  HC,1(n), and HG,1(n) (in red) from (2.1), 
which practically coincide phenomenological values ΣT,n,1, ΣC,n,1, and ΣG,n,1 of the 
total amount of n-plets, which start with the nucleotide T (at the left graph), the 
nucleotide C (at the middle graph), and the nucleotide G (at the right graph). The 
numerical data on this coincidence is shown below. 

 
 
Fig. 2.3 shows real and model values for the OS-representation of the classes of 

A1-, T1-, C1-, and G1-oligomers of the human chromosome №1 for n = 1, 2, 3,…, 20. 
The model values of the total amounts of n-plets, which start with a certain nucleotide 
(A, T, C, or G), are calculated correspondingly as values of the hyperbolic 
progressions HA,1 = SA/n = 67070277/n, HT,1=ST/n=67244164/n, 
HC,1=SC/n=48055043/n, and  HG,1=SG/n=48111528/n. Deviations of real values from 
model values are also shown in percent in accordance with the expression:                
100(1 – (real value)/(model value)). One can see that these deviations are much lesser 
than 0,2% in all cases.  
 
 

 
 

 
 
      Fig. 2.3. Real and model values to the OS-representations of the classes of   

A1-, T1-, C1-, and G1-oligomers in human chromosome №1 are shown for n = 1, 2, ..., 
20. The real total amounts of n-plets, which start with a certain nucleotide (A, T, C, or 
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G), are indicated (in blue) jointly with their model values HA,1(n),  HT,1(n),  HC,1(n), 
and HG,1(n) from (2.1) (in red). The symbol Δ% refers to deviations of real values 
from model values in percent (the model values are taken as 100%). 

 
The model hyperbolic progressions HA,1 = SA/n, HT,1 = ST/n, HC,1 = SC/n, and     

HG,1 = SG/n serve as mathematical standards for the described phenomenological 
facts. These hyperbolic progressions differ from each other only in the magnitude of 
numerators in their expressions, and therefore they can be specified by the general 
expression (2.2): 

 
                                             HN,1(n) = SN/n,                                                (2.2) 
    

where N refers to any of nucleotides A, T, C, or G; SN refers to the number of 
corresponding monomers A, T, C, or G in the analyzed nucleotide sequence. If you 
know the total quantity SN of the monomer N, you can predict - with a high level of 
accuracy - the total amounts of n-plets belonging to the class N1-oligomers by using 
the general expression (2.2). These phenomenological facts testify in favor of the 
cooperative entity of the nucleotide sequence in the human chromosome №1. 

By the corresponding compression of the ordinate axis in these cartesian 
coordinate systems (that is by appropriate scaling of numerators SA, ST, SC, and SG), 
each of these four hyperbolic sequences HA,1=SA/n, HT,1=ST/n, HC,1=SC/n, and  
HG,1=SG/n reduces to the hyperbolic sequence (2.3): 

 
                                                              y = 1/n,                                              (2.3) 

 
which we call the canonical (or reference) hyperbolic sequence of OS-representations 
(or the canonical OS-sequence) of nucleotide sequences. In mathematics, the 
sequence (2.4) 
 
                                               1/1, 1/2, 1/3, 1/4, 1/5,…, 1/n                                  (2.4) 
    
is known long ago as a harmonic progression (or a harmonic sequence) where each 
term is the harmonic mean of the neighboring terms. For this reason, the revealed 
hyperbolic sequences in genomes can be also called genomic harmonic progressions, 
and, in this mathematical sense, one can talk about the harmonic rules and the 
harmonious organization of genomes described below. The historically famous name 
"the harmonic progression" comes from the connection (2.4) with the series of 
harmonics in music. The sums of the first members of the harmonic progression (2.4) 
are called harmonic numbers. The rich centuries-old history of the study of harmonic 
progressions and harmonic series is associated with the names of Pythagoras, Orem 
(d'Oresme), Leibniz, Newton, Euler, Fourier, Dirichlet, Riemann, and other 
researchers. The generalization of the harmonic series is known as the Riemann zeta 
function. Using musical terminology, where the term “timbre” refers to the totality of 
the set of sound frequencies in a prolonged sound, one can conditionally say that the 
oligomer sums method represents the analyzed nucleotide sequence as some 
“oligomer timbre”. The series of harmonic numbers serves as the discrete analog of 
the continuous function of natural logarithm ln n [Graham, Knuth, Parashnik, 1994, p. 
276]; this, in particular, connects the harmonic progression (2.4) with the Weber-
Fechner logarithmic law, which is the main psychophysical law and dictates 
informatic peculiarities for all inherited sensory channels - vision, hearing, smell, etc , 
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whose organs (eyes, ears, nose, etc.) very differ each other in appearancе. It testifies 
that genetic and different psychophysical levels of inherited biological informatics    
are structurally intercorrelated on the algebra-harmonical basis [Petoukhov, 2016, 
2020b]. 

Given the relationship of the harmonic progression (2.4) with the four OS-
sequences for the four types of nucleotides A, T, C, and G,  genomic sequences can 
be called tetra-harmonic sequences. Fig. 2.3 shows that the OS-sequences of the total 
amounts of n-plets from the classes of A1-oligomers and T1-oligomers differ little 
from each other. The same is true for the OS-sequences of the total amounts of n-plets 
from the classes of C1- and G1-oligomers. This fact is described by the expressions 
(2.5): 

                                 ΣA,n,1 ≈ ΣT,n,1,        ΣC,n,1 ≈ ΣG,n,1                                  (2.5) 
 
In the particular case at n = 1, expressions (2.4) demonstrate the second Chargaff's 
rule on the approximate equality between the amounts of nucleotides A and T, as well 
as C and G in long DNA sequences. Correspondingly the phenomenological fact, 
described by expressions (2.4), is a certain generalization of the 2nd Chargaff's rule. 

The results presented indicate, at least for the human chromosome №1, that there 
exist two general hyperbolic (or harmonic) rules regarding the total amounts of            
n-plets, which start with a certain nucleotide A, T, C, or G. 

 
 
The first hyperbolic rule (about interrelations of oligomers in individual 

chromosomes):  
 
• For any of classes of A1-, T1-, C1-, or G1-oligomers in individual 

chromosomes, the total amounts ΣN,n,1(n) of their n-plets, corresponding 
different n, are interrelated each other through the general expression ΣN,n,1 ≈ 
SN/n with a high level of accuracy (here N refers to any of nucleotides A, T, C, 
or G; SN refers to the number of monomers N; n = 1, 2, 3, 4, … is not too large 
compared to the full length of the nucleotide sequence). The 
phenomenological points with coordinates [n, ΣN,n,1] practically lie on the 
hyperbola having points HN,1 = SN/n.  

 
The second hyperbolic rule (about the similarity in the pairs of OS-sequences):     
     

• In individual chromosomes, two numeric OS-sequences expressing the total 
amounts of n-plets, which start with the nucleotide A and with the nucleotide 
T, are approximately identical. The same is true for two numeric OS-
sequences expressing the total amounts of n-plets, which start with the 
nucleotide C and with the nucleotide G (in accordance with the expressions 
(2.5)). Here n = 1, 2, 3, 4, … is not too large compared to the full length of the 
nucleotide sequence. 
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The obtained results of the hyperbolic (or harmonic) interrelationship of the 
amounts of n-plets, belonging to the indicated classes of oligomers, are not trivial. 
Theoretical counter-examples of artificial nucleotide sequences, which have not such 
interrelation, can be indicated. For example, for the case of the class of A1-oligomers, 
one can mentally construct a long nucleotide sequence that contains many nucleotides 
A but does not have two adjacent nucleotides A, that is, does not contain a single AA 
doublet. Such a sequence does not have the hyperbolic interrelationship between the 
amounts of the nucleotide A and the total amounts of n-plets starting with A. It can be 
added that, in the same human chromosome № 1, the comparison of amounts of n-
plets, consisting only of nucleotides of the same kind, for example, of the nucleotide 
A, shows the absence of the hyperbolic relationship between them. Really, in this case 
the amount of the nucleotide A is equal to 67070277, the amount of the doublet AA - 
10952057, the amount of the triplet AAA – 2837038, the amount of the tetraplet 
AAAA – 856207, and so on without their hyperbolic interrelation.  

 
 
Let us continue the description of obtained results of the analysis of the human 

genome, which contains 22 autosomes and 2 sex chromosomes X and Y. These 
chromosomes are very different from each other in length, molecular weight, gene 
content, etc. What can be said about the other 23 human chromosomes? Are there 
hyperbolic rules similar to formulated rules for the human chromosome №1? Yes, the 
author has got a positive answer to this question. For each of 24 human chromosomes, 
knowing its quantity SN of the monomer N (that is A, T, C, or G) allows you to 
calculate the total amounts of n-plets, which start with the oligomer N, with a high 
level of accuracy by using the general expression (2.2). Here n = 1, 2, 3,... but not 
very large in comparison with the length of the DNA sequence. Fig. 2.4 shows 
general confirmational results of studying all 24 human chromosomes by the          
OS-method under n =1, 2, 3, …, 20.  
 
 

These results demonstrate that both hyperbolic (or harmonic) rules № 1 and № 2 
hold true for each of the human chromosomes with a high level of accuracy.  
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 Fig. 2.4.  Some results of the analysis of all 24 human nuclear chromosomes 
by the oligomer sums method are represented. For each of the chromosomes, 
quantities SA, ST, SC, and SG of monomers A, T, C, and G are shown to define the 
model hyperbolic progressions (2.2). The columns «Range %) show ranges of 
deviations of real OS-series of corresponding n-plets (n = 1, 2, …, 20) from their 
appropriate model values SA/n,  ST/n, SC/n, and SG/n in percentages (in each case, an 
appropriate model value is taken as 100%). The left column shows chromosome 
numbers. 

 
One can show that the obtained phenomenological data also leads to the third 

hyperbolic rule related to normalized versions of the OS-sequences SA/n, ST/n, SC/n, 
and SG/n. Scaling the numerators SA, ST, SC, and SG by dividing by their total amount 
S = SA+ST+SC+SG, we obtain the corresponding scaling of all these OS-sequences, 
which are termed as "normalized OS-sequences" (2.6): 

 
                                   SA/(nS),  ST/(nS),  SC/(nS),  SG/(nS)                                  (2.6) 
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It turns out that the normalized OS-sequences of all human chromosomes are 
similar to each other with a high level of accuracy as Fig. 2.5 shows regarding the 
first main members SA/S, ST/S, SC/S, and SG/S of these hyperbolic sequences. 

 
Chrom SA/S ST/S SC/S SG/S Harmonic mean 

1 0.2910 0.2918 0.2085 0.2087 0.243 
2 0.2984 0.2993 0.2009 0.2014 0.241 
3 0.3013 0.3020 0.1980 0.1986 0.239 
4 0.3086 0.3089 0.1910 0.1915 0.236 
5 0.3018 0.3032 0.1971 0.1979 0.239 
6 0.3021 0.302 0.1979 0.197 0.239 
7 0.2960 0.2970 0.2033 0.2037 0.241 
8 0.2994 0.2990 0.2008 0.2008 0.240 
9 0.2928 0.2926 0.2074 0.2072 0.243 
10 0.2917 0.2929 0.2074 0.2080 0.243 
11 0.2920 0.2926 0.2074 0.2080 0.243 
12 0.2957 0.2966 0.2035 0.2042 0.242 
13 0.3069 0.3079 0.1926 0.1926 0.237 
14 0.2945 0.2970 0.2040 0.2045 0.242 
15 0.2896 0.2901 0.2097 0.2106 0.244 
16 0.2758 0.2784 0.2221 0.2237 0.247 
17 0.2730 0.2738 0.2258 0.2273 0.248 
18 0.3011 0.3014 0.1987 0.1989 0.240 
19 0.2591 0.2615 0.2388 0.2406 0.250 
20 0.2778 0.2810 0.2201 0.2211 0.247 
21 0.2964 0.2946 0.2047 0.2043 0.242 
22 0.2651 0.2648 0.2339 0.2361 0.249 
X 0.3019 0.3029 0.1971 0.1982 0.239 
Y 0.2985 0.3012 0.2001 0.2001 0.240 

 
Fig. 2.5. Data for normalized OS-sequences SA/(nS),  ST/(nS),  SC/(nS), and 

SG/(nS) of all human chromosomes are shown for comparison. Here                                
S = SA+ST+SC+SG. Harmonic means of the values SA/S,  ST/S,  SC/S, and SG/S in each 
chromosome are also indicated. 
 

The same results on the similarity of normalized OS-sequences SA/nS,  ST/nS,  
SC/nS, and SG/nS in all chromosomes of a particular genome were obtained by the 
author when studying the genomes of a number of eukaryotes (until now, without a 
single exception in analyzed cases). Below Sections 4-7 present appropriate results 
for some eukaryotic genomes. These results allow proposing the third hyperbolic (or 
harmonic) rule on the total amounts of n-plets, which start with a certain nucleotide 
A, T, C, or G. 

 
The third hyperbolic rule (about the similarity of chromosomes):  
 
• All chromosomes of any individual eukaryotic genome have approximately 

the same normalized OS-sequences SA/nS,  ST/nS,  SC/nS, and SG/nS 
representing classes of A1-, T1-, C1-, and G1-oligomers (n = 1, 2, 3, 4, … is not 
too large compared to the full length of the nucleotide sequence). 
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The author suggests that these hyperbolic rules are universal genetic rules. But at 

this stage of the study, they are only candidates for the role of universal rules, since 
the analysis of the widest variety of genomes is required to verify their universality. 

Let us return to the harmonic progression (2.4) and recall its relation with the 
well-known concept of the harmonic mean. The harmonic mean H of the positive real 
numbers  x1, x2, …, xn, is defined to be  

 

                                                                        (2.7) 
 

Knowing two neighboring members of the harmonic progression, one can calculate its 
next member. Here we can briefly mention that the harmonic mean is associated with 
the Pythagorean teaching on the musical harmony and the aesthetics of proportions, 
presented in the famous numerical triangle published 2000 years ago by Nichomachus 
of Gerasa in his book “Introduction into arithmetic”. In accordance with this triangle, 
the Parthenon [Kappraff, 2006] and other great architectural objects were created 
because architecture was interpreted as the non-movement music, and the music was 
interpreted as the dynamic architecture (see more details in [Kappraff, 2000, 2002; 
Petoukhov, 2008;  Petoukhov, He, 2010, Section 2, Chapter 4]). Since the harmonic 
mean is related to the harmonic progression, the author indicates values of the 
harmonic mean in some figures of the article for comparison analysis of OS-
sequences in different nucleotide sequences (Fig. 2.5 and many others). 

Each genomic DNA sequence with its total amount S of all nucleotides A, T, C, 
and G also contains total amounts S/n of n-plets (that is, S/2 doublets, S/3 triplets, 
etc.). These total amounts are members of the hyperbolic sequence S, S/2, S/3,…, S/n. 
Each member of this sequence is the sum of the four OS-sequences SA/n,  ST/n,  SC/n, 
and SG/n (2.8): 

 
    SA/n  + ST/n + SC/n + SG/n = S/n  or  SA/nS  + ST/nS + SC/nS + SG/nS = 1/n     (2.8) 
 
These linear superpositions are valid for a wide variety of genomes that differ only in 
individual coefficients SA, ST, SC, and SG.  

Below Sections 4-7 represents the results, which have been obtained on the basis of 
the analysis of very different genomes by the OS-method and which testify in favor 
that the formulated hyperbolic rules have a general genomic significance. But 
previously the next Section will explain the matrix-algebraic approach, which has led 
the author to discover these rules. 
 

3. The representation of the DNA alphabets by their binary-oppositional traits  
     in matrix genetics 

 
Science does not know why the DNA alphabet of nucleotides consists of only            

4 relatively simple molecules A, T, C, and G. But science knows that this alphabet is 
endowed with a system of binary-opposition traits (or indicators): 
- 1) in the double helix of DNA, there are two complementary pairs of nucleotides:  

   the  nucleotides C and G of the first pair are connected by three hydrogen bonds,  
   and the nucleotides A and T of the second pair by two hydrogen bonds. Given  
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   these oppositional indicators, one can represent C = G = 1 and A = T = 0; 
- 2) the two nucleotides are keto molecules (G and T), and the other two are amino  

   molecules (A and C). Given these oppositional indicators, one can represent               
   G = T = 1 and A = C = 0. 
Taking this into account, it is convenient to represent DNA alphabets of                  

4 nucleotides, 16 doublets and 64 triplets in the form of square tables, the columns of 
which are numbered in accordance with oppositional indicators “3 or 2 hydrogen 
bonds” (C = G = 1, A = T = 0), and the rows in accordance with oppositional 
indicators “amino or keto” (С = А = 1, G = T = 0). In such tables, all letters, doublets, 
and triplets automatically occupy their strictly individual places (Fig. 3.1). 
 

 
 

Fig. 3.1. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets, 
and 64 triplets with a strict arrangement of all components. Each of the tables is 
constructed in line with the principle of binary numeration of its column and rows on 
the basis of binary-oppositional indicators of nucleobases G, T, C, and A (see 
explanations in the text). 
 
 These three tables (Fig. 3.1) are not only simple tables but they are members 
of the tensor family of matrices: the second and the third tensor (Kronecker) powers 
of the matrix [G, T; C, A] generate similar arrangements of 16 doublets and 64 triplets 
inside matrices [G, T; C, A](2) and [G, T; C, A](3) as shown in Fig. 3.1. One can note 
here that the classes of G1-, T1-, C1-, and A1-oligomers, analyzed in the previous 
Section as related to the hyperbolic rules, are connected by a special manner with the 
tensor family of the matrices [G, T; C, A](n) where the symbol (n) refers to an 
appropriate tensor power. More precisely, in Fig. 3.1, each of (2*2)-quadrants of the 
matrix [G, T; C, A](2) contains a complete set of 4 doublets, which start with one of 
nucleotides G, T, C, and A; each of (22*22)-quadrants of the matrix [G, T; C, A](3) 
contains a complete set of 16 triplets, which start with one of the nucleotides G, T, C, 
and A. In general, each of (2n-1*2n-1)-quadrants of the matrix [G, T; C, A](n) contains a 
complete set of 4n-1 n-plets, which start with one of the nucleotides G, T, C, and A. 
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 The genetic code is called a "degenerate code" because 64 triplets encode 20 
amino acids and stop-codons so that several triplets can encode each amino acid at 
once, and each triplet necessarily encodes only a single amino acid or a stop-codon. 
The (8*8)-matrix of 64 triplets (Fig. 3.1) was built formally without any mention of 
amino acids and stop-codons. Nothing data preliminary exist on a possible 
correspondence between triplets and amino acids. How can these 20 amino acids and 
stop-codons be located in this matrix of 64 triplets? There are a huge number of 
possible options for the location and repetition of separate amino acids and stop-
codons in 64 cells of this matrix. More precisely, the number of these options is much 
more than 10100 (for comparison, the entire time of the Universe existence is 
estimated in modern physics at 1017 seconds). But Nature uses - from this huge 
number of options - only a very specific repetition and arrangement of separate amino 
acids and stop-codons, the analysis of which is important for revealing the structural 
organization of the information foundations of living matter. 
 Fig. 3.2 shows the real repetition and location of amino acids and stop-codons 
in the Vertebrate Mitochondrial Code, which is the most symmetrical among known 
dialects on the genetic code. This genetic code is called the most ancient and "ideal" 
in genetics [Frank-Kamenetskii, 1988] (other dialects of the genetic code have small 
differences from this one, which is considered in the theory of symmetries as the basis 
from the structural point of view). 
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Fig. 3.2. The location and repetition of 20 amino acids and 4 stop-codons 

(denoted by bold) in the matrix of 64 triplets [C, A; G, T](3) (Fig. 3.1) for the  
Vertebrate Mitochondrial Code. The symbol “Stop” refers to stop-codons. 
 

The location and repetition of all amino acids and stop-codons in the matrix of 64 
triplets have the following algebraic feature (Fig. 3.2): 

• Each of sixteen (2*2)-sub-quadrants, forming this genetic matrix and denoted 
by bold frames, is bisymmerical: each of its both diagonals contains an 
identical kind of amino acids or stop-codon. 

 
Bisymmetric (2*2)-matrices [a, b; b, a] are well known in algebra as matrix 
representations of two-dimensional hypercomplex numbers called hyperbolic 
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numbers: a+bj where “a” and “b” are real numbers, and the imaginary unit j satisfies 
j2 = +1. [Kantor, Solodovnikov, 1989]. Hyperbolic numbers are used in physics and 
mathematics and they have also synonymical names: "split-complex numbers", 
“double numbers” and "perplex numbers". The collection of all hyperbolic numbers 
forms algebra over the field of real numbers [Harkin, Harkin, 2004; Kantor, 
Solodovnikov, 1989]. The algebra is not a division algebra or field since it contains 
zero divisors. Addition and multiplication of hyperbolic numbers are defined by the 
expressions (3.1):  
 
              (x+jy)+(u+jv)=(x+u)+j(y+v);     (x+jy)(u+jv)=(xu+yv)+j(xv+yu)            (3.1)  
 
This multiplication is commutative, associative, and distributes over addition.  

Hyperbolic numbers have the matrix form of their representation in a form of 
bisymmetric matrix [a, b; b, a]. Fig. 3.3 shows the decomposition of such matrix into 
two sparse matrices, the first of which is the matrix representation of the real unit and 
the second one is the matrix representation of the imaginary unit j. 
 

 
 

       Fig. 3.3. The decomposition of the bisymmetric matrix [a, b; b, a] into two sparse   
matrices representing real and imaginary units of hyperbolic numbers 
correspondingly. 

 
Regarding the hyperbolas from the hyperbolic rules of the previous Section 

(Figs. 2.1, 2.2, etc.), it can be noted that the transformation of one point of the 
hyperbola to another point is determined by the transformation of the hyperbolic 
rotation, in which the hyperbole glides along with itself. Such a transformation is 
determined by a bisymmetric matrix [a, b; b, a] representing a special form of 
hyperbolic numbers (the hyperbolic rotation is known in the special theory of 
relativity under the name of the Lorentz transformation). 

If each amino acid and stop-codon is represented by some characteristic parameter 
(for example, the number of carbon atoms in these organic formations or numbers of 
protons in its molecular structure, etc.), then a numerical (8*8)-matrix arises (Fig. 3.4) 
with bisymmetric (2*2)-sub-quadrants representing hyperbolic numbers a+bj. In other 
words, this phenomenologic arrangement of amino acids and stop-codons in the 
matrix of 64 triplets is associated to the multiblock union of matrix presentations of 
16 two-dimensional hyperbolic numbers.  

 
 
 
 
 
 
 
 
 
 
 

5 5 6 5 4 4 4 6 
5 5 5 6 4 4 6 4 
6 6 6 6 3 0 6 5 
6 6 6 6 0 3 5 6 
3 3 4 5 3 3 9 0 
3 3 5 4 3 3 0 9 
2 2 5 5 3 11 9 6 
2 2 5 5 11 3 6 9 
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Fig. 3.4. The numeric analog of the symbolic (8*8)-matrix of amino acids and 
stop-codons from Fig. 3.2 for the case of representing each of amino acids by 
numbers of its carbon atoms (stop-codons are conditionally represented by zero). 
 

The connection of the genetic code with hyperbolic numbers supplements the 
following statement of the author, presented in a number of his publications 
[Petoukhov, 2008, 2016, 2018a; Petoukhov, He, 2010, etc.]. The genetic code is not 
just a mapping of one set of elements to other sets of elements by type, for example, 
of a phone book in which phone numbers encode names of people. But the genetic 
code is inherently an algebraic code, akin to a certain degree to those algebraic codes 
that are used in modern communication theory for noise-immune transmission of 
information. Algebraic features of the genetic code are related to the noise-immune 
properties of this code and the whole genetic system. 

One can explain the meaning and possibilities of algebraic codes by the example 
of transmitting a photograph of the Martian surface from Mars to Earth using 
electromagnetic signals. On the way to the Earth, these signals travel millions of 
kilometers of interference and arrive at the Earth in a very weakened and distorted 
form. But, magicallly, based on these mutilated signals on Earth, a high-quality 
photograph of the surface of Mars is recreated. The secret of this magic lies in the fact 
that from Mars not the information signals about this photo are sent, but algebraically 
encoded versions of these signals that are quite other. At receivers on Earth, these 
algebraically encoded signals are algebraically decoded into signals, which recreate 
the original photographic image of the surface of Mars. It should be emphasized that 
algebraic coding of information in the theory of noise-immune communication 
actively uses the mathematical apparatus of matrices, which is also used in quantum 
informatics and quantum mechanics as matrix operators. The author’s works are 
aimed at studying algebraic properties of the genetic coding system for revealing 
hidden information rules algebraically encoded in the molecular genetic system. This 
article is part of a set of long-term author's studies of the genetic system by the 
methods of matrix analysis and modeling combined under the general name "matrix 
genetics" [Petoukhov, 2008, 2011, 2016, 2017, 2019b,c; Petoukhov, He, 2010; 
Petoukhov, Petukhova, 2017a,b]. 

Let's continue the presentation of confirmational data on the existence of 
hyperbolic (or harmonic) rules in the cooperative oligomeric organization of the 
eukaryotic and prokaryotic genomes. 
 

4. The hyperbolic rules in all chromosomes of a fruit fly Drosophila   
     melanogaster 
 

This and upcoming Sections 5-7 are devoted to the analysis - by the oligomer sums 
method (the OS-method) - of single-stranded DNA sequences of the complete sets of 
chromosomes of a few model eukaryotic organisms, which are used long ago in the 
study of genetics, development, and disease. Represented tabular data confirm that 
both hyperbolic (harmonic) rules regarding n-plets from the classes of A1-, T1-, C1-, 
and G1-oligomers hold for each of described chromosomes at n = 1, 2, 3, 4, …, 19, 20 
(although these rules are also satisfied for larger values of n, at least up to n = 100, but 
the data tables for such large n are too cumbersome to include in the article). 

Let us start with a fruit fly Drosophila melanogaster, which is studied in 
biology labs for over eighty years. All initial data about its chromosomes were taken 
from the GenBank - 
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https://www.ncbi.nlm.nih.gov/genome/?term=drosophila+melanogaster. Resulting 
data in Fig. 4.1 confirm that - for all the chromosomes - the model hyperbolic 
progressions HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and HG,1(n) = SN/n from 
the expression (2.2) practically coincide with the real sequences of total amounts of   
n-plets from the classes A1-, T1-, C1-, and G1-oligomers at n = 1, 2, 3, …, 20. In all 
shown cases, the deviations of real sequences from model hyperbolic progressions are 
less than 1% as data in the tabular columns «Range %» indicates. This means that the 
formulated hyperbolic (harmonic) rules are fulfilled in the considered genome.                 
                               

 
№ SA Range % ST Range % SC Range % SG Range % 
X 6732793 -0.196 

÷0.057 
6774766 -0.125 

÷0.090 
4975870 -0.198 

÷0.139 
4992722 -0.148 

÷0.213 
2L 6853032 -0.217 

÷0.178 
6836080 -0.219 

÷0.090 
4912017 -0.239 

÷0.313 
4912383 -0.251 

÷0.350 
2R 7272860 -0.259 

÷0.128 
7235562 -0.144 

÷0.304 
5395216 -0.195 

÷0.222 
5376598 -0.222 

÷0.323 
3L 8143548 -0.142 

÷0.196 
8198331 -0.126 

÷0.206 
5825673 -0.211 

÷0.108 
5824515 -0.262 

÷0.169 
3R 9205526 -0.143 

÷0.152 
9197619 -0.145 

÷0.132 
6833716 -0.170 

÷0.169 
6817898 -0.231 

÷0.192 
4 425241 -1.759 

÷0.488 
436669 -0.423 

÷0.744 
232566 -1.463 

÷1.299 
236655 -0.855 

÷1.369 
Y 1056780 -0.494 

÷0.314 
1008635 -0.125 

÷0.431 
682725 -0.268 

÷0.659 
661579 -0.512 

÷0.386 
 

Fig. 4.1. The results of the analysis of all chromosomes of Drosophila 
melanogaster by the OS-method. The left column shows symbols of chromosomes. 
SA, ST, SC, and SG refer to the quantities of monomers A, T, C, and G in appropriate 
chromosomes. The columns “Range %” show deviations of real sequences from the 
model hyperbolic progressions HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and 
HG,1(n) = SG/n at n = 1, 2, 3, …, 20 (the model values are taken as 100%). 
 

Fig. 4.2 shows data of normalized OS-sequences for all chromosomes of 
Drosophila melanogaster. 
 

Chrom SA/S ST/S SC/S SG/S Harmonic mean 
X 0.2868 0.2886 0.2120 0.2127 0.244 
2L 0.2915 0.2907 0.2089 0.2089 0.243 
2R 0.2877 0.2862 0.2134 0.2127 0.245 
3L 0.2909 0.2929 0.2081 0.2081 0.243 
3R 0.2872 0.2869 0.2132 0.2127 0.245 
4 0.3195 0.3280 0.1747 0.1778 0.228 
Y 0.3099 0.2958 0.2002 0.1940 0.239 

 
Fig. 4.2. Data of normalized OS-sequences SA/nS,  ST/nS,  SC/nS, and SG/nS 

of all chromosomes of Drosophila melanogaster are shown for comparison. Here       
S = SA+ST+SC+SG. Harmonic means of the values SA/S,  ST/S,  SC/S, and SG/S in each 
chromosome are also indicated. 
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 5. The hyperbolic rules in all chromosomes of a nematode Caenorhabditis  
                elegans 
 

The Section represents data about results of the analysis of single-stranded 
DNA sequences of the complete set of chromosomes of free-living soil nematode 
Caenorhabditis elegans by the OS-method. This nematode is widely used as a model 
organism in genetics for a long time. The Caenorhabditis elegans nuclear genome is 
approximately 100 Mb, distributed among six chromosomes. All initial data are taken 
from the GenBank 
(https://www.ncbi.nlm.nih.gov/genome?term=caenorhabditis%20elegans). 

Resulting data in Fig. 5.1 confirm that - for all the chromosomes - the model 
hyperbolic progressions HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and HG,1(n) = 
SN/n from the expression (2.2) practically coincide with the real sequences of total 
amounts of n-plets from the classes A1-, T1-, C1-, and G1-oligomers at n = 1, 2, 3, …, 
20. In all shown cases, the deviations of real sequences from model hyperbolic 
(harmonic) progressions are less than 0.5% as data in the tabular columns «Range %» 
indicates. This means that the formulated hyperbolic (harmonic) rules are fulfilled in 
the considered genome.                                  
 
№ SA Range 

% 
ST Range 

% 
SC Range 

% 
SG Range 

% 
1 4835939 -0.144 

÷0.319 
4848450 -0.160 

÷0.294 
2695890 -0.487 

÷0.327 
2692155 -0.498 

÷0.218 
2 4878209 -0.196 

÷0.421 
4869734 -0.229 

÷0.109 
2769232 -0.256 

÷0.492 
2762246 -0.253 

÷0.257 
3 4444681 -0.139 

÷0.157 
4423618 -0.269 

÷0.156 
2449158 -0.451 

÷0.303 
2466344 -0.173 

÷0.362 
4 5711043 -0.106 

÷0.229 
5730974 -0.253 

÷0.177 
3034784 -0.393 

÷0.219 
3017028 -0.199 

÷0.414 
5 6750403 -0.145 

÷0.124 
6760297 -0.164 

÷0.203 
3712075 -0.222 

÷0.575 
3701405 -0.418 

÷0.286 
X 5747200 -0.256 

÷0.120 
5734092 -0.166 

÷0.167 
3119741 -0.156 

÷0.340 
3117909 -0.272 

÷0.256 
 

Fig. 5.1. The results of the analysis of all chromosomes of Caenorhabditis 
elegans by the OS-method. The left column shows symbols of chromosomes. SA, ST, 
SC, and SG refer to the quantities of monomers A, T, C, and G in appropriate 
chromosomes. The columns “Range %” show deviations of real series from the model 
hyperbolic progressions HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and HG,1(n) = 
SG/n at n = 1, 2, 3, …, 20 (the model values are taken as 100%). 

 
Fig. 5.2 shows data of normalized OS-sequences for all chromosomes of 

Caenorhabditis elegans. 
 

Chrom SA/S ST/S SC/S SG/S Harmonic mean 
1 0.3208 0.3217 0.1789 0.1786 0.230 
2 0.3193 0.3187 0.1812 0.1808 0.231 
3 0.3225 0.3209 0.1777 0.1789 0.229 
4 0.3265 0.3276 0.1735 0.1725 0.226 
5 0.3226 0.3231 0.1774 0.1769 0.229 
X 0.3244 0.3236 0.1761 0.1760 0.228 
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Fig. 5.2. Data of normalized OS-sequences SA/nS,  ST/nS,  SC/nS, and SG/nS 

of all chromosomes of Caenorhabditis elegans are shown for comparison. Here          
S = SA+ST+SC+SG. Harmonic means of the values SA/S,  ST/S,  SC/S, and SG/S in each 
chromosome are also indicated. 

 
 
6. The hyperbolic rules in all chromosomes of a house mouse Mus musculus 
 
The Section represents data about results of the analysis of single-stranded 

DNA sequences of the complete set of chromosomes of the laboratory mouse Mus 
musculus, which is a major model organism for basic mammalian biology, human 
disease, and genome evolution. All initial data are taken from the GenBank 
https://www.ncbi.nlm.nih.gov/genome?term=mus%20musculus. 

Resulting data in Fig. 6.1 confirm that - for all the chromosomes - the model 
harmonic progressions HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and HG,1(n) = 
SN/n from the expression (2.2) practically coincide with the real sequences of total 
amounts of n-plets from the classes A1-, T1-, C1-, and G1-oligomers at n = 1, 2, 3, …, 
20. In all shown cases, the deviations of real sequences from model hyperbolic 
progressions are significantly less than 0.5% as data in the tabular columns «Range 
%» indicates. This means that the formulated hyperbolic (harmonic) rules are fulfilled 
in the considered genome.                 

 
 

№ SA Range  
% 

ST Range  
% 

SC Range  
% 

SG Range  
% 

1 56530182 -0.051 
÷0.054 

56416289 -0.126 
÷0.067 

39495313 -0.044 
÷0.121 

39467408 -0.150 
÷0.107 

2 51600126 -0.099 
÷0.076 

51679955 -0.060 
÷0.063 

37504114 -0.041 
÷0.111 

37542456 -0.110 
÷0.036 

3 46503996 -0.041 
÷0.063 

46631177 -0.057 
÷0.092 

31603703 -0.151 
÷0.120 

31659979 -0.063 
÷0.075 

4 43821952 -0.050 
÷0.081 

43922197 -0.056 
÷0.076 

32146231 -0.097 
÷0.062 

32165231 -0.050 
÷0.090 

5 42488105 -0.060 
÷0.059 

42515761 -0.063 
÷0.050 

31456650 -0.033 
÷0.085 

31459158 -0.218 
÷0.052 

6 42843713 -0.122 
÷0.082 

42886213 -0.107 
÷0.048 

30315703 -0.028 
÷0.108 

30290914 -0.083 
÷0.094 

7 40271749 -0.105 
÷0.070 

40509547 -0.110 
÷0.079 

30554235 -0.089 
÷0.081 

30519876 -0.019 
÷0.125 

8 36224525 -0.043 
÷0.083 

36167473 -0.119 
÷0.127 

26616967 -0.147 
÷0.104 

26602467 -0.123 
÷0.081 

9 34722476 -0.079 
÷0.066 

34694585 -0.088 
÷0.066 

25880876 -0.154 
÷0.185 

25859081 -0.114 
÷0.095 

10 37185184 -0.066 
÷0.068 

37273294 -0.046 
÷0.142 

26277876 -0.099 
÷0.096 

26331308 -0.112 
÷0.123 

11 33401283 -0.069 
÷0.049 

33317397 -0.121 
÷0.049 

26022668 -0.057 
÷0.177 

26004597 -0.061 
÷0.081 

12 33897029 -0.111 
÷0.069 

34225639 -0.105 
÷0.144 

24374340 -0.061÷ 
0.094 

24425412 -0.115 
÷0.109 

13 34255191 -0.119 
÷0.088 

34115119 -0.064 
÷0.082 

24377641 -0.079 
÷0.119 

24373242 -0.138 
÷0.090 
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14 35695406 -0.135 
÷0.027 

35758968 -0.086 
÷0.115 

24980458 -0.057 
÷0.135 

25007278 -0.099 
÷0.124 

15 29177752 -0.135 
÷0.069 

29244798 -0.028 
÷0.092 

21121081 -0.050 
÷0.180 

21109684 -0.095 
÷0.088 

16 28035438 -0.054 
÷0.115 

28084677 -0.067 
÷0.099 

19439086 -0.125 
÷0.023 

19460557 -0.170 
÷0.003 

17 26251160 -0.075 
÷0.097 

26302830 -0.051 
÷0.079 

19586991 -0.085 
÷0.060 

19566481 -0.096 
÷0.063 

18 25615329    -0.064 
÷0.075 

25597990 -0.103 
÷0.054 

18095575 -0.099 
÷0.159 

18143740 -0.129 
÷0.089 

19 16732680 -0.097 
÷0.094 

16602953 -0.193 
÷0.076 

12449343 -0.181 
÷0.201 

12420880 -0.098 
÷0.225 

X 49660944 -0.069 
÷0.049 

49651848 -0.102 
÷0.052 

32081377 -0.049 
÷0.093 

32093826 -0.126 
÷0.131 

Y 26842991 -0.084 
÷0.166 

27013719 -0.072 
÷0.107 

17175367 -0.221 
÷0.171 

17092621 -0.163 
÷0.171 

 
Fig. 6.1. The results of the analysis of all chromosomes of a house mouse Mus 

musculus by the OS-method. The left column shows symbols of chromosomes. SA, 
ST, SC, and SG refer to the quantities of monomers A, T, C, and G in appropriate 
chromosomes. The columns “Range %” show deviations of real sequences from the 
model hyperbolic sequences HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and 
HG,1(n) = SG/n at n = 1, 2, 3, …, 20 (the model values are taken as 100%). 

      
Fig. 6.2 shows data of normalized OS-sequences for all chromosomes of Mus 

musculus. 
 

Chrom SA/S ST/S SC/S SG/S Harmonic mean 
1 0.2946 0.2940 0.2058 0.2057 0.242 
2 0.2894 0.2898 0.2103 0.2105 0.244 
3 0.2973 0.2982 0.2021 0.2024 0.241 
4 0.2882 0.2889 0.2114 0.2115 0.244 
5 0.2872 0.2874 0.2127 0.2127 0.244 
6 0.2928 0.2931 0.2072 0.2070 0.243 
7 0.2839 0.2856 0.2154 0.2151 0.245 
8 0.2884 0.2879 0.2119 0.2118 0.244 
9 0.2866 0.2864 0.2136 0.2134 0.245 
10 0.2926 0.2933 0.2068 0.2072 0.243 
11 0.2813 0.2806 0.2191 0.2190 0.246 
12 0.2899 0.2927 0.2085 0.2089 0.243 
13 0.2925 0.2913 0.2081 0.2081 0.243 
14 0.2939 0.2945 0.2057 0.2059 0.242 
15 0.2899 0.2905 0.2098 0.2097 0.244 
16 0.2950 0.2956 0.2046 0.2048 0.242 
17 0.2862 0.2868 0.2136 0.2134 0.245 
18 0.2929 0.2927 0.2069 0.2075 0.243 
19 0.2875 0.2852 0.2139 0.2134 0.245 
X 0.3038 0.3037 0.1962 0.1963 0.239 
Y 0.3046 0.3065 0.1949 0.1940 0.238 
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Fig. 6.2. Data of normalized OS-sequences SA/nS,  ST/nS,  SC/nS, and SG/nS 
of all chromosomes of a house mouse Mus musculus are shown for comparison. Here 
S = SA+ST+SC+SG. Harmonic means of the values SA/S,  ST/S,  SC/S, and SG/S in each 
chromosome are also indicated. 

 
 7. The hyperbolic rules in all chromosomes of a plant Arabidopsis thaliana 

 
One more model organism is a plant Arabidopsis thaliana. This small flowering 

plant is used for over fifty years to study plant mutations and for classical genetic 
analysis. It became the first plant genome to be fully sequenced; it has a small 
genome of ~120 Mb. The Section represents data about results of the analysis of 
single-stranded DNA sequences of the complete set of 5 chromosomes of this plant by 
the oligomer sums method. All initial data about the chromosomes were taken from 
the GenBank - https://www.ncbi.nlm.nih.gov/genome/4, the column RefSeq). 

Resulting data in Fig. 7.1 confirm that - for all the chromosomes - the model 
harmonic progressions HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and HG,1(n) = 
SN/n from the expression (2.2) practically coincide with the real sequences of total 
amounts of n-plets from the classes A1-, T1-, C1-, and G1-oligomers at n = 1, 2, 3, …, 
20. In all shown cases, the deviations of real sequences from model harmonic 
progressions are less than 0.6% as data in the tabular columns «Range %» indicates. 
This means that the formulated hyperbolic (harmonic) rules are fulfilled in the 
considered genome.                 

 
№ SA Range 

% 
ST Range 

% 
SC Range 

% 
SG Range 

% 
1 9709674 -0.275 

÷0.103 
9697113 -0.140 

÷0.209 
5435374 -0.130 

÷0.303 
5421151 -0.186 

÷0.296 
2 6315641 -0.035 

÷0.198 
6316348 -0.256 

÷0.162 
3542973 -0.406 

÷0.252 
3520766 -0.148 

÷0.478 
3 7484757 -0.121 

÷0.101 
7448059 -0.141 

÷0.238 
4258333 -0.283 

÷0.200 4262704 
-0.206 
÷0.121 

4 5940546 -0.155 
÷0.239 

5914038 -0.109 
÷0.238 

3371349 -0.222 
÷0.333 

3356091 -0.293 
÷0.161 

5 8621974 -0.123 
÷0.184 

8652238 -0.213 
÷0.204 

4832253 -0.515 
÷0.073 

4858759 -0.132 
÷0.407 

 
Fig. 7.1. The results of the analysis of all chromosomes of a plant Arabidopsis 

thailana by the OS-method. The left column shows symbols of chromosomes. SA, ST, 
SC, and SG refer to the quantities of monomers A, T, C, and G in appropriate 
chromosomes. The columns “Range %” show deviations of real sequences from the 
model hyperbolic progressions HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and 
HG,1(n) = SG/n at n = 1, 2, 3, …, 20 (the model values are taken as 100%). 
 

Fig. 7.2 shows data of normalized OS-sequences for all chromosomes of 
Arabidopsis thailana. 

Chrom SA/S ST/S SC/S SG/S Harmonic mean 
1 0.3208 0.3204 0.1796 0.1791 0.230 
2 0.3207 0.3207 0.1799 0.1788 0.230 
3 0.3191 0.3176 0.1816 0.1817 0.231 
4 0.3197 0.3183 0.1814 0.1806 0.231 
5 0.3197 0.3209 0.1792 0.1802 0.230 
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Fig. 7.2. Data of normalized OS-sequences SA/nS,  ST/nS,  SC/nS, and SG/nS 

of all chromosomes of Arabidopsis thailana are shown for comparison. Here               
S = SA+ST+SC+SG. Harmonic means of the values SA/S,  ST/S,  SC/S, and SG/S in each 
chromosome are also indicated. 
 

8. Analysis of long genes by the oligomer sums method 
 

Before proceeding to the analysis of prokaryotic genomes, it is useful to show 
the applicability of the oligomer sum method to the analysis of genes whose 
sequences are much shorter than DNA sequences in chromosomes. The application of 
the method unexpectedly reveals the phenomenon of regular rhythmic deviations of 
the sequences of real total sums of n-plets in the described genes from the 
corresponding model hyperbolic progressions. 

Let us first consider the human TTN gene encoding the largest known protein 
Titin. Titin, also known as connectin, is important in the contraction of striated 
muscle tissues. Figs. 8.1-8.6  show some results of the analysis - by the oligomer 
sums method - of the nucleotide sequence of the TTN gene (numeric results will be 
represented below). Initial data on its nucleotide sequence are taken in the GenBank 
https://www.ncbi.nlm.nih.gov/nuccore/X90568.1. This gene contains 26373 
nucleotides A, 19569 nucleotides T, 17097 nucleotides C, and 18901 nucleotides G, 
that is SA = 26373, ST = 19569, SC = 17097, and SG = 18901 for the model hyperbolic 
progressions (2.2). It can be especially noted that, in this gene, the amounts of 
nucleotides A and T are significantly different (26373 and 19569), that is, the second 
Chargaff's rule on their approximate equality in long sequences is not satisfied here 
since this nucleotide sequence is not enough long for the Chargaff’s rule. 
 

The class of T1-oligomers The class of G1-oligomers 

  
 

Fig. 8.1. Graphical representations of the results of the analysis - by the 
oligomer sums method – of the human TNT gene. The OS-sequences of its total 
amounts of n-plets, which start with the nucleotide T (left) and the nucleotide G 
(right), are shown. The red lines refer to model hyperbolic progressions ST/n and SG/n 
correspondingly, where ST = 19569 and SG = 18901 are quantities of nucleotides T 
and G in the gene; n = 1, 2, 3, …, 20 as shown at the abscissa axes. The blue line 
(left) and the green line (right) with dots on them refer to the real OS-sequences of the 
total amounts of such n-plets. Тhe ordinate axes indicate the total amounts of n-plets.  

 
Fig. 8.1 shows the sequences of the highly regular significant deviations of the 

real total amounts of n-plets, which start with the nucleotide T and the nucleotide G, 
from model hyperbolic progressions ST/n = 19569/n and SG/n = 18901/n. One should 
note that all these significant deviations happen only at n = 3, 6, 9, …, 3m, that is only 
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for cases of 3m-plets (here m = 1, 2, 3,…). Correspondingly these significant 
deviations can be called «triplet-deviations».  

Fig. 8.2 shows the graph, which unites both graphs from Fig. 8.1 and 
demonstrates a few interesting features of the highly regular series of these triplet-
deviations.  

 

 
 

 Fig. 8.2. The graph, uniting two graphs from Fig. 8.1 for the TNT gene, is 
shown. The blue dot line and the green dot lines correspond to those additional 
hyperbolic progressions 11979/n and 28788/n, which model real total amounts of     
3m-plets. Other parts of this united graph are the same as in Fig. 8.1. 

 
 
Firstly, one can see in Fig. 8.2 that, in classes of T1-oligomers and G1-

oligomers, the triplet-deviations happen in opposite directions (or, figuratively 
speaking, in antiphase):  

• in the class of T1-oligomers, they decrease real values compared with model 
values of the hyperbolic progression 19569/n; 

• in the class of G1-oligomers, they increase real values in comparison with 
model values of the hyperbolic progression 18901/n. 

Secondly, under triplet-deviations, real total amounts of 3m-plets from the classes 
of T1-oligomers and G1-oligomers belong correspondingly to other hyperbolic 
progressions 11979/n and 28788/n. These hyperbolic progressions are indicated by 
the blue dot line and the green dot line in Fig. 8.2. Where did these numerators of 
model hyperbolas come from? Each of these numerators is associated with the total 
amount of triplets (n = 3) in an appropriate class of oligomers in this gene: the total 
amount of triplets starting with nucleotide T is equal to 3993,  and the total amount of 
triplets starting with nucleotide G is equal to 9596. To calculate the first values of the 
model hyperbolas, each of these amounts of triplets must be tripled, giving the shown 
numerators 11979 and 28788. 

Similar triplet-deviations exist in the OS-representations not only of the TNT gene 
but also of other long genes, prokaryotic genomes, and viruses in different degrees as 
the author has discovered in the analysis of a limited set of nucleotide series by the      
OS-method. In the genetic code system, triplets have an important meaning, which 
differs from other n-plets: they encode amino acids and punctuations of protein 
synthesis. One can believe that the phenomenon of the triplet-deviations is related to  
this special meaning of triplets. For this reason, the deeper analysis of triplet-
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deviations in different species can be useful to study the secrets of the genetic system 
and biological evolution.  

Fig. 8.2 demonstrated the highly regular rhythmic triplet-deviations for n = 1, 2, 3, 
…, 20, but similar rhythmic triplet-deviations exist in a much wider range of values n.  
Fig. 8.3 shows in graphical forms percentage values of the highly regular rhythmic 
deviations of the real total amounts of n-plets, which start with the nucleotide T and 
with the nucleotide G in the TNT gene, from the appropriate model values 19569/n 
and 18901/n. Two cases of the range of values n are represented there:  n = 1, 2, 3,…, 
20, and n = 1, 2, 3, .., 100. 
 

 
            The class of T1-oligomers            The class of G1-oligomers 
 

 

 

 
 

 

 

 
 
Fig. 8.3. Percentage representations of highly regular rhythmic sequences of the 

triplet-deviations of the real amounts of n-plets, which belong to classes of T1-, and 
G1-oligomers, from the appropriate model hyperbolic values 19569/n and 18901/n in 
the TNT gene. Here n = 1, 2, 3, …, 20 (upper row) and n = 1, 2, 3,…, 100 (bottom 
row) as shown at the abscissa axes. The ordinate axes show percentages of the 
deviations (the model values are taken as 100%). 
 

The nucleobases T and G are keto-nucleobases. Figs. 8.2 and 8.3 draw attention 
to the phenomenon of long-range correlations in the TNT gene between sequences of 
the triplet-deviations in classes of T1-, and G1-oligomers: the triplet-deviations in 
these sequences happen in opposite directions as above mentioned. Such binary 
oppositions, which meet in different long genes, prokaryotic genomes, and viruses  
regarding the classes of different N1-oligomers (here N refers to A, T, C, or G), 
should be specially studied in future since they bear important information and are 
associated with other binary-opposition features of molecular genetic systems. 

The following Fig. 8.4 shows the OS-sequences of the total amounts of n-plets, 
which start with two other nucleotides A and C in the TNT gene. This gene contains 
26373 nucleotides A and 17097 nucleotides C; correspondingly  SA = 26373 and SC = 
17097 for the model hyperbolic progressions (2.2). 
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            The class of A1-oligomers            The class of C1-oligomers 

  
 

 

 

 
 
Fig. 8.4. Graphical representations of the results of the analysis - by the 

oligomer sums method – of the human TNT gene regarding the sequences of the total 
amounts of n-plets, which start with the nucleotide A (left) and the nucleotide C 
(right). Here n = 1, 2, 3,…, 20 (at  the absciss axes). Upper row: the red lines refer to 
model hyperbolic progressions SA/n = 26373/n and SC/n =17097/n correspondingly. 
The ordinate axes show the total amounts of appropriate n-plets. The class of C1-
oligomers has regular sequences of the significant triplet-deviations at 3m-plets 
shown by the blue line. Bottom row: percentage representations of the sequences of 
deviations of the real total amounts of n-plets of these classes from the appropriate 
model hyperbolic values 26373/n and 17097/n (the ordinate axes show these 
percentages). The model values are taken as 100%. 

 
One can see in Fig. 8.4 that the class of C1-oligomers has regular sequences of 

the significant triplet-deviations at 3m-plets shown by the blue line. The class of A1-
oligomers has not such regular sequences of significant deviations; besides, its 
deviations are essentially less than deviations in the class of C1-oligomers. In the class 
of A1-oligomers, the real and model values differ little from each other, and therefore, 
in Fig. 8.4, the red line of model values covers the line of real values. 

Fig. 8.5 shows the numeric results of the analysis of the TNT gene by the 
oligomer sums method. 
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 Fig. 8.5. Real and model values to the OS-representations of the classes of   
A1-, T1-, C1-, and G1-oligomers in the human TNT gene are shown for n = 1, 2, ..., 20. 
The real total amounts of n-plets, which start with a certain nucleotide (A, T, C, or G), 
are indicated jointly with their model values HA,1(n) = 26373/n ,  HT,1(n) = 19569/n,  
HC,1(n) = 17097/n, and HG,1(n) = 18901/n (in red). The symbol Δ% refers to 
deviations of real values from model values in percent (the model values are taken as 
100%).  
 

The coordinated deviations of all four OS-sequences from their model 
harmonic progressions can be conveniently represented by the general sequence of 
harmonic mean values, which are calculated for their four corresponding members at 
each fixed n. Fig. 8.6 shows such a sequence for the human TNT gene. One can see 
the very regular rhythmic nature of this general sequence of harmonic mean values,  
expressively reflecting the phenomenon of agreed triplet-deviations under 3m-plets in 
this gene. 

 
 

Fig. 8.6. The sequence of harmonic mean values of agreed deviations of all 
four OS-sequences from their model harmonic progressions HA,1(n) = 26373/n,  
HT,1(n) = 19569/n,  HC,1(n) = 17097/n, and HG,1(n) = 18901/n in the human TNT gene. 
n = 1, 2, …, 20 are plotted along the abscissа axes. The ordinate axes show harmonic 
mean values.   
 

Let us show briefly, for comparison, also the OS-representations of two long 
human genes: NEB gene and SYNE1 gene.  

Figs. 8.7 and 8.8 show graphs with the results of the NEB gene by the oligomer 
sums method. Initial data on this gene were taken from  
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https://www.ncbi.nlm.nih.gov/nuccore/X83957. This gene contains 7071 nucleotides 
A, 4478 nucleotides T, 4578 nucleotides C, and 4754 nucleotides G, that is SA = 
7071, ST = 4478, SC = 4578, and SG = 4754 for the model hyperbolic progressions 
(2.2). It can be especially noted that, in this gene, the amounts of nucleotides A and T 
are significantly different (7071 and 4478), that is, the second Chargaff's rule on their 
approximate equality in long sequences is not fulfilled here since this nucleotide 
sequence is not enough long for the Chargaff’s rule. 
 

            The class of A1-oligomers            The class of G1-oligomers 

  
 

 

 

 
 

Fig. 8.7. Graphical representations of the results of the analysis - by the 
oligomer sums method – of the human NEB gene: the sequences of the total amounts 
of n-plets, which start with the nucleotide A (left) and the nucleotide G (right) are 
shown. Here n = 1, 2, 3,…, 20 (at  the absciss axes). Upper row: the red lines refer to 
model hyperbolic progressions SA/n = 7071/n (left) and SG/n = 4754/n (right). The 
ordinate axes show the total amounts of appropriate n-plets. The highly regular 
sequences of the significant triplet-deviations at 3m-plets shown by the green line 
(left) and the blue line (right). Bottom row: percentage representations of the 
sequences of deviations of the real total amounts of n-plets of these classes from the 
appropriate model hyperbolic values 7071/n and 4754/n (the ordinate axes show these 
percentages). The model values are taken as 100%. 

 
Fig. 8.8. additionally draws attention to the phenomenon of long-range 

correlations in the NEB gene between sequences of the triplet-deviations in classes of 
A1-, and G1-oligomers: the triplet-deviations in these sequences happen in opposite 
directions.  

 
            The class of T1-oligomers            The class of C1-oligomers 
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Fig. 8.8. Graphical representations of the results of the analysis - by the 
oligomer sums method – of the human NEB gene: the sequences of the total amounts 
of n-plets, which start with the nucleotide T (left) and the nucleotide C (right) are 
shown. Here n = 1, 2, 3,…, 20 (at  the absciss axes). Upper row: the red lines refer to 
model hyperbolic progressions ST/n = 4478/n (left) and SC/n = 4578/n (right). The 
ordinate axes show the total amounts of appropriate n-plets. The weakly regular 
sequences of the significant triplet-deviations at 3m-plets shown by the green line 
(left) and the blue line (right). Bottom row: percentage representations of the 
sequences of deviations of the real total amounts of n-plets of these classes from the 
appropriate model hyperbolic values 4478/n and 4578/n (the ordinate axes show these 
percentages). The model values are taken as 100%. 
 

By analogy with Fig. 8.6, Fig. 8.9 shows the sequence of harmonic mean values 
of agreed deviations of all four OS-sequences from their model harmonic 
progressions for the case of the human NEB gene. One can see the very regular 
rhythmic nature of this general sequence of harmonic mean values, reflecting the 
phenomenon of agreed triplet-deviations under 3m-plets in this gene. 

 

 
 
Fig. 8.9. The sequence of harmonic mean values of agreed deviations of all four   

OS-sequences from their model harmonic progressions in the human NEB gene.         
n = 1, 2, …, 20 are plotted along the abscissа axes. The ordinate axis shows harmonic 
mean values.   

 
Figs. 8.10 and 8.11 show graphs with the results of the human SYNE1 gene by 

the oligomer sums method. Initial data on this gene were taken from  
https://www.ncbi.nlm.nih.gov/nuccore/NM_182961. This gene contains 8697 
nucleotides A, 6032 nucleotides T, 5940 nucleotides C, and 7039 nucleotides G, that 
is SA = 8697, ST = 6032, SC = 5940, and SG = 7039 for the model hyperbolic 
progressions (2.2). It can be especially noted that, in this gene, the amounts of 
nucleotides A and T are significantly different, as are the amounts of nucleotides C 
and G, and therefore the second Chargaff's rule for long nucleotide sequences is not 
satisfied here since this nucleotide sequence is not enough long. 
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The class of A1-oligomers The class of G1-oligomers 

  
 

 

 

 
 

Fig. 8.10. Graphical representations of the results of the analysis - by the 
oligomer sums method – of the human SYNE1 gene: the sequences of the total 
amounts of n-plets, which start with the nucleotide A (left) and the nucleotide G 
(right) are shown. Here n = 1, 2, 3,…, 20 (at  the absciss axes). Upper row: the red 
lines refer to model hyperbolic progressions SA/n = 8697/n (left) and SG/n = 7039/n 
(right). The ordinate axes show the total amounts of appropriate n-plets. The highly 
regular sequences of the significant triplet-deviations at 3m-plets shown by the blue 
line (left) and the green line (right). Bottom row: percentage representations of the 
sequences of deviations of the real total amounts of n-plets of these classes from the 
appropriate model hyperbolic values 7071/n and 4754/n (the ordinate axes show these 
percentages). The model values are taken as 100%.  
 

Fig. 8.10 additionally draws attention to the phenomenon of long-range 
correlations in the SYNE1 gene between sequences of the triplet-deviations in classes 
of A1-, and G1-oligomers: the triplet-deviations in these sequences happen in opposite 
directions.  

 
            The class of T1-oligomers            The class of C1-oligomers 
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Fig. 8.11. Graphical representations of the results of the analysis - by the 
oligomer sums method – of the human SYNE1 gene: the sequences of the total 
amounts of n-plets, which start with the nucleotide T (at left) and the nucleotide C (at 
right) are shown. Here n = 1, 2, 3,…, 20 (at  the absciss axes). Upper row: the red 
lines refer to model hyperbolic progressions ST/n = 6032/n (left) and SC/n = 5940/n 
(right). The ordinate axes show the total amounts of appropriate n-plets. The triplet-
deviations in both of these classes are small in magnitude, and therefore, on these 
graphs, the model hyperbolic progressions (in red) practically hide under themselves 
the sequences of real total amounts of 3m-plets. Bottom row: percentage 
representations of the sequences of deviations of the real total amounts of n-plets of 
these classes from the appropriate model hyperbolic values 6032/n and 5940/n (the 
ordinate axes show these percentages). The model values are taken as 100%. 
 

The author notes else that not all long genes have regular sequences of the 
pronounced triplet-deviations in their OS-representations. The comparison analysis of 
the OS-representations of different genes is a new research field. 

One of the interesting topics for comparative analysis of genes by the oligomer 
sums method relates to the structure of histones, which is highly conservative in 
evolution. Histones are highly basic proteins found in eukaryotic cell nuclei that pack 
and order the DNA into structural units called nucleosomes.  Histones are the chief 
protein components of chromatin, acting as spools around which DNA winds, and 
playing a role in gene regulation.  
 Figs. 8.12 and 8.13 show results of the analysis of one of the short genes of 
human histones by the OS-method (this gene was randomly selected from multiple 
histone genes for analysis): H.sapiens H1.1 gene for histone H1, 1034 bp DNA 
(GenBank: X57130.1, https://www.ncbi.nlm.nih.gov/nuccore/X57130.1). The results 
confirm the implementation of the hyperbolic  (harmonic) rule № 1 for this gene. 
 

The class of C1-oligomers The class of G1-oligomers 
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Fig. 8.12. Graphical representations of the results of the analysis - by the 
oligomer sums method – of the human histone H1.1 gene regarding its classes of C1- 
and G1-oligomers. The sequences of its total amounts of n-plets, which start with the 
nucleotide C (left) and the nucleotide G (right), jointly with model hyperbolic 
progressions are shown. Top graphic row: the red lines refer to model hyperbolic 
progressions SC/n and SG/n correspondingly, where SC = 268 and SG = 256 are the 
quantities of nucleotides C and G in the gene; n = 1, 2, 3, …, 20 as shown at the 
abscissa axes. The green line (left) and the blue line (right) with dots on them refer to 
the real OS-sequences of the total amounts of such n-plets. Тhe ordinate axes indicate 
the total amounts of n-plets. Middle graphic row: the graph combining both graphs 
from the top row. Bottom row: graphs indicate the sequences of percent deviations of 
the real total amounts of n-plets, which start with appropriate nucleotides  C and G in 
the gene, from the model hyperbolic values SC/n (left) and SG/n (right) under n = 1, 2, 
3, …, 20 (at the absciss axis). The ordinate axis indicates values of percent deviations. 
The model values are taken as 100%. 
 

One can see in Fig. 8.12. the existence in this short histone gene some analog 
of those triplet-deviations related to 3m-plets that were described above for long 
genes and shown in Figs. 8.1-8.10. In particular, the correlation exists in this short 
gene between two sequences of the triplet-deviations in the considered classes of C1- 
and G1-oligomers: the triplet-deviations in these sequences happen in opposite 
directions. 
 Fig. 8.13 shows the results of a similar analysis of the same histone gene 
regarding its classes of A1- and T1-oligomers. 
 

The class of A1-oligomers The class of T1-oligomers 
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Fig. 8.13. Graphical representations of the results of the analysis - by the 
oligomer sums method – of the human histone H1.1 gene regarding its classes of A1- 
and T1-oligomers. Top graphic row: the red lines with red dots refer to model 
hyperbolic progressions SA/n and ST/n correspondingly, where SA = 317 and ST = 193 
are the quantities of nucleotides A and T; n = 1, 2, 3, …, 20 as shown at the abscissa 
axes. The green line (left) and the blue line (right) with dots on them refer to the real 
OS- sequences of the total amounts of such n-plets. Тhe ordinate axes indicate the 
total amounts of n-plets. Bottom row: graphs indicate the sequences of percent 
deviations of the real total amounts of n-plets, which start with appropriate 
nucleotides  A and T in the gene, from the model hyperbolic values SA/n and ST/n 
under n = 1, 2, 3, …, 20 (at the absciss axis). The ordinate axis indicates values of 
percent deviations. The model values are taken as 100%. 

 
 One can see from Fig. 8.13 that rhythmic deviations in the classes of A1- and 

T1-oligomers are less regular and stable than in the classes of C1- and G1-oligomers in 
Fig. 8.12. To clarify the general picture of such properties of histone genes, 
systematic studies of a wide set of histone genes in their OS-representations are 
required. 

By analogy with Figs. 8.6 and 8.9, Fig. 8.14 shows the sequence of harmonic 
mean values of agreed deviations of all four OS-sequences from their model harmonic 
progressions for the case of the human histone H1.1 gene. One can see the regular 
rhythmic nature of this general sequence of harmonic mean values, reflecting the 
phenomenon of agreed triplet-deviations under 3m-plets in this gene. 

 

 
 
Fig. 8.14. The sequence of harmonic mean values of agreed deviations of all  

four OS-sequences from their model harmonic progressions in the human histone 
H1.1 gene. n = 1, 2, …, 20 are plotted along the abscissа axes. The ordinate axis 
shows harmonic mean values.   
 

Certain triplet-deviations between real and model values under 3m-plets are 
also found in the OS-representations of entire chromosomes of humans and other 
organisms, but in a much less pronounced form than shown in this Section for 
individual genes.  

 
9. The hyperbolic rules in bacterial genomes of different groups both from  
    Bacteria and Archaea. 

 
Let us turn now to prokaryotic genomes. The Section represents results of the 

analysis of nucleotide sequences of all 19 bacterial genomes of different groups both 
from Bacteria and Archaea, which are listed in the article on the second Chargaff’s 
rule [Rapoport, Trifonov, 2012, p. 2]: “Nucleotide disparities for prokaryotic coding 
sequences were taken from bacterial genomes of different groups both from Bacteria 
and Archea. All together 19 genomes were used: Aquifex aeolicus, Acidobacteria 
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bacterium, Bradyrhizobium japonicum, Bacillus subtilis, Chlamydia trachomatis, 
Chromobacterium violaceum, Dehalococcoides ethenogenes, Escherichia coli, 
Flavobacterium psychrophilum, Gloeobacter violaceus, Helicobacter pilory, 
Methanosarcina acetivorans, Nanoarchaeum equitans, Syntrophus aciditrophicus, 
Streptomyces coelicolor, Sulfolobus solfataricus, Treponema denticola, Thermotoga 
maritima and Thermus thermophiles”. 
 Fig. 9.1 shows the results of the analysis of these prokaryotic genomes by the 
oligomer sums method. These results demonstrate that the hyperbolic rule No. 1 is 
fulfilled for all the listed genomes of prokaryotes: the model hyperbolic progressions 
HA,1(n) = SA/n, HT,1(n) = ST/n,  HC,1(n) = SC/n, and HG,1(n) = SG/n from the expression 
(2.2) practically coincide with the OS-sequences of real total amounts of n-plets from 
the classes A1-, T1-, C1-, and G1-oligomers at n = 1, 2, 3, …, 20. Because of this 
coincidence, the model hyperbolic progressions, which are represented by red lines in 
the graphs of Fig. 9.1, almost completely cover the sequences of real values (the blue 
lines in the lower graphs show in percent slight alternating deviations of real values 
from model values). 
 

 
 
 
 
 
1 

SA = 440779 

 

ST = 436095 

 

SC = 336361 

 

SG = 338100 

 

    
 
 
 
 
 
2 

SA =1076577 

 

ST = 1084801 

 

SC = 1426653 

 

SG = 1408353 

 

    
 
 
 
 
 

SA = 1677669 

 

ST = 1674356 

 

SC = 2936912 

 

SG = 2935271 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2020                   doi:10.20944/preprints202005.0471.v2

https://doi.org/10.20944/preprints202005.0471.v2


3 

    

 
 
 
 
 
4 

SA = 1129118 

 

ST = 1129396 

 

SC = 882500 

 

SG = 884272 

 

    
 
 
 
 
5 

SA = 301793 

 

ST = 300618 

 

SC = 212019 

 

SG = 211409 

 

    
 
 
 
 
 
6 

SA = 21274 

 

ST = 23172 

 

SC = 38842 

 

SG = 44089 

 

    
 
 
 
 
7 

SA = 405227 

 

ST = 402383 

 

SC = 355663 

 

SG = 358014 
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8 

SA = 1297551 

 

ST = 1293044 

 

SC = 1321325 

 

SG = 1319228 

 

    
 
 
 
 
9 

SA = 945771 

 

ST = 975318 

 

SC = 468718 

 

SG = 458213 

 

    
 
 
 
 
 
10 

SA = 887941 

 

ST = 882586 

 

SC = 1444547 

 

SG = 1443945 

 

    
 
 
 
 
 

SA = 498514 

 

ST = 501121 

 

SC = 323770 

 

SG = 320426 
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11 

    
 
 
 
 
 
12 

SA = 1638004 

 

ST = 1658700 

 

SC = 1228410 

 

SG = 1226378 

 

    
 
 
 
 
 
13 

SA = 167981 

 

ST =167983 

 

SC = 77361 

 

SG = 77560 

 

    

 
 
 
 
14 

SA = 772747 

 

ST = 770484 

 

SC = 812772 

 

SG = 823297 

 

   
 

 
 
 
 
15 

SA = 1203558 

 

ST = 1213059 

 

SC = 3121252 

 

SG = 3129638 
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16 

SA = 867639 

 

ST = 881683 

 

SC = 490453 

 

SG = 487562 

 

    

 
 
 
17 

SA = 570544 

 

ST = 572448 

 

SC = 346447 

 

SG = 353748 

 

    
 
 
 
 
18 

SA = 501112 

 

ST = 498004 

 

SC = 424115 

 

SG = 436351 

 

    
 
 
 
 
19 

SA = 327251 

 

ST = 330338 

 

SC = 734285 

 

SG = 729652 
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Fig. 9.1. Graphical representations of the results of the analysis - by the oligomer 
sums method – of 19 bacterial genomes of Bacteria and Archaea mentioned in 
[Rapoport, Trifonov, 2012, p. 2]. For each of genomes two rows of resulting data are 
shown at n = 1, 2, …, 20 plotted along the abscissа axes: the top rows demonstrate 
that model hyperbolic progressions SA/n, ST/n, SC/n, SG/n (red lines) almost 
completely cover the OS-sequences of real values (the ordinate axes show appropriate 
values); the bottom blue lines show in percent slight alternating deviations of real 
values from model values. The left column indicates numbers denoted the genomes as 
explained in the text. 
 

The genomes are enumerated in Fig. 9.1 by numbers 1-19: 
1) Aquifex aeolicus VF5, complete genome, 1551335 bp, accession AE000657, 

version AE000657.1, 
https://www.ncbi.nlm.nih.gov/nuccore/AE000657.1?report=genbank ; 

2) Acidobacteria bacterium KBS 146 
M015DRAFT_scf7180000000004_quiver.1_C, whole genome shotgun 
sequence, 4996384 bp, accession JHVA01000001,   

            https://www.ncbi.nlm.nih.gov/nuccore/JHVA01000001.1?report=genbank; 
3) Bradyrhizobium japonicum strain E109, complete genome, 9224208 bp, 

accession CP010313, 
      https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank ;       
4) Bacillus subtilis strain UD1022, complete genome, 4025326 bp, accession  

           CP011534,  
            https://www.ncbi.nlm.nih.gov/nuccore/CP011534.1?report=genbank; 
      5) Chlamydia trachomatis strain QH111L, complete genome, 1025839 bp,   

accession CP018052, 
 https://www.ncbi.nlm.nih.gov/nuccore/CP018052.1?report=genbank; 

      6) Chromobacterium violaceum strain LK30 1, whole genome shotgun sequence,  
           127377 bp, accession LDUX01000001 version   LDUX01000001.1,   
           https://www.ncbi.nlm.nih.gov/nuccore/LDUX01000001.1?report=genbank; 
       7) Dehalococcoides mccartyi strain CG3, complete genome, NCBI Reference  
           Sequence: NZ_CP013074.1, 1521287 bp,  
            https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP013074.1?report=genbank; 
       8) Escherichia coli CFT073, complete genome, GenBank: AE014075.1, 5231428   
            bp, https://www.ncbi.nlm.nih.gov/nuccore/AE014075.1?report=genbank; 
        9) Flavobacterium psychrophilum JIP02/86, complete genome, 2860382 bp,  
            accession NC_009613, https://www.ncbi.nlm.nih.gov/nuccore/NC_009613.3;  
       10) Gloeobacter violaceus PCC 7421 DNA, complete genome, GenBank:  
             BA000045.2, 4659019 bp,  accession   BA000045 AP006568-AP006583  
             version BA000045.2,       
             https://www.ncbi.nlm.nih.gov/nuccore/BA000045.2?report=genbank; 
       11) Helicobacter pilory, NCBI Reference Sequence: NC_000921.1, complete   
              genome, 1643831 bp, accession NC_000921 NZ_AE001440-NZ_AE001571  
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              version NC_000921.1, https://www.ncbi.nlm.nih.gov/nuccore/NC_000921.1; 
       12) Methanosarcina acetivorans str. C2A, complete genome, 5751492 bp,  
              accession AE010299 AE010656-AE011189 version AE010299.1,  
              https://www.ncbi.nlm.nih.gov/nuccore/AE01029; 
       13) Nanoarchaeum equitans Kin4-M, complete genome,  490885 bp,   accession     
             AE017199 AACL01000000 AACL01000001 version AE017199.1, 
             https://www.ncbi.nlm.nih.gov/nuccore/AE017199.1?report=genbank; 
       14) Syntrophus aciditrophicus SB, complete genome, 3179300 bp,  accession    
             CP000252,    
             https://www.ncbi.nlm.nih.gov/nuccore/CP000252.1?report=genbank;  
       15) Streptomyces coelicolor A3(2) complete genome, 8667507 bp, accession   
             AL645882,   
              https://www.ncbi.nlm.nih.gov/nuccore/AL645882.2?report=genbank;  
       16) Sulfolobus solfataricus strain SULA, complete genome, 2727337 bp,  
              accession   CP011057, 
              https://www.ncbi.nlm.nih.gov/nuccore/CP011057.1?report=genbank;              
       17) Treponema denticola SP33 supercont1.1, whole genome shotgun sequence, 
              NCBI Reference Sequence: NZ_KB442453.1, 1850823 bp,  accession     
              NZ_KB442453 NZ_AGDZ01000000 version NZ_KB442453.1, 
              https://www.ncbi.nlm.nih.gov/nuccore/NZ_KB442453.1?report=genbank; 
       18) Thermotoga maritima strain Tma200, complete genome, 1859582 bp,   
              accession   CP010967, 
              https://www.ncbi.nlm.nih.gov/nuccore/CP010967.1?report=genbank;  
       19) Thermus thermophilus DNA, complete genome, strain: TMY, 2121526 bp,     

              accession AP017920, 
              https://www.ncbi.nlm.nih.gov/nuccore/AP017920.1?report=genbank 
 
 One can see from Fig. 9.1 that in some prokaryotic genomes (for example in 
№№ 3, 7, 9, and 15) the alternating small deviations of real values from model values 
are systematic and related to 3m-plets; it seems to be analogous to the much stronger 
triplet-deviations described above for human genes in Figs. 8.1-8.7. Can a sign of the 
presence of such triplet-deviations in the genomes of some bacteria serve as a 
criterion for the selection of bacterial species for genetic engineering problems? It is 
one of many new questions arisen due to the discovery of the represented hyperbolic 
rules and the applications of the oligomer sums method. 
 

Fig. 9.2 shows examples of sequences of the harmonic mean values for two of 
these bacterial genomes. One can see triplet-deviations in these sequences at dots 
corresponding to 3m-plets. 
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Fig. 9.2. The sequences of harmonic mean values of agreed deviations of all 
four OS-sequences from their model harmonic progressions in the genomes of 
Bradyrhizobium japonicum strain E109 (left) and Escherichia coli CFT073 (right).      
n = 1, 2, …, 20 are plotted along the abscissа axes. The ordinate axes show harmonic 
mean values.   
 

10. Analysis of genomes of microorganisms living in extreme environments 
 

Of particular interest is the analysis of the genetic characteristics of microorganisms 
(extremophiles) living under extreme conditions of high and low temperatures, 
radiation, acidic and alkaline environments, drying, etc. Study of extremophiles is 
useful for many practical and theoretical problems. The 
https://en.wikipedia.org/wiki/Extremophile website contains a table of extremophiles. 
For the analysis of their genomes by the oligomer sums method, the author used 1-2 
organisms from each category of the table. The initial data on the genomes were taken 
from the GenBank. Figs. 10.1-10.8 show the results of their analysis. 
 

SA = 415838 

 

ST = 415399 

 

SC = 505010 

 

SG = 507020 

 

 
   

 
Fig. 10.1. The results of the analysis - by the oligomer sums method – the 

extremophile Pyrolobus fumarii 1A, complete genome, 1843267 bp (this extremophile 
lives in submarine hydrothermal vents),  
https://www.ncbi.nlm.nih.gov/nuccore/NC_015931.1. All abscissa axes show the 
values n = 1, 2, …, 20. The top row demonstrates that model hyperbolic progressions 
SA/n, ST/n, SC/n, SG/n (red lines) almost completely cover the OS-sequences of real 
values (the ordinate axes show appropriate values). The bottom row show in percent 
slight alternating deviations of real values of the OS-sequences from model values. 
 
 

SA = 565156 

 

ST = 565106 

 

SC = 388629 

 

SG = 389365 
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Fig. 10.2. The results of the analysis - by the oligomer sums method – the 
extremophile Pyrococcus	 furiosus	 DSM	 3638,	 complete	 genome,	 1908256	 (this 
extremophile lives in submarine hydrothermal vents),	
https://www.ncbi.nlm.nih.gov/nuccore/NC_003413.1 
The explanation of these graphs is identical to the explanation to Fig. 10.1. 
 

SA = 618651 

 

ST = 617734 

 

SC = 712290 

 

SG = 711064 

 

    
 
    Fig. 10.3. The results of the analysis - by the oligomer sums method – the 
extremophile Synechococcus	lividus	PCC	6715	chromosome,	complete	genome,	
2659739	bp	(this extremophile lives in	low	temperature	conditions),	
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP018092.1). The explanation of 
these graphs is identical to the explanation to Fig. 10.1. 
 
 

SA = 951350 

 

ST = 952340 

 

SC = 715119 

 

SG = 713730 

 

    
 

Fig. 10.4. The results of the analysis - by the oligomer sums method – the 
extremophile Psychrobacter	 alimentarius	 strain	 PAMC	 27889	 chromosome,	
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complete	 	 genome,	 	 3332539	 bp	 (this extremophile lives in soda lakes),	
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP014945.1. The explanation of these 
graphs is identical to the explanation to Fig. 10.1. 
 
 

SA = 653285 

 

ST = 643729 

 

SC = 273182 

 

SG = 284977 

 

    

 
Fig. 10.5. The results of the analysis - by the oligomer sums method – the 

extremophile Clostridium	paradoxum	 JW-YL-7	 =	DSM	7308	 strain	 JW-YL-7	 ctg1,	
whole	genome	shotgun	sequence,	1855173	bp	(this extremophile lives in volcanic	
springs,	 acid	 mine	 drainage),	
https://www.ncbi.nlm.nih.gov/nuccore/LSFY01000001.1The explanation of 
these graphs is identical to the explanation to Fig. 10.1. 
 
 

SA = 436533 

 

ST = 437182 

 

SC = 888365 

 

SG = 886497 

 

    
 

Fig. 10.6. The results of the analysis - by the oligomer sums method – the 
extremophile Deinococcus	 radiodurans	 R1	 chromosome	 1,	 complete	 sequence,	
2648638	 bp,	 	 (this extremophile lives in conditions of cosmic rays, X-rays, 
radioactive decay),	 https://www.ncbi.nlm.nih.gov/nuccore/NC_001263.1. The 
explanation of these graphs is identical to the explanation to Fig. 10.1.  
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SA = 323335 

 

ST = 322973 

 

SC = 684998 

 

SG = 682933 

 

    
 

Fig. 10.7. The results of analysis - by the oligomer sums method – the 
extremophile Halobacterium	 sp.	 NRC-1,	 complete	 genome,	 2014239	 bp	 	 (this 
extremophile lives in conditions of high	 salt	 concentration),	
https://www.ncbi.nlm.nih.gov/nuccore/NC_002607.1. The explanation of these 
graphs is identical to the explanation to Fig. 10.1. 
 
 
 

SA = 1752216 

 

ST = 1756821 

 

SC = 1405709 

 

SG = 1401046 

 

 
   

 
Fig. 10.8. The results of the analysis - by the oligomer sums method – the 

extremophile Chroococcidiopsis	 thermalis	PCC	7203,	 complete	 genome,	 6315792	
bp,	 (this extremophile lives in conditions of	 desiccation),		
https://www.ncbi.nlm.nih.gov/nuccore/NC_019695.1. The explanation of these 
graphs is identical to the explanation to Fig. 10.1. 
 
 The resulting data in Figs. 10.1- 10.8 shows the fulfillment of the hyperbolic 
rule №1 of oligomeric sums for all studied and presented extremophiles. The extremal 
living conditions of these microorganisms do not affect the subordination of their 
genomes to the described hyperbolic (harmonic) rules of algebraic invariance, which 
are true for the genomes of other prokaryotes and eukaryotes. 
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11.  Analysis of giant viruses by the oligomer sums method  
 

This Section represents examples of studying genomes of different viruses by 
the oligomer sums method. The focus is on giant viruses (Figs. 11.1-11.4).  
 

SA = 196380 

 

ST = 195271 

 

SC = 109028 

 

SG = 109354 

 

    

Fig. 11.1. The results of the analysis - by the oligomer sums method – the giant virus 
Pithovirus sibericum isolate P1084-T, complete genome, 610033 bp,    NCBI 
Reference Sequence: NC_023423.1 
https://www.ncbi.nlm.nih.gov/nuccore/NC_023423.1. All abscissa axes show the 
values n = 1, 2, …, 20. The top row demonstrates that model hyperbolic progressions 
SA/n, ST/n, SC/n, SG/n (red lines) almost completely cover the OS-sequences of real 
values (the ordinate axes show appropriate values). The bottom row show in percent 
slight alternating deviations of real values of the OS-sequences from model values. 
 
 
 

SA = 430752 

 

ST = 427566 

 

SC = 165071 

 

SG = 168302 

 

    
 
Fig. 11.2. The results of the analysis - by the oligomer sums method – the giant virus 
Acanthamoeba castellanii mamavirus strain Hal-V, complete genome, 1191693 bp,    
GenBank: JF801956.1, https://www.ncbi.nlm.nih.gov/nuccore/JF801956.1. The 
explanation of these graphs is identical to the explanation to Fig. 11.1. 
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SA = 471093 

 

ST = 470168 

 

SC = 155796 

 

SG = 161956 

 

    
 
Fig. 11.3. The results of the analysis - by the oligomer sums method – the giant virus 
Megavirus chiliensis, complete genome, 1259197 bp, NCBI Reference Sequence: 
NC_016072.1, https://www.ncbi.nlm.nih.gov/nuccore/NC_016072.1. The explanation 
of these graphs is identical to the explanation to Fig. 11.1. 
 
 

SA = 239749 

 

ST = 233569 

 

SC = 70942 

 

SG = 73193 

 

    
 
Fig. 11.4. The results of the analysis - by the oligomer sums method – the giant virus 
Cafeteria roenbergensis virus BV-PW1, complete genome, 617453 bp,  NCBI 
Reference Sequence: NC_014637.1, 
https://www.ncbi.nlm.nih.gov/nuccore/NC_014637.1. The explanation of these graphs 
is identical to the explanation to Fig. 11.1. 
 
 The results, presented in this Section, show the fulfillment of the hyperbolic 
(harmonic) rule No. 1 for the viruses considered and provide material for comparative 
analysis of different OS-sequences.  
 

11. Analysis of the COVID-19 virus by the oligomer sums method 
 

Let us turn now to the analysis - by the oligomeric sums method - of the COVID-19 
virus, which led to a pandemic. The initial data on its nucleotide sequence was taken 
by the author from the site https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3, 
where the following is written about it: severe acute respiratory syndrome coronavirus 
2 isolate Wuhan-Hu-1, complete genome, GenBank: MN908947.3, LOCUS 
MN908947, 29903 bp ss-RNA linear VRL 18-MAR-2020. 
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Figs. 12.1-12.5 show some results of such an analysis of the virus. 
 

 
SA = 8954 

 

 

 
 

 
 

Fig. 12.1. The graphs for the case of the OS-sequences of n-plets from the class A1-
oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank: 
MN908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis 
represents the values n = 1, 2, 3, …, 20 (in top row) and n = 1, 2, 3, …, 100 (in 
bottom row). Top left: the ordinate axis represents the set of phenomenological total 
amounts ΣA,n,1 of n-plets beginning with the nucleotide A. Top right, and bottom: 
deviations of real OS-sequences ΣA,n,1 from model hyperbolic progressions SA/n = 
8954/n in percentages. 
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Fig. 12.2. The graphs for the case of the OS-sequences of n-plets from the class T1-

oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank: 
MN908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis 
represents the values n = 1, 2, 3, …, 20 (in top row) and n = 1, 2, 3, …, 100 (in 
bottom row). Top left: the ordinate axis represents the set of phenomenological total 
amounts ΣT,n,1 of n-plets beginning with the nucleotide T. Top right, and bottom: 
deviations of the real OS-sequence ΣT,n,1 from the model hyperbolic progression ST/n 
= 9594/n in percentages. 
 
 

SC = 5492

 

 

 
 

 
 

Fig. 12.3. The graphs for the case of the OS-sequences of n-plets from the class С1-
oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank: 
MN908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis 
represents the values n = 1, 2, 3, …, 20 (in top row) and n = 1, 2, 3, …, 100 (in 
bottom row). Top left: the ordinate axis represents the set of phenomenological total 
amounts ΣС,n,1 of n-plets beginning with the nucleotide С. Top right, and bottom: 
deviations of the real OS-sequences ΣС,n,1 from the model hyperbolic progression SС/n 
= 5492/n in percentages. 
 
 
 
 

SG = 5863 
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Fig. 12.4. The graphs for the case of the OS-sequences of n-plets from the class G1-
oligomers of the coronavirus 2 isolate Wuhan-Hu-1, complete genome, GenBank: 
MN908947.3, LOCUS MN908947, 29903 bp. In these graphs, the abscissa axis 
represents the values n = 1, 2, 3, …, 20 (in top row) and n = 1, 2, 3, …, 100 (in 
bottom row). Top left: the ordinate axis represents the set of phenomenological total 
amounts ΣG,n,1 of n-plets beginning with the nucleotide G. Top right, and bottom: 
deviations of the real OS-sequence ΣG,n,1 from the model hyperbolic progression SG/n 
= 5863/n in percentages. 
 

In particular, Figs. 12.1-12.4 show that this virus in its OS-representations has 
under n = 3, 6, 9, ..., 3m such deviations of real values from model values, which 
resemble the triplet-deviations in human genes, which were described above in Figs. 
8.1-8.10.  Perhaps the harmfulness of this virus to humans is related to this similarity. 
It should also be noted that - in the classes of pyrimidines C1- and T1-oligomers (Figs. 
12.2 and 12.3) - these deviations occur in opposite directions in a coordinated manner, 
which indicates a particular consistency in the structure of the nucleotide sequence of 
this virus concerning pyrimidines classes. 

By analogy with Figs. 8.6, 8.9, and 8.14, Fig. 12.5 shows the sequence of 
harmonic mean values of agreed deviations of all four OS-sequences from their model 
harmonic progressions for the case of the coronavirus 2 isolate Wuhan-Hu-1. Two 
cases are shown: for n = 1, 2, …, 20  and n = 1, 2, …, 100. One can see the regular 
rhythmic nature of this general sequence of harmonic mean values, reflecting the 
phenomenon of agreed triplet-deviations under 3m-plets in this coronavirus. 
 

  
 
Fig. 12.5. The sequence of harmonic mean values of agreed deviations of all four  
OS-sequences from their model harmonic progressions in the coronavirus 2 isolate 
Wuhan-Hu-1. The ordinate axes show harmonic mean values. The left and right 
graphs show the cases of n = 1, 2, …, 20  and n = 1, 2, …, 100, which are plotted 
along the abscissа axes. 
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13. DNA epi-chains and the hyperbolic rules for oligomer sums  
 
This Section presents some results of the study of special subsequences of long 

nucleotide sequences in single-stranded DNA by the oligomer sums method. These 
subsequences are termed «DNA epi-chains» [Petoukhov, 2019a]. The author's initial 
results testify that the above described hyperbolic rules of oligomer sums for genomes 
are also fulfielld for these epi-chains; it gives new materials to a known theme of 
fractal-like structures in genetics. 

By definition, in a nucleotide sequence N1 of any DNA strand with sequentially 
numbered nucleotides 1, 2, 3, 4, ... (Fig. 13.1a), epi-chains of different orders n are 
those subsequences that contain only those nucleotides, whose numeration differ from 
each other by natural number n = 1, 2, 3, … . For example, in any single-stranded 
DNA, epi-chains of the second order are two nucleotide subsequences N2/1 and N2/2 in 
which their nucleotide sequence numbers differ by n = 2: the epi-chain N2/1 contains 
nucleotides with odd numerations 1, 3, 5, … (Fig. 13.1b), and the epi-chain N2/2 
contains nucleotides with even numerations 2, 4, 6, ... (Fig. 13.1c). By analogy, epi-
chains of the third order are those three nucleotide subsequences N3/1, N3/2, and N3/3, 
each of which has sequence numbers that differ by n = 3:  these epi-chains contain 
nucleotides with numerations 1, 4, 7, ... or 2, 5, 8, ... or 3, 6, 9, ... , respectively (Figs. 
13.1d-f). The epi-chain of the first order N1 coincides with the nucleotide sequence of 
the DNA strand (Fig. 13.1a). 
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Fig. 13.1. A schematic representation of a single-stranded DNA and its initial epi-
chains of nucleotides, denoted by black circles. a, a sequence N1 of numerated 
nucleotides of the DNA strand. b, an epi-chain of the second order N2/1 beginning 
with nucleotide number 1. с, an epi-chain of the second order N2/2 beginning with 
nucleotide number 2. d, an epi-chain of the third order N3/1 beginning with nucleotide 
number 1. e, an epi-chain of the third order N3/2 beginning with nucleotide number 2. 
f, an epi-chain of the third order N3/3 beginning with nucleotide number 3.  
  

The term "epi-chain" was coined from the Ancient Greek prefix epi-, implying 
features that are "on top of" DNA strands. In any DNA strand, each nucleotide 
belongs to many epi-chains having different orders k. The symbol “N” in the 
designation of DNA epi-chains corresponds to the first letter in the word 
“nucleotides”. In the designation “Nk/m” of single-stranded DNA epi-chains, the 
numerator "k" in the index indicates the order of the epi-chain, and the denominator 
"m" indicates the numeration of the initial nucleotide of this epi-chain along the DNA 
strand (Fig. 13.1a). For example, the symbol N3/2 refers to the epi-chain of the third 
order with the initial nucleotide having the number 2 in the DNA strand: 2-5-8-… 
(Fig. 13.1e). 

Each DNA epi-chain of k-th order (if k = 2, 3, 4, ....) contains k times fewer 
nucleotides than the DNA strand and has its own arrangements of nucleobases A, T, 
C, and G. Each DNA epi-chain of the order k (if k = 2, 3, 4, ....) contains k times fewer 
nucleotides than the DNA strand and has its own arrangements of nucleobases A, T, 
C and G. But unexpectedly, despite on these differences, OS-sequences of the total 
amounts of those n-plets, which start with a nucleotide A, or T, or C, or G, are 
modeled by very similar hyperbolic progressions as in the complete DNA strand and 
as in its epi-chains (at this stage of the research, the author studied OS-representations 
of epi-chains only in cases of epi-chains with relatively small orders k). 

Figs. 13.2-13.6 explains these results in graphical forms by examples of the 
OS-representations of epi-chains N2/1, N3/1, N4/1, N10/1, and N50/1 in the human 
chromosome №1 (the OS-representation of this complete chromosome was presented 
above in Figs. 2.1-2.3). 

 

SA = 33537501 
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Fig. 13.2. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the second order N2/1 (Fig. 13.1b), which 
consists of nucleotides with serial numerations 1-3-5-7-9-… in the DNA sequence of 
the human chromosome № 1. All abscissa axes show the values n = 1, 2, …, 20. The 
top row demonstrates that the model hyperbolic progressions SA/n, ST/n, SC/n, SG/n 
(red lines) almost completely cover the OS-sequences of real total amounts of those n-
plets, which start with a nucleotide A, or T, or C, or G in this epi-chain 
correspondingly (the ordinate axes show appropriate amounts). The bottom row show 
in percent slight alternating deviations of real values of the OS-sequences from model 
values. 
 

SA = 22360413 

 

ST = 22412993 
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SG = 16040889 

 

    
 

Fig. 13.3. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the third order N3/1 (Fig. 13.1d), which 
consists of nucleotides with serial numerations 1-4-7-10-13-… in the DNA sequence 
of the human chromosome № 1. The top row demonstrates that the model hyperbolic 
progressions SA/n, ST/n, SC/n, SG/n (red lines) almost completely cover the             
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, 
or T, or C, or G in this epi-chain correspondingly. The bottom row show in percent 
slight alternating deviations of real values of the OS-sequences from model values. 
All denotations are the same as in Fig. 13.2. 

 

SA = 16768845 

 

   ST = 16808862 

 

SC = 12013624 

 

SG = 12028924 
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Fig. 13.4. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the 4th order N4/1, which consists of 
nucleotides with serial numerations 1-5-9-13-… in the DNA sequence of the human 
chromosome № 1. The top row demonstrates that the model hyperbolic progressions 
SA/n, ST/n, SC/n, SG/n (red lines) almost completely cover the OS-sequences of real 
total amounts of those n-plets, which start with a nucleotide A, or T, or C, or G in this 
epi-chain correspondingly. The bottom row show in percent slight alternating 
deviations of real values of the OS-sequences from model values. All denotations are 
the same as in Fig. 13.2. 

 
 
 
 

SA = 6706672 

 

ST = 6724359 

 

SC = 4803919 

 

SG = 4813156 

 

    

 

Fig. 13.5. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the 10th order N10/1, which consists of 
nucleotides with serial numerations 1-11-21-31-41-… in the DNA sequence of the 
human chromosome № 1. The top row demonstrates that the model hyperbolic 
progressions SA/n, ST/n, SC/n, SG/n (red lines) almost completely cover the              
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, 
or T, or C, or G in this epi-chain correspondingly. The bottom row show in percent 
slight alternating deviations of real values of the OS-sequences from model values. 
All denotations are the same as in Fig. 13.2. 
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SA = 1341408 

 

ST = 1344421 

 

SC = 961518 

 

SG = 962275 

 

    

 

Fig. 13.6. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the 50th order N50/1, which consists of 
nucleotides with serial numerations 1-51-101-151-201-… in the DNA sequence of the 
human chromosome № 1. The top row demonstrates that the model hyperbolic 
progressions SA/n, ST/n, SC/n, SG/n (red lines) almost completely cover the OS-
sequences of real total amounts of those n-plets, which start with a nucleotide A, or T, 
or C, or G in this epi-chain correspondingly. The bottom row show in percent slight 
alternating deviations of real values of the OS-sequences from model values. All 
denotations are the same as in Fig. 13.2. 
 

Figs. 13.2-13.6 show that in these epi-chains, which are sparse subsequences 
of the complete DNA sequence, the same hyperbolic rule No. 1 is fulfilled, which was 
formulated above for complete DNA sequences in eukaryotic and prokaryotic 
genomes. The rule is fulfilled in these epi-chains with the same high accuracy as in 
the complete DNA of the sequence.  

Similar results were obtained by the author in study of epi-chains in the single-
stranded DNA of other analyzed genomes (see some corresponding data in 
[Petoukhov, 2019a]). These results allow formulating the fourth hyperbolic (or 
harmonic) rule of eukaryotic and prokaryotic genomes, which is considered by the 
author as a candidate for the role of a universal genetic rule (it is necessary to further 
investigate the widest variety of genomes to verify a degree of its universality). 

 
The fourth hyperbolic rule (about interrelations of oligomers in epi-chains of 

long DNA sequences): 
• In any nuclear chromosome of eukaryotic genomes and in prokaryotic 

genomes, the hyperbolic rules №№ 1 and 2 are fulfielld not only for the 
complete nucleotide sequences but also for their epi-chains of the order k 
(where k = 2, 3, 4, … is not too large compared to the full length of the 
nucleotide sequence). 

 
Appendix I shows the numeric data represented in the graphs in Figs. 13.2.-13.6. 
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14. The quantum-information model of the oligomer cooperative 
organization in genomes and its confirmed predictions 

 

 The Section is devoted to the connections of the described phenomenological 
hyperbolic (harmonic) rules in genomes with the concepts and mathematical 
formalisms of quantum informatics. 

One of the creators of quantum mechanics P.Jordan in his work on quantum 
biology claimed that life's missing laws were the rules of chance and probability of 
the quantum world [Jordan, 1932; McFadden, Al-Khalili, 2018]. From the standpoint 
of Jordan’s statement, the study of probabilities or frequencies of n-plets (monoplets, 
doublets, triplets, etc.) in long DNA sequences is important for discovering hidden 
biological laws and for developing quantum biology. The phenomenological 
hyperbolic rules about the total amounts of certain oligomers in the genomes 
described above allow us to study their connection with the probability rules of these 
groups of oligomers in the genomes. Let us explain this. 

Till now we considered the total amounts ΣN,n,1 of certain n-plets, which start 
with the first nucleotide N (A, T, С, or G), and we discovered that, in different 
genomes, these amounts correspond to hyperbolic OS-sequences SN/n with a high 
accuracy, where SN refers to the total number of the nucleotide N. The whole 
sequence of nucleotides in a long single-stranded DNA can be considered as a 
sequence of oligomers of a certain length n, whose amount is equal to S/n. Each such 
oligomer starts with one of four nucleotides A, T, C, or G. Therefore the total amount 
S/n of consecutive oligomers of length n in the analyzed DNA sequence is the sum of 
all oligomers of length n starting with A, or T, or C, or G:  
 

                         S/n = ΣA,n,1 + ΣT,n,1 + ΣC,n,1 + ΣG,n,1                              (14.1) 
 

The collective probability (percentage, or frequency) Pn(N1) of all ΣN,n,1 n-plets 
starting with the nucleotide N, relative to the amount S/n (14.1), is determined by the 
expression (14.2):  
 
                       Pn(N1) =  ΣN,n,1/(S/n) ≈ (SN/n)/(S/n) = SN/S = P(N)                      (14.2) 
 
The expression (14.2) shows that the collective probability Pn(N1) is independent of n 
and is approximately equal to the probability (frequency) P(N) = SN/S of the 
nucleotide N in the genomic sequence having S nucleotides.  

For example, the human chromosome №1, which was considered above in 
Section 1 (Figs. 2.1-2.3), has the total amount of nucleotides S = SA+ST+SC+SG = 
67070277 + 67244164 + 48055043 + 48111528 =  230481012. The probability P(A) 
of the nucleotide A is equal to SA/S = 67070277 / 230481012 ≈ 0.2910. From the data 
in Fig. 2.3, one can verify that, in this chromosome, the collective probabilities Pn(A1) 
of total amounts of n-plets (n = 2, 3, …, 20) starting with the nucleotide A are also 
equal to this value P(A) = 0.2910 with a high level of accuracy independently of n. A 
similar situation holds with respect to the nucleotides T, C, and G. 

 
It is also useful to note the opposite: if, for a genome, the phenomenological 

probabilities of n-plets Pn(N1) (where n = 1, 2, 3, …) are initially known, and their 
compliance with the rule - of type P(N) ≈ Pn(N1) - of approximate equality of 
collective probability of n-plets is also known, then connection (14.2) allows us to 
construct a hyperbolic OS-sequence of the sums ΣN,n,1 of n-plets (14.3): 
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                                              ΣN,n,1 = Pn(N1)*S/n                                  (14.3) 
 

This is noted here because the author previously discovered and published 
[Petoukhov, 2018b] the rules of the approximate equality of the collective 
probabilities of n-plets for n = 1, 2, 3,... Given the expressions (14.2) and (14.3), the 
hyperbolic rules of the OS- sequences and these rules for the approximate equality of 
the collective probabilities of n-plets are equivalent. Both of them reflect in different 
languages the oligomeric cooperative organization of genomes. This is useful to note 
because the author has published an effective mathematical model for the rules of 
collective probability, which is obviously applicable also to the above formulated 
hyperbolic rule № 1 [Petoukhov, 2018b; Petoukhov, Petukhova, Svirin, 2019]. 

 One should emphasize the following important aspect of the OS-
representations of genomic sequences. Each nucleotide of a DNA sequence is a 
participant of those sets of its different n-plets (doublets, triplets, etc.), whose total 
amounts are members of OS-sequences of this DNA; in other words, each DNA 
nucleotide makes its small contribution immediately to many members of the OS-
sequences. Figuratively speaking, each DNA nucleotide is "smeared" (or distributed) 
over many members of the DNA OS-sequence (this “smearing” over many members 
of the OS-sequence is also true for each DNA doublet, triplet, etc.). Correspondingly, 
OS-sequences reflect a sort of an interrelation over all n-plets in DNA sequences. Or, 
in other words, thе oligomer sums method represents any long nucleotide sequence as 
a multi-partite (or many-body) system having a cooperative state regarding many its 
interrelated oligomers of different lengths n = 1, 2, 3,...   

This has some analogies with the well-known problem of multi-partite entanglement  
in quantum informatics described, for example, in [Walter, Gross,  Eisert, 2017;  
Horodecki, Horodecki, et al., 2009; Gühne, Tóth, 2009;   Amico, Fazio, et al., 2008].  

Quantum entanglement is the physical phenomenon that occurs when a pair or 
group of particles is generated, interact, or share spatial proximity in a way such that 
the quantum state  of each particle of the pair or group cannot be described 
independently of the state of the others. In	quantum	informatics,	entangled	states	
play	very	important	roles.	The	study	and	use	of	entangled	states	are	one	of	the	
main	problems	of	quantum	computing:	“…entanglement	is	a	key	element	in	effects	
such	 as	 quantum	 teleportation,	 fast	 quantum	 algorithms,	 and	 quantum	 error-
correction.	 It	 is,	 in	 short,	a	resource	of	great	utility	 in	quantum	computation	and	
quantum	 information.	 …	 entangled	 states	 play	 a	 crucial	 role	 in	 quantum	
computation	and	quantum	information”	 [Nielsen,	Chuang,	2010,	p.	XXIII	 	 and	p.	
96].		 

Quantum systems with many degrees of freedom are ubiquitous in nature, 
particularly in the context of condensed matter theory. “It is hence not surprising that 
important classes of states, such as ground states of local Hamiltonians, are multi-
partite entangled states. … Recent years have seen an enormous increase in interest 
at the intersection of quantum information and condensed matter theory that stems 
from the insight that notions of entanglement are crucial in the understanding of 
quantum phases of matter …. Another family of quantum many-body states that can 
be efficiently described is the classes of bosonic and fermionic Gaussian states. They 
both arise naturally in the context of quantum many-body models in condensed matter 
physics, but their bosonic variant is also highly useful in quantum optics when it 
comes to describing systems constituted of several quantum modes of light… . 
Relatedly, multi-partite entangled states serve as resources to a number of important 
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protocols in quantum information theory in which more than two parties come 
together. A prominent example of such a multi-party quantum protocol is quantum 
secret sharing, in which a message is distributed to several parties in such a way that 
no subset is able to read the message, but the entire collection of parties is. …. Multi-
partite entanglement does not only facilitate processing or transmission of 
information but also allow for applications in metrology” [Walter, Gross,  Eisert, 
2017,  pp. 15, 18, 20, 23]. The entanglement refers to the nonlocal properties of 
quantum states that cannot be explained classically. 

Distinguish entanglement of distinguishable and indistinguishable (identical) 
particles. The state of the system K of distinguishable particles in a pure state is 
determined by the state vector |ψ> in the Hilbert space Η, which is the tensor product 
of the subspaces corresponding to each particle: 
 

                                         Η = Η1 ⨂ Η2 ⨂ … ⨂ ΗK                                    (14.3) 
 

If the particles are not entangled, then the state of the system is defined as the tensor 
product of the state vectors |ψ(i)> of the subsystems: 

 

                                         |ψ> = |ψ(1)> ⨂ |ψ (2)> ⨂ … ⨂ |ψ(K)>                          (14.4) 

 
If the vector cannot be expressed in this form (14.4), then they say that the particles 
are quantum entangled. 

The tensor product gives a way of putting separate vector spaces together to 
form larger vector spaces and it is one of the basis instruments in quantum 
informatics. The following quotation speaks about the meaning of the tensor product: 
“This construction is crucial to understanding the quantum mechanics of 
multiparticle systems ” [Nielsen, Chuang, 2010, p. 71]. But above Section 3 described 
that the DNA alphabets of 4 nucleotides, 16 doublets, 64 triplets,…, 4n n-plets, which 
have binary-oppositional systems of molecular traits, are interrelated by the tensor 
product of matrices representing them: these genetic matrices of DNA alphabets are 
members of a single tensor family [G, T; C, A](n) (Fig. 3.1). This fact is one of the 
arguments in favor of the adequacy of the quantum-information approach to the study 
of genetic informatics and living bodies as informational entities. 

One can suppose that in eukaryotic and prokaryotic genomes we have some 
special case of multi-partite entangled states, but not in groups of many particles, but 
in genomic systems of many oligomers. This can be termed as “the genomic 
entanglement” or as “the genomic tetra-entanglement” since genomic sequences 
contain 4 kinds of nucleotides A, T, C, and G. It should be emphasized that the author 
doesn't declare an existence of ordinary physical quantum entanglement in the 
genomes, but only that the mathematical apparatus of the theory of quantum 
informatics is suitable for a modelling the considered genetic sequences. 

Let us turn to the above-mentioned author's model of properties of genomic 
sequences expressed by the expressions (14.2) and (14.3) [Petoukhov, 2018b; 
Petoukhov, Petukhova, Svirin, 2019]. This model is based on the tensor products and 
some other formalisms of quantum informatics and concerns, first of all, the 
hyperbolic rule №1 of the oligomer cooperative organization of genomes. The model 
introduced the notion “genetic qubits" based on different pairs of binary-oppositional 
molecular traits of adenine A, guanine G, cytosine C, and thymine T. Appropriate    
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2n-qubit systems in separable pure states were constructed, where nucleotides A, T, 
C, and G (and also DNA doublets and other n-plets) were represented by appropriate 
computational basis states in Hilbert spaces of corresponding dimensionalities. For 
example, cytosine C was represented as the computational basis state |00> of the       
2-qubit system in the 4-dimensional Hilbert space, thymine T - as the computational 
basis state |01>, guanine G – as the computational basis state |10>, and adenine A - as 
the computational basis state |11> of the same 2-qubit system. Correspondingly,       
16 doublets were represented as 16 computational basis states of the 4-qubit system in 
the 16-dimensional Hilbert space: for example, the doublet CC was represented as the 
computational basis state |0000>,  the doublet CT – as |0001>, …, etc. This model can 
be used for a deeper understanding of the genomic entanglement. 

An effective model should not only explain known phenomenological data but 
also predict unknown data to search them in natural systems. Let us show now that 
the proposed quntum-informational model has predictive power, allowing us to open 
previously unknown properties of genomic DNA sequences. Really, the noted model 
allowed a prediction not only the hyperbolic rule №1 described above but also many 
other non-trivial interrelations in genomic structures. In a limited volume of this 
article, the author can show only a few following brief examples. 

 
About additional confirmations of the model predictions. For example, the 

model predicts the following. Till now we considered OS-sequences, whose members 
are total amounts of n-plets, which start with a certain «attributive» nucleotide, for 
example, with the nucleotide A. In this case, we calculate the total amounts of 
oligomers in the following sets: 4 doublets AT, AC, AG, AA; 16 triplets ATT, ATC, 
ATG, ACC, ….; and so on. But what results arise if one calculates, in the same 
genome, the total amounts in quite other sets of n-plets having the same attributive 
nucleotide A at their second positions, that is the following sets: 4 doublets TA, CA, 
GA, AA; 16 triplets TAT, TAC, TAG, CAC,…; and so on for n = 2, 3, 4,…? And 
what results arise if one calculates, in the same genome,  total amounts in the sets of 
n-plets, which have the same nucleotide at their third positions, that is the following 
sets: 16 triplets TTA, TCA, TGA, CCA, …; 64 tetraplets TTTA, TCTA, TGCA, …; 
and so on for n = 3, 4, 5, …? The quantum-information model predicts that in all such 
cases the resulting OS-sequences will be practically identical to the hyperbolic-like 
OS-sequence of the total amounts of n-plets with the same attributive nucleotide at 
their first position. These model predictions also apply to cases of sets of n-plets, 
which have the same attributive nucleotide at their 4th, 5th, 6th, …, kth positions for  
n = k, k+1, k+2, … (here k is not too large compared to the full length of the genomic 
sequence).  

These model predictions are confirmed by direct calculations of total amounts 
of corresponding sets of n-plets in different genomes. Figs. 14.1 and 14.2  show 
examples of such confirmations by the comparisons of different OS-sequences 
calculated for the human chromosome №1 in three cases of locations of attributive 
nucleotides in its n-plets: 1) at the first position in n-plets (data on the appropriate  
OS-sequences are taken from Fig. 2.3); 2) at the second position; 3) at the third 
position.  

One can see from the shown results that the differences Δ% of the 
corresponding members of these three OS-sequences from each other are less than 
0.1%, that is these OS-sequences are practically identical.  These differences were 
calculated for each n by the formulas Δ% = 100(1 - Pos1/Pos2)% and Δ% =            
100(1 - Pos1/Pos3)% where Pos1, Pos2, and Pos3 refer to values indicated in the rows 
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Pos. 1, Pos. 2, and Pos. 3. Here the results are presented only for n = 2, 3, 4, …, 10 
but similar situations of practical coincidences of the corresponding members of the 
considered OS-sequences are also true for larger n. 

 
 

 
 

Fig. 14.1. The comparison of the OS-sequences of the total amounts of          
n-plets, which have the nucleotide N (A, T, C, or G) at their first position (the row 
“Pos. 1”) and at their second position (the row “Pos. 2”) in the human chromosome 
№1. Δ% shows the percentage of differences between the corresponding total 
amounts of n-plets from each other. The comparison begins with doublets, since there 
is no second position in monoplets. 

 

 
 

Fig. 14.2. The comparison of the OS-sequences of the total amounts of          
n-plets, which have the nucleotide N (A, T, C, or G) at their first position (the row 
“Pos. 1”) and at their third position (the row “Pos. 3”) in the human chromosome №1. 
Δ% shows the percentage of differences of the corresponding total amounts of n-plets 
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from each other. The comparison begins with triplets since there is no third position in 
monoplets and doublets. 
 

These predictions about the oligomer cooperative organization and their 
confirmations in eukaryotic and prokaryotic genomes give a significant extension to 
the hyperbolic rule №1 regarding the hyperbolic-like OS-sequences of the total 
amounts of n-plets, which have the same attributive nucleotide at their kth position 
(not only in their first position). These results and the extended rules additionally 
open up the deep connections of genomic sequences with the harmonic progression 
(2.4) and discover new aspects of the algebraic harmony of living bodies. 

Another large bunch of predictions about genomic sequences is given by the 
quantum-information model for quantitative interrelations of different n-plets, which 
start from the same doublet, or from the same triplet, etc. The model predicts, in 
particular, that the amount S2 of any of 16 doublets NN is algebra-harmonically 
interrelated with the total amounts S3, S4, S5, … of oligomers in the following sets: 4 
triplets, which start with this attributive doublet NN; 16 tetraplets, which start with 
this attributive doublet NN; 64 pentaplets, which start with this attributive doublet 
NN; and so on. This interrelation is again based on the harmonic progression (2.4). 
More precisely, according to the model prediction, the ratios of these total amounts 
S2/S3, S2/S4, S2/S5, … should be correspondingly equal to the ratios of the second 
member 1/2 of the harmonic progression (2.4) to its subsequent members 1/3, 1/4, 
1/5, ... that is to values 3/2, 4/2, 5/2, …. 

Fig. 14.3 presents the confirmation of this model prediction by the comparison 
of the amount S2 of each of 16 doublets to the total amounts S3, S4, S5 of n-plets (n = 
3, 4, 5), which start with this doublet, in the human chromosome №1. 

 

 
DOUBLETS TRIPLETS TETRAPLETS PENTAPLETS S2/S3 S2/S4 S2/S5 

S2 = Σ(AA) S3 = Σ(AAN)4 S4 = Σ(AANN)16 S5 = Σ(AANNN)64 
1.50 2.00 2.50 10952057 7300222 5476855 4381298 

S2 = Σ(AT) S3 = Σ(ATN)4 S4 = Σ(ATNN)16 S5 = Σ(ATNNN)64 
1.50 2.00 2.50 8561194 5706906 4280647 3420561 

S2 = Σ(AC) S3 = Σ(ACN)4 S4 = Σ(ACNN)16 S5 = Σ(ACNNN)64 
1.50 2.00 2.50 5799729 3868541 2899991 2322063 

S2 = Σ(AG) S3 = Σ(AGN)4 S4 = Σ(AGNN)16 S5 = Σ(AGNNN)64 
1.50 2.00 2.50 8224510 5484720 4111320 3289579 

S2 = Σ(TA) S3 = Σ(TAN)4 S4 = Σ(TANN)16 S5 = Σ(TANNN)64 
1.50 2.00 2.50 7274275 4849731 3636741 2909412 

S2 = Σ(TT) S3 = Σ(TTN)4 S4 = Σ(TTNN)16 S5 = Σ(TTNNN)64 
1.50 2.00 2.50 11026157 7346507 5511908 4409900 

S2 = Σ(TC) S3 = Σ(TCN)4 S4 = Σ(TCNN)16 S5 = Σ(TCNNN)64 
1.50 2.00 2.50 6923689 4617788 3461837 2768794 

S2 = Σ(TG) S3 = Σ(TGN)4 S4 = Σ(TGNN)16 S5 = Σ(TGNNN)64 
1.50 2.00 2.50 8396349 5598933 4198342 3357218 

S2 = Σ(CA) S3 = Σ(CAN)4 S4 = Σ(CANN)16 S5 = Σ(CANNN)64 
1.50 2.00 2.50 8382478 5591208 4191829 3354600 

S2 = Σ(CT) S3 = Σ(CTN)4 S4 = Σ(CTNN)16 S5 = Σ(CTNNN)64 
1.50 2.00 2.50 8221421 5477836 4111963 3289510 

S2 = Σ(CC) S3 = Σ(CCN)4 S4 = Σ(CCNN)16 S5 = Σ(CCNNN)64 
1.50 	2.00 2.50 6233384 4153642 3117570 2492824 
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S2 = Σ(CG) S3 = Σ(CGN)4 S4 = Σ(CGNN)16 S5 = Σ(CGNNN)64 
1.50 2.01 2.50 1187593 789995 592235 475262 

S2 = Σ(GA) S3 = Σ(GAN)4 S4 = Σ(GANN)16 S5 = Σ(GANNN)64 
1.50 2.00 2.50 6923938 4612792 3462012 2768171 

S2 = Σ(GT) S3 = Σ(GTN)4 S4 = Σ(GTNN)16 S5 = Σ(GTNNN)64 
1.50 2.00 2.50 5814874 3879880 2906516 2325903 

S2 = Σ(GC) S3 = Σ(GCN)4 S4 = Σ(GCNN)16 S5 = Σ(GCNNN)64 
1.50 2.00 2.50 5073325 3381454 2536422 2032200 

S2 = Σ(GG) S3 = Σ(GGN)4 S4 = Σ(GGNN)16 S5 = Σ(GGNNN)64 
1.50 2.00 2.50 6245451 4166742 3123944 2498784 

 

Fig. 14.3.  The comparison of total amounts S2 = Σ(NN) of each of 16 doublets 
NN to the total amounts S3  of 4 triplets, S4  of 16 tetraplets, and  S5 of 64 pentaplets, 
which start with such attributive doublet NN, is shown for the human chromosome 
№1. The left part of the table indicates the values of the corresponding total amounts. 
The right part contains appropriate values of the ratios S2/S3, S2/S4, and S2/S5, which 
are equal to the same magnitudes 1.5, 2.0, and 2.5 for the cases of all 16 doublets. 
Here N refers to any of nucleotides A, T, C, and G.  

 

The rows in the left part of Fig. 14.3 shows very different numeric series of 
total amounts, which are individual in each of rows. But the right part shows that in 
each row its amounts are interrelated identically based on the numeric series of the 
ratios 1.5, 2.0, and 2.5, which serves here as a general invariant for the cases of all 16 
doublets. But this sequence of ratios exists in the harmonic progression (2.4): 1, 1/2, 
1/3, 1/4, 1/5, … , where the ratios of its second member 1/2 to its third, fourth and 
fifth members (that is, 1/3, 1/4, and 1/5) give this series 3/2, 4/2, and 5/2.  Similar 
results are true for all other human chromosomes and for all those genomes, which 
were analyzed by the author. 

The model predicts similarly the following numeric interconnections in the 
complete genomic sequences: 

• The amount S3 of any of 64 triplets NNN is algebra-harmonically interrelated 
with the total amounts S4, S5, S6, … of oligomers in the following sets: 64 
tetraplets, which start with this attributive triplet NNN; 256 pentaplets, which 
start with this attributive triplet NNN; 1024 six-plets, which start with this 
attributive triplet NNN;…. The ratios of these total amounts S3/S4, S3/S5, 
S3/S6, … should be correspondingly equal to the ratios of the third member 1/3 
of the harmonic progression (2.4) to its subsequent members 1/4, 1/5, 1/6, …, 
that is to values 4/3, 5/3, 6/3, … 

• The amount S4 of any of 256 tetraplets NNNN is algebra-harmonically 
interrelated with the total amounts of S5, S6, S7, … of oligomers in the 
following sets: 256 pentaplets, which start with this attributive tetraplet 
NNNN; 1024 six-plets, which start with this attributive tetraplets NNNN; 
4906 seven-plets, which start with this attributive tetraplets NNNN,… . The 
rations of these total amounts S4/S5, S4/S6, S4/S7,… should be correspondingly 
equal to the ratios of the fourth member 1/4 of the harmonic progression (2.4) 
to its subsequent members 1/5, 1/6, 1/7, …, that is to values 5/4, 6/4, 7/4, … 

• And so on (the length of attributive oligomers NN…N in the considered sets 
of n-plets should not be too large compared to the full length of the genomic 
sequence). 
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Similar model predictions exist not only for the listed cases, when the 

considered attributive nucleotides, or attributive doublets, or attributive triplets, etc. 
occupy the first positions in n-plets of the considered sets, but also for cases when 
these attributive nucleotides or oligomers occupy there the second positions, or the 
third positions, etc (see corresponding rules about collective probabilities in oligomer 
tetra-groups for cases of locations of attributive oligomers in different positions of n-
plets in the article [Petoukhov,  2018b]. 

Most of the long list of predictions, stemming from this quantum information 
model, is still awaiting their checking through analysis of various genomes. So far, 
the author has conducted only a relatively small number of checks of such predictions 
and has not found a single case of a phenomenological refutation of these predictions. 
The author will be grateful to those members of the scientific community who will 
find in the full-length sequences of different genomes such cases where these model 
predictions are not fulfilled.  

These and other confirmed predictions of the model enlarge significantly the 
list of hyperbolic rules in genomes and lead to new tools and opportunities to study 
genetic structures. The obtained phenomenological data and the set of confirmed 
predictions of the quantum-information model testify that the eukaryotic and 
prokaryotic genomes represent a regular algebraic fractal-like net with important 
participation of the harmonic progression (2.4) in interconnections of its parts. This 
allows us to say about the algebraic harmony in living bodies. In theoretical biology, 
the quantum-information model has appeared, which allows one to predict with high 
accuracy a large number of quantitative interconnections between different kinds and 
sets of oligomers in eukaryotic and prokaryotic genomes. 

 
       15. Regarding the application of the oligomer sums method to long protein  
             sequences  
 
     Till now we considered applications of the oligomer sums method to the analysis 
of long single-stranded DNA sequences of nucleotides. Such DNA sequences consist 
of 4 kinds of nucleotides, and corresponding 4 equivalency classes of A1-, T1-, C1-, 
G1-oligomers are analyzed. This Section discusses opportunities to apply this method 
for the similar revealing of possible algebra-harmonic features of primary structures 
of sequences of 20 amino acids in long proteins.  
     Each long sequence of amino acids (for example, ArgSerThrGlyPheLysLeuSer 
MetAla...) can be represented either as a sequence of monomers (Arg-Ser-Thr-Gly-
Phe-Lys-Leu-Ser-Met-Ala-...), or as a sequence of amino acid doublets (ArgSer-
ThrGly-PheLys-LeuSer-MetAla-...), or as a sequence of amino acid triplets 
(ArgSerThr-GlyPheLys-LeuSerMet-... ),  and so on. Analyzing above long DNA 
sequences of nucleotides, which consist of 4 kinds of nucleotides A, T, C, and G, we 
considered 4 equivalency classes of A1-, T1-, C1-, G1-oligomers. By analogy, in the 
case of sequences of 20 kinds of amino acids, we will analyze 20 equivalency classes, 
each of which is defined by corresponding amino acid and combines all oligomers, 
which start with this amino acid. For example, the amino acid Ala defines the 
equivalency class of Ala1-oligomers, which includes all n-plets starting with this 
amino acid: the set of Ala1-doublets contains all 20 doublets, which start with the Ala 
(AlaAla, AlaArg, AlaAsn, …, Ala Cys); the set of Ala1-triplets contains all 400 
triplets, which start with the Ala (AlaAlaAla, AlaAla Arg, …., AlaCysCys), and so 
on. 
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     The application of the oligomer sums method to the analysis of any long amino 
acid sequence and their 20 classes of the oligomer equivalency is as follows (by 
analogy with the above-described application of the method to analyze long 
nucleotide sequences and their 4 classes of the oligomer equivalency): 

• For any of the 20 classes of the oligomer equivalency, the total amount Σ of its 
defining amino acid and total amounts of all those n-plets (n = 2, 3, 4, ...), that 
have this acid in their first position (or in other fixed position), are calculated;  

• The sequence of these phenomenological amounts is compared with the model 
hyperbolic sequence Σ/n of this equivalency class, where n = 1, 2, 3, … 

 
Let us explain the proposed application of the OS-method by an example of the 

analysis of the primary amino acid sequence of the protein Titin, which is one of the 
longest proteins. Titin is important in the contraction of striated muscle fibers and is 
the third most abundant protein in the muscle (after myosin and actin). Below some 
results of the author's analysis of the human protein Titin by the OS-method are 
presented. Fig. 15.1 shows 20 graphs demonstrating the OS-sequences for each of 20 
amino acids combined in the single general amino acid sequence of the Titin. Each of 
these 20 graphs presents data for one of the kinds of amino acids and shows number Σ 
of this amino acid in Titin and also two sequences: one of them (in blue) corresponds 
to the sequence of the real total amounts of those n-plets, which start with this amino 
acid, and the second sequence (in red) corresponds to the model hyperbolic sequence 
Σ/n (here n = 1, 2, 3,…, 10).  
 

 
ΣAla = 2026 

 
ΣArg = 1623 

 
ΣAsn = 1080 

 
ΣAsp = 1678 

 
ΣVal = 3120 

 
ΣHis = 463 

 
ΣGly = 2023 

 
ΣGln = 893 

 
ΣGlu = 3078 

 
ΣIle = 2002 

 
ΣLeu =2030 

 
ΣLys = 2878 

 
ΣMet = 384 

 
ΣPro = 2463 

 
ΣSer = 2376 

 
ΣTyr = 978 
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ΣThr = 2485 

 
ΣTrp = 462 

 
ΣPhe = 883 

 
ΣCys = 498 

 
Fig. 15.1. Graphs of analysis results of the human protein Titin by the oligomer sums 
method for each of 20 equivalency classes, which are defined by its 20 kinds of amino 
acids. Each graph shows a sequence (in blue) of real total amounts of n-plets, which 
start with this amino acid, and also a model hyperbolic sequence Σ/n (in red), where Σ 
refers to a number of this amino acid (n = 1, 2,…, 10). The abscissa axes show the 
values n; the ordinate axes show total amounts of the corresponding n-plets, which 
start with this amino acid. Initial data on this protein are taken on the site 
https://www.ncbi.nlm.nih.gov/protein/ACN81321.1. 
 
 One can see from Fig. 15.1 that, in the protein Titin, for each of all 20 amino 
acids its sequence (in blue) of phenomenological values of total amounts of those n-
plets, which start with this amino acid, approximately coincides with the 
corresponding model hyperbolic sequence Σ/n (in red) or slightly fluctuates around it. 
In the considered case of Titin, the accuracy of the coincidence of the sequences of 
real and model values is lower than in the case of genomes described above. This 
seems to be due to the relatively short length of the titin amino acid sequence 
compared to the lengths of genomic nucleotide sequences. The graphs in the figure 
show that the largest deviations of the sequences of real values from sequences of 
model values occur in cases of amino acids, whose number is minimal: the number of 
amino acids His is 463, Met - 384, Trp - 462, Cys - 498. Moreover, the deviations of 
the real values of oligomer sums from model values are relatively small for small 
values n = 2, 3, but with an increase in the length of oligomers at n = 4, 5, ..., 10, these 
deviations can increase (the number of corresponding n-plets decreases with 
increasing n). 

Fig. 15.2 gives examples of real and model numeric values for the classes 
Ala1- and Arg1-oligomers from the first graphs in Fig. 15.1. 
 

n 1 2 3 4 5 6 7 8 9 10 
Ala           
Real 2026 1016 698 506 394 343 287 261 232 206 
Model 2026 1013 675 506.5 405 338 289 253 225 203 
Δ% -0.3 -3.4 0.1 2.8 -1.6 0.8 -3.1 -3.1 -1.7 -0.3 
Arg           
Real 1623 777 564 379 346 254 234 177 192 170 

Model 1623 812 541 406 325 271 232 203 180 162 
Δ% 0 4.3 -4.3 6.6 -6.6 6.1 -0.9 12.8 -6.5 -4.7 

 
Fig. 15.2. Examples of numeric data about OS-sequences concerning two equivalency 
classes of Ala1-oligomers and Arg1-oligomers in the human protein Titin. Graphic 
presentations of corresponding OS-sequences are shown in Fig. 15.1 at the very top. 
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The study of the amino acid sequences of long proteins by this OS-method 

should be continued to allow comparative analysis of various proteins.  
 
 

    16. Hyperbolic rules in phonetic sequences of long Russian literary texts  
           revealed by the oligomer sums method  
 

Leading experts in the field of structural linguistics have long believed that 
languages of human dialogue were formed not by random processes but by a 
continuation of genetic language or, are, at least, closely connected with genetic 
language, suggesting the compelling possibility that all organisms may utilize their 
genetic code in communication mechanisms. Analogies between systems of genetic 
and linguistic information are of wide and important scientific interest. Such direction 
of thoughts touches on the fundamental issues of intellectual activity and suggests that 
the principles of informational activity of the brain, reflected in human speech, did not 
arise from an empty place, but are a continuation of the principles of organization of 
genetic informatics. The Section is devoted to deep structural analogies between 
genomic nucleotide sequences and the phonetic features of long literary Russian texts 
related to the binary-oppositional phonetic structure of the Russian alphabet. These 
new analogies are connected with the described above hyperbolic rules and the 
harmonic progression (2.4). 

One should note here the works by Roman Jakobson, one of the most famous 
linguistics experts and an author of an in-depth theory of binary phonetic oppositions 
in human languages [Jakobson, 1987, 1999;  Jakobson, Fant, Halle, 1951; Jakobson, 
Halle, 1971; Jakobson, Waugh, 2002; Holenstein, 1975]. Jointly with F. Jacob, Nobel 
Prize winner in molecular genetics, and with other linguistic specialists holding the 
same views, Jakobson proposed that genetic language is the structural basis of 
linguistic languages [Jacob et al., 1968; Jakobson, 1985].  

According to Jakobson, all relations among linguistic phonemes are decomposed 
into a series of binary oppositions of elementary differential attributes (or traits). By 
analogy, the set of the four nucleotides (“letters” of DNA texts) of the genetic 
alphabet contains the binary sub-alphabets, which allow creating new mathematical 
models in molecular genetics [Petoukhov, 2017, 2018a]. As Jakobson wrote, the 
genetic code system is the basic simulator, which underlies all verbal codes of human 
languages. “The heredity in itself is the fundamental form of communications … 
Perhaps, the bases of language structures, which are imposed on molecular 
communications, have been constructed by its structural principles directly” 
[Jakobson, 1985, p. 396]. These questions had arisen to Jakobson as a consequence of 
his long-term research into the connections between linguistics, biology, and physics. 
Such connections were considered at a united seminar of physicists and linguists, 
organized by Niels Bohr and Roman Jakobson, jointly, at the Massachusetts Institute 
of Technology. 

“Jakobson reveals distinctly a binary opposition of sound attributes as underlying 
each system of phonemes... The subject of phonology has changed by him: the 
phonology considered phonemes (as the main subject) earlier, but now Jakobson has 
offered that distinctive attributes should be considered as “quantums” (or elementary 
units of language)… Jakobson was interested especially in the general analogies of 
language structures with the genetic code, and he considered these analogies as 
indubitable” [Ivanov, 1985].  
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This connection between linguistics and the genetic code interests many 
researchers, and some even perceive linguistic language as a living organism. In his 
book, “Linguistic Genetics”, Makovsky says: "A look at language as a living 
organism, subject to the natural laws of nature, ascends to deep antiquity … Research 
of nature, of disposition and of reasons of isomorphism between genetic and linguistic 
regularities is one of the most important fundamental problems for linguistics of our 
time" [Makovsky, 1992]. 

Wanting to advance in the study of the relationship between genetic language 
and linguistic languages, let's concentrate on Jakobson's fundamental theory about a 
binary opposition of sound attributes as underlying each system of phonemes and 
about distinctive attributes considered as “quantums” (or elementary units of various 
languages). In the Russian alphabet, a one-to-one correspondence between the letters 
and the phonemes exists. For this reason, analyzing long literary Russian texts, 
researches can study their phonetic structures (only a few human languages have in 
their alphabets a one-to-one correspondence between the letters and the phonemes). 
Below the author presents the results of his studying the phonetic structures of long 
Russian literary texts by L.N.Tolstoy, F.M.Dostoevsky, A.S.Pushkin, and others.  

The DNA alphabet has the two-level binary-oppositional structure: it contains 
two sub-alphabets of purines (A, G) and pyrimidines (T, C). Each sub-alphabet 
dichotomously divides into two sub-sub-alphabets according to the signs of 2 or 3 
hydrogen bonds in the complementary nucleotide pairs A-T and C-G (Fig. 16.1, at 
left). 

The Russian alphabet, like the DNA alphabet, is phonetically based on binary 
oppositions and divided into sub-alphabets of vowels and consonants. In turn, the sub-
alphabet of vowels dichotomously divided into sub-sub-alphabets of long and iotated 
vowels, and the sub-alphabet of consonants - into sub-sub-alphabets of voiced and 
deaf consonants (Fig. 16.1, at right). The soft sign “ь” and the hard sign “ъ” in the 
Russian alphabet do not convey any sound, and therefore they are not taken into 
account in its phonologic structure. 

 

  
    Ă          Ť                   Ğ                Č 

 
Fig. 16.1. The two-level binary-oppositional structure of the DNA alphabet of 

4 nucleotides A, T, C, and G (at left) and the similar two-level binary-oppositional 
structure of the Russian alphabet, consisting of 4 phonetic classes denoted by symbols 
Ă, Ť, Č, and Ğ (at right), are shown. 

 
As is well known, the Russian alphabet according to the phonetic features of 

its shown 31 phonetic letters consists of the following four classes of the phonetic 
equivalency of letters (Fig. 16.1, at right): 
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- The first class of the phonetic equivalency combines all letters, which are long 
vowels (а, и, о, у, ы, э). Any letter from this class will be denoted by the 
general symbol Ă, which we will call the phonetic monomer representing the 
first class; 

- The second class of the phonetic equivalency combines all letters, which are 
short (iotated) vowels (e, ё, ю, я). Any letter from this class will be denoted by 
the general symbol Ť, which we will call the phonetic monomer representing 
the second class; 

- The third class of the phonetic equivalency combines all letters, which are 
deaf consonants (п, ф, к, т, ш, с, х, ц, ч, щ). Any letter from this class will be 
denoted by the general symbol Ğ, which we will call the phonetic monomer 
representing the third class; 

- The fourth class of the phonetic equivalency combines all letters, which are 
voiced consonants (б, в, г, д, ж, з, й, л, м, н, р). Any letter from this class will 
be denoted by the general symbol Č, which we will call the phonetic monomer 
representing the fourth class. 

Leaving only these letters from the 4 classes in a studied literary text and 
replacing each letter by its appropriate symbol Ă, or Ť, or Ğ, or Č, we represent the 
literary text into a sequence of the phonetic monomers, for example, ČĂĞĞŤČŤĂĞ... 
We will call such sequence «the phonetic literary sequence" (or simply "the phonetic 
sequence") representing this literary text.  

Below the author shows the results of studying the phonetic sequences, which 
represent long Russian literary texts, by the same oligomer sums method that was 
used above to study genomic sequences of nucleotides. These results reveal deep 
analogies of long genomic sequences and long phonetic literary sequences from the 
point of view of regularly interrelated oligomeric sums. Both of them are similarly 
related to the harmonic progression (2.4) and obey  corresponding hyperbolic rules. 
Both of them show themselves as holistic cooperative essences, whose parts are 
interrelated by ratios of the algebraic harmony.  

 
- 16.1. The analysis of the Russian novel «Anna Karenina» by L.N. Tolstoy 
 

Let us start with an analysis of the Russian novel “Anna Karenina” by Leo Tolstoy 
(the original literary text was accessed from http://samolit.com/books/62/). This novel 
contains 1309047 phonetic letters from Fig. 16.1. Its phonetic literary sequence can be 
considered as a chain of 4 phonetic monomers Ă, Ť, Ğ, and Č; or as a chain of 16 
phonetic doublets ĂĂ, ĂŤ, ĂĞ, …, ČČ; or as a chain of 64 phonetic triplets ĂĂĂ, 
ĂĂŤ, ĂĂĞ, ….; and so on. By analogy the analysis of genomic nucleotide sequences 
by the oligomer sums method (see Section 2), this phonetic literary sequence can be 
also analyzed by this method using the following steps: 
 

• Firstly, one should calculate phenomenological quantities SĂ, SŤ, SČ, and SĞ 
of phonetic monomers Ă, Ť, Ğ, and Č in the considered phonetic literature 
sequence. In the phonetic sequence of the novel «Anna Karenina» the 
following quantities exist: SĂ = 419490,  SŤ = 154800, SČ = 452716, and       
SĞ = 282041. 

• Secondly, to construct the phonetic oligomer sums sequences (or briefly, 
phonetic OS-sequences), one should calculate the total amounts ΣĂ,n,1, ΣŤ,n,1, 
ΣČ,n,1, and ΣĞ,n,1 of phonetic n-plets in equivalence classes of Ă1-oligomers, 
Ť1-oligomers, Č1-oligomers, and Ğ1-oligomers at n = 1, 2, 3, 4, … (here, for 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2020                   doi:10.20944/preprints202005.0471.v2

https://doi.org/10.20944/preprints202005.0471.v2


example, the symbol  ΣĂ,3,1 refers to the total amount of triplets, which start 
with the phonetic monomer Ă). These total amounts regarding each of the 
classes are members of the appropriate phonetic OS-sequence of the class.  

• At the final step, such phenomenological amounts ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and 
ΣĞ,n,1 are compared with their model values from the corresponding hyperbolic 
sequence SĂ/n, or SŤ/n, or SČ, or SĞ/n. 

Fig. 16.2 shows sequences of amounts ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and ΣĞ,n,1 of all phonetic 
monomers, doublets, and other n-plets (at n =1, 2, 3, …, 10), representing the 
phonetic sequence of this famous Russian novel. The real amounts of phonetic n-plets 
are compared with their appropriate model values SĂ/n, or SŤ/n, or SČ, or SĞ/n. 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 419490 209616 138897 104787 83861 69392 59842 52350 46457 41852 
SĂ/n 419490 209745 139830 104872.5 83898 69915 59927 52436 46610 41949 
Δ% 0.00 0.06 0.67 0.08 0.04 0.75 0.14 0.16 0.33 0.23 
Ť           

Real 154800 77480 51959 38958 31065 26088 22123 19525 17203 15467 
SŤ/n 154800 77400 51600 38700 30960 25800 22114 19350 17200 15480 
Δ% 0.00 -0.10 -0.70 -0.67 -0.34 -1.12 -0.04 -0.90 -0.02 0.08 
Č           

Real 452716 226508 151043 113054 90448 75588 64753 56664 50397 45424 
SČ/n 452716 226358 150905 113179 90543 75453 64674 56590 50302 45272 
Δ% 0.00 -0.07 -0.09 0.11 0.11 -0.18 -0.12 -0.13 -0.19 -0.34 
Ğ           

Real 282041 140919 94450 70462 56435 47106 40288 35091 31392 28161 
SĞ/n 282041 141021 94014 70510 56408 47007 40292 35255 31338 28204 
Δ% 0 0.07 -0.46 0.07 -0.05 -0.21 0.01 0.47 -0.17 0.15 

 
Fig. 16.2. Real values and model values SĂ/n, or SŤ/n, or SČ, or SĞ/n (in red) in 

the case of the oligomer sums representations of the phonetic sequence of the Russian 
novel «Anna Karenina» by L. Tolstoy. Symbols Ă, Ť, Ğ, and Č refer to the phonetic 
monomers (Fig. 16.1, at right). The symbol Δ% denotes deviations of real values from 
model values in percent (the model values are taken as 100%). 

 
One can see in Fig. 16.2 that the deviations of real values ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and 

ΣĞ,n,1 of the phonetic oligomeric sums - from their model values in the corresponding 
hyperbolic sequences SĂ/n, or SŤ/n, or SČ, or SĞ/n - are small and lie within one 
percent. Thus, the deviations in the phonetic representations of the Russian text of the 
novel "Anna Karenina" have the same order of smallness as the deviations in the 
nucleotide sequences of eukaryotic and prokaryotic genomes shown above in Figs. 
2.3, 2.4, 4.1, 5.1, 6.1, 7.1, 9.1, 10.1-10.8.  In other words, long genomic nucleotide 
sequences and long phonetic sequences of this Russian novel are structurally akin and 
obey the similar hyperbolic rules related to the harmonic progression (2.4). This holds 
not only for the named Russian novel but also for other Russian long texts, whose 
phonetic literary sequences were analyzed by the oligomer sums method as it is 
described below. This gives evidence in favor of the deep algebra-harmonic relation 
of the phonetic structurization of the Russian language to the structurization of 
eukaryotic and prokaryotic genomes. 
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The results of the analyses of phonetic representations of the Russian texts of not 
only the novel «Anna Karenina» but also of other long Russian literary works by L.N. 
Tolstoy, F.M. Dostoevsky, and A.S. Pushkin, which are described below, testify in 
favor of the following hyperbolic phonetic rule about interrelations of oligomer sums 
in phonetic representations of such Russian works: 

The first hyperbolic phonetic rule:  
• For any of the phonetic classes of Ă1-oligomers, Ť1-oligomers, Č1-oligomers, 

and Ğ1-oligomers in the phonetic representations of long Russian literary 
texts, the total amounts ΣŇ,n,1(n) of their phonetic n-plets, corresponding 
different n, are interrelated each other through the hyperbolic expression ΣŇ,n,1 
≈ SŇ/n with a high level of accuracy (here Ň denotes any of 4 phonetic 
monomers Ă, Ť, Ğ, and Č; SŇ denotes the number of the phonetic monomer 
Ň; n = 1, 2, 3, 4, … is not too large compared to the full length of the phonetic 
sequence). The phenomenological points with coordinates [n, ΣŇ,n,1] 
practically lie on the hyperbola in its points HŇ,1 = SŇ/n. 

This phonetic hyperbolic rule for long Russian texts is analogical to the first 
hyperbolic rule of eukaryotic and prokaryotic genomes formulated above in Section 2. 
Fig. 16.3 shows graphically the phonetic oligomer sums sequences ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, 
whose numeric data are given in Fig. 16.2. 

 

 
 

 Fig. 16.3. Graphs of the hyperbolic-like sequences of the phonetic oligomer 
sum ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and ΣĞ,n,1, which are shown numerically in Fig. 16.2 and 
which practically coincide with the model hyperbolic sequences SĂ/n (in blue), SŤ/n 
(in red), SČ,(in brown), and SĞ/n (in green). 
 

Let us continue to list those deep algebra-structural analogies between 
phonetic sequences of long Russian texts and nucleotide sequences of eukaryotic and 
prokaryotic genomes, which are revealed by the oligomer sums method. As shown 
above in Figs. 13.1-13.6, the genomic DNA sequences have a fractal-like structure 
revealed by the oligomer sums method at the analysis of their epi-chains, i.e. 
shortened subsequences consisting of every second nucleotide, or every third 
nucleotide, or of every fourth nucleotide, and so on. By analogy, you can numerate 
members in the phonetic sequence Ď1 of any Russian text by numbers 1, 2, 3, ... in 
their sequent order. Further, you can consider its phonetic epi-chains that is shortened 
subsequences consisting of every second member (the epi-chains Ď2/1, Ď2/2), or every 
third member (the epi-chains Ď3/1, Ď3/2, Ď3/3), or of every fourth member, and so on 
(Fig. 16. 4). In the designation “Ďk/m” of such phonetic epi-chains, the numerator "k" 
indicates the order of the phonetic epi-chain, and the denominator "m" indicates the 
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numeration of the initial member of this epi-chain in the holistic phonetic sequence 
Ď1. Fig. 16.4 shows examples of phonetic epi-chains Ď2/1, Ď3/1, Ď4/1, and of their 
compositions.  
 
Ď1 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Ď2/1 : 1  3  5  7  9  11  13  15  17 
Ď3/1 : 1   4   7   10   13   16  
Ď4/1 : 1    5    9    13    17 
  

Fig. 16.4. Compositions of the phonetic epi-chains Ď2/1, Ď3/1, Ď4/1 compared to 
the composition of the full phonetic sequence Ď1. 
 
 Figs. 16.5-16.7 show numeric and graphical results of the analysis of these 
phonetic epi-chains Ď2/1, Ď3/1, Ď4/1 in the phonetic representation of the Russian novel 
«Anna Karenina» by the oligomer sums method. The full phonetic sequence Ď1 
contains 1309047 phonetic letters; its epi-chains Ď2/1, Ď3/1, Ď4/1 contains 
correspondingly 654524, 436349, and 327262 phonetic letters. They all differ from 
each other not only in the number of members but also in the sequence of different 
phonetic oligomers in them. But one can see in 16.5-16.7 that in all these phonetic 
epi-chains Ď2/1, Ď3/1, Ď4/1 the sequences of oligomeric sums are hyperbolic sequences 
with high accuracy. From this point of view, the considered phonetic epi-chains Ď2/1, 
Ď3/1, Ď4/1 are practically no different from the full phonetic chain Ď1(Figs. 16.2 and 
16.3); the hyperbolic rule of phonetic sequences, associated with harmonic 
progression (2.4), is for them a general algebraic rule or a general algebraic invariant.  
  Similar results are valid for other epi-chains Ď2/2, Ď3/2, Ď3/3, Ď4/2, Ď4/3, Ď4/4,  
and not only for the novel «Anna Karenina», but also for all other long Russian texts 
by L.N. Tolstoy, F.M. Dostoevsky, and A.S. Pushkin, analyzed by the author and 
presented below. These results testify in favor of the following hyperbolic phonetic 
rule, which is an analoq of the fourth hyperbolic rule of eukaryotic and prokaryotic 
genomes formulated above in Section 13. 
 

 The second hyperbolic phonetic rule (about interrelations of phonetic 
oligomer sums in epi-chains of phonetic sequences of long Russian literary texts): 

• In any of the phonetic sequences, representing long Russian literary texts, the 
first hyperbolic phonetic rule is fulfilled not only for oligomer sums of the full 
phonetic sequence but also for its epi-chains of the order k (where k = 2, 3, 4, 
… is not too large compared to the length of the full phonetic sequence). 

 
 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 209617 104788 69392 52351 41852 34802 29866 26297 23331 20924 
SĂ/n 209617 104809 69872 52404.25 41923 34936 29945 26202 23291 20962 
Δ% 0 0.02 0.69 0.10 0.17 0.38 0.26 -0.36 -0.17 0.18 
Ť           

Real 77480 38958 26088 19525 15467 13172 11037 9705 8591 7789 
SŤ/n 77480 38740 25827 19370 15496 12913 11069 9685 8609 7748 
Δ% 0 -0.56 -1.01 -0.80 0.19 -2.00 0.29 -0.21 0.21 -0.53 
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Č           
Real 226508 113054 75588 56664 45424 37776 32434 28240 25258 22579 
SČ/n 226508 113254 75503 56627 45302 37751 32358 28314 25168 22651 
Δ% 0.00 0.18 -0.11 -0.07 -0.27 -0.07 -0.23 0.26 -0.36 0.32 
Ğ           

Real 140919 70462 47106 35091 28161 23337 20166 17573 15544 14160 
SĞ/n 140919 70460 46973 35230 28184 23487 20131 17615 15658 14092 
Δ% 0 0.00 -0.28 0.39 0.08 0.64 -0.17 0.24 0.73 -0.48 

 

 
 
Fig. 16.5. Numeric and graphical representations of the series of the phonetic 

oligomer sum ΣĂ,n,1 (in blue), ΣŤ,n,1 (in red), ΣČ,n,1 (in brown), and ΣĞ,n,1 (in green) in 
the epi-chain Ď2/1 of the second order, which is the subsequence of the phonetic 
sequence Ď1 representing the Russian text of the novel «Anna Karenina» by 
L.N.Tolstoy. 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 138897 69392 46457 34802 27650 23331 19807 17255 15585 13876 
SĂ/n 138897 69449 46299 34724.25 27779 23150 19842 17362 15433 13890 
Δ% 0 0.08 -0.34 -0.22 0.47 -0.78 0.18 0.62 -0.98 0.10 
Ť           

Real 51959 26088 17203 13172 10526 8591 7517 6657 5746 5257 
SŤ/n 51959 25979.5 17320 12990 10392 8660 7423 6495 5773 5196 
Δ% 0 -0.42 0.67 -1.40 -1.29 0.79 -1.27 -2.50 0.47 -1.18 
Č           

Real 151043 75588 50397 37776 30103 25258 21573 19009 16772 15059 
SČ/n 151043 75521.5 50348 37761 30209 25174 21578 18880 16783 15104 
Δ% 0.00 -0.09 -0.10 -0.04 0.35 -0.33 0.02 -0.68 0.06 0.30 
Ğ           

Real 94450 47106 31392 23337 18990 15544 13438 11622 10380 9442 
SĞ/n 94450 47225 31483 23613 18890 15742 13493 11806 10494 9445 
Δ% 0.00 0.25 0.29 1.17 -0.53 1.26 0.41 1.56 1.09 0.03 
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  Fig. 16.6. Numeric and graphical representations of the series of phonetic oligomer 
sum ΣĂ,n,1 (in blue), ΣŤ,n,1 (in red), ΣČ,n,1 (in brown), and ΣĞ,n,1 (in green) in the epi-
chain Ď3/1 of the third order, which is the subsequence of the phonetic sequence Ď1 
representing the Russian text of the novel «Anna Karenina» by L.N.Tolstoy. 
 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 104788 52351 34802 26297 20924 17255 14877 13008 11765 10485 
SĂ/n 104788 52394 34929 26197 20958 17465 14970 13099 11643 10479 
Δ% 0 0.08 0.36 -0.38 0.16 1.20 0.62 0.69 -1.05 -0.06 
Ť           

Real 38958 19525 13172 9705 7789 6657 5600 4894 4322 3930 
SŤ/n 38958 19479 12986 9740 7792 6493 5565 4870 4329 3896 
Δ% 0.00 -0.24 -1.43 0.35 0.03 -2.53 -0.62 -0.50 0.15 -0.88 
Č           

Real 113054 56664 37776 28240 22579 19009 16157 14237 12645 11253 
SČ/n 113054 56527 37685 28264 22611 18842 16151 14132 12562 11305 
Δ% 0 -0.24 -0.24 0.08 0.14 -0.88 -0.04 -0.74 -0.66 0.46 
Ğ           

Real 70462 35091 23337 17573 14160 11622 10117 8768 7630 7058 
SĞ/n 70462 35231 23487 17616 14092 11744 10066 8808 7829 7046 
Δ% 0 0.40 0.64 0.24 -0.48 1.04 -0.51 0.45 2.54 -0.17 

 

 
 
Fig. 16.7. Numeric and graphical representations of the series of phonetic 

oligomer sum ΣĂ,n,1 (in blue), ΣŤ,n,1 (in red), ΣČ,n,1 (in brown), and ΣĞ,n,1 (in green) in 
the epi-chain Ď4/1 of the fourth order, which is the subsequence of the phonetic 
sequence Ď1 representing the Russian text of the novel «Anna Karenina» by 
L.N.Tolstoy. 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2020                   doi:10.20944/preprints202005.0471.v2

https://doi.org/10.20944/preprints202005.0471.v2


  Many other deep analogies exist between oligomer sums organization of long 
genomic nucleotide sequences and phonetic sequences, presenting long Russian 
literary texts. But various connections of long genomic sequences with the harmonic 
progression (2.4) and appropriate hyperbolic rules were predicted by the mentioned 
quantum-information model [Petoukhov, 2018b; Petoukhov, Petukhova, Svirin,  
2019], as it was noted above in Section 14. Correspondingly one should think that a 
similar quantum-information model is appropriate also for phonetic sequences, 
presenting long Russian literary texts. This idea is correct: many predictions of this 
author’s model hold also for oligomer structures of the phonetic sequences 
representing long Russian literary texts. The author should here emphasize that he is 
talking about the similarity between the mathematical apparatus of quantum 
informatics and the mathematical apparatus of the cooperative organization of the 
considered long genomic and phonetic sequences, but not at all about physical 
quantum entanglement in these genomic and phonetic sequences.  

One should remark that for reformulating the genomic quantum-information 
model into the phonetic-oriented quantum-information model, the computational basis 
states of the considered phonetic systems should be connected not with the binary-
oppositional indicators (or molecular attributes) of the DNA bases A, T, C, and G, but 
with binary-oppositional elementary phonetic attributes, which were noted by R. 
Jakobson as the basis of all relations among linguistic phonemes (see the beginnings 
of this Section). 
 Let us show an example of the model predictions regarding the phonetic 
sequence representing the Russian novel „Anna Karenina”. It was shown above in 
Section 14, that one of the model predictions concerns quantitative interrelations of 
different n-plets, which start from the same doublet, or from the same triplet, etc. The 
model predicted, in particular, that the amount S2 of any of 16 doublets NN was 
algebra-harmonically interrelated with the total amounts S3, S4, S5, … of nucleotide 
oligomers in the following sets: 4 triplets, which start with this attributive doublet 
NN; 16 tetraplets, which start with this attributive doublet NN; 64 pentaplets, which 
start with this attributive doublet NN; and so on. This interrelation is again based on 
the harmonic progression (2.4). More precisely, according to the model prediction, the 
ratios of these total amounts S2/S3, S2/S4, S2/S5, … should be correspondingly equal to 
the ratios of the second member 1/2 of the harmonic progression (2.4) to its 
subsequent members 1/3, 1/4, 1/5, ... that is, equal to values 3/2, 4/2, 5/2, …. 
 Regarding the phonetic sequences of long Russian literary texts, this model 
predicts correspondingly that the amount S2 of any of 16 phonetic doublets ŇŇ was 
algebra-harmonically interrelated with the total amounts S3, S4, S5, … of phonetic 
oligomers in the following sets: 4 triplets, which start with this attributive phonetic 
doublet ŇŇ; 16 tetraplets, which start with this attributive doublet ŇŇ; 64 pentaplets, 
which start with this attributive doublet ŇŇ; and so on. This interrelation is again 
based on the harmonic progression (2.4). More precisely, according to the model 
prediction, the ratios of these total amounts S2/S3, S2/S4, S2/S5, … should be 
correspondingly equal to the ratios of the second member 1/2 of the harmonic 
progression (2.4) to its subsequent members 1/3, 1/4, 1/5, ... that is, to be equal to 
values 3/2, 4/2, 5/2, …. 
 The analysis of the phonetic sequence representing the text of the novel “Anna 
Karenina” completely confirmed this prediction as Fig. 16.8 shows by analogy with 
similar results for the genomic sequence in the human chromosome №1 (Fig. 14.3.). 
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DOUBLETS TRIPLETS TETRAPLETS PENTAPLETS S2/S3 S2/S4 S2/S5 
S2 = Σ(ĂĂ) S3 = Σ(ĂĂŇ)4 S4 = Σ(ĂĂŇŇ)16 S5 = Σ(ĂĂŇŇŇ)64 

1.5 2.0 2.5 13387 8918 6718 5435 
S2 = Σ(ĂŤ) S3 = Σ(ĂŤŇ)4 S4 = Σ(ĂŤŇŇ)16 S5 = Σ(ĂŤŇŇŇ)64 

1.5 2.0 2.5 14447 9449 7307 5758 
S2 = Σ(ĂČ) S3 = Σ(ĂČŇ)4 S4 = Σ(ĂČŇŇ)16 S5 = Σ(ĂČŇŇŇ)64 

1.5 2.0 2.5 116714 77660 58438 46642 
S2 = Σ(ĂĞ) S3 = Σ(ĂĞŇ)4 S4 = Σ(ĂĞŇŇ)16 S5 = Σ(ĂĞŇŇŇ)64 

1.5 2.0 2.5 65068 42870 32324 26026 
S2 = Σ(ŤĂ) S3 = Σ(ŤĂŇ)4 S4 = Σ(ŤĂŇŇ)16 S5 = Σ(ŤĂŇŇŇ)64 

1.5 2.0 2.5 5842 3932 2929 2297 
S2 = Σ(ŤŤ) S3 = Σ(ŤŤŇ)4 S4 = Σ(ŤŤŇŇ)16 S5 = Σ(ŤŤŇŇŇ)64 

1.5 2.0 2.5       3627 2480 1820 1464 
S2 = Σ(ŤČ) S3 = Σ(ŤČN)4 S4 = Σ(ŤČŇŇ)16 S5 = Σ(ŤČŇŇŇ)64 

1.5 2.0 2.5 44390 29806 22271 17877 
S2 = Σ(ŤĞ) S3 = Σ(ŤĞŇ)4 S4 = Σ(ŤĞŇŇ)16 S5 = Σ(ŤĞŇŇŇ)64 

1.5 2.0 2.5 23621 15741 11938 9427 
S2 = Σ(ČĂ) S3 = Σ(ČĂŇ)4 S4 = Σ(ČĂŇŇ)16 S5 = Σ(ČĂŇŇŇ)64 

1.5 2.0 2.5 126038 84179 62831 50474 
S2 = Σ(ČŤ) S3 = Σ(ČŤŇ)4 S4 = Σ(ČŤŇŇ)16 S5 = Σ(ČŤŇŇŇ)64 

1.5 2.0 2.5 38951 26030 19477 15672 
S2 = Σ(ČČ) S3 = Σ(ČČŇ)4 S4 = Σ(ČČŇŇ)16 S5 = Σ(ČČŇŇŇ)64 

1.5 2.0 2.5 37438 24916 18755 14719 
S2 = Σ(ČĞ) S3 = Σ(ČĞŇ)4 S4 = Σ(ČĞŇŇ)16 S5 = Σ(ČĞŇŇŇ)64 

1.5 2.0 2.5 24081 15918 11991 9583 
S2 = Σ(ĞĂ) S3 = Σ(ĞĂŇ)4 S4 = Σ(ĞĂŇŇ)16 S5 = Σ(ĞĂŇŇŇ)64 

1.5 2.0 2.5 64606 43428 32482 25899 
S2 = Σ(ĞŤ) S3 = Σ(ĞŤŇ)4 S4 = Σ(ĞŤŇŇ)16 S5 = Σ(ĞŤŇŇŇ)64 

1.5 2.0 2.5 20295 13692 10085 8214 
S2 = Σ(ĞČ) S3 = Σ(ĞČŇ)4 S4 = Σ(ĞČŇŇ)16 S5 = Σ(ĞČŇŇŇ)64 

1.5 2.0 2.5 27666 18370 13717 11045 
S2 = Σ(ĞĞ) S3 = Σ(ĞĞŇ)4 S4 = Σ(ĞĞŇŇ)16 S5 = Σ(ĞĞŇŇŇ)64 

1.5 2.0 2.5 28352 18960 14178 11277 
 

Fig. 16.8. The confirmation of the quantum-information model prediction by 
the comparison of the amount S2 of each of 16 phonetic doublets to the total amounts 
S3, S4, S5 of phonetic n-plets (n = 3, 4, 5), which start with this doublet, in the 
phonetic sequence, representing the Russian novel «Anna Karenina» by L.Tolstoy. 
Tabular data present total sums of each kind of phonetic oligomers: for example, the 
total sum S4 = Σ(ĂĂŇŇ)16 of all 16 phonetic tetraplets, which start with the phonetic 
doublet ĂĂ, is equal to 6718. The symbol Ň denotes any of phonetic monomers Ă, Ť, 
Ğ, and Č. 
 
 Numeric data in Fig. 16.8 show that really - for each of the considered 16 
phonetic doublets - the ratios of the total amounts S2/S3, S2/S4, S2/S5, … are equal to 
the ratios of the second member 1/2 of the harmonic progression (2.4) to its 
subsequent members 1/3, 1/4, 1/5, that is, to be equal to values 3/2, 4/2, 5/2. Similar 
results hold for the phonetic sequences representing other long Russian literary texts 
by L.N.Tolstoy, F.M.Dostoevsky, A.S.Pushkin noted below. 

The idea of a possible connection of intellectual brain activity with the 
principles of quantum mechanics and quantum informatics has long worried 
researchers. For example, an article [Bruza, Kitto, Nelson, McEvoy, 2009] presents a 
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quantum model of a word association system with word entanglement in human 
memory.  

For such researches about possible connections of brain activities with the 
mathematics of quantum mechanics, the oligomer sums method, algebra-harmonic 
hyperbolic rules, and the mentioned author's quantum-information model give new 
effective research instruments and important phenomenological materials. In 
particular, they can be useful for developing new approaches to the creation of 
artificial intelligence, maximal resembling features of intellectual systems of 
eukaryotes and prokaryotes including humans. As is known, all living bodies have 
inborn intellectual-like systems providing solutions to many vital tasks: food search, 
rescue from predators, coordinated movements of body elements, etc. These inborn 
abilities for intellectual activities are connected with structural features of the genetic 
system. 
 

- 16.2. The analysis of the Russian novel «War and Peace» by L.N. Tolstoy 
 
 Now we present results of the analysis of the phonetic sequence representing 
the Russian text of Tolstoy's novel «War and Peace», Book I, by the oligomer sums 
method. This text contains 1068479 phonetic letters, and it was taken from the web 
site http://samolit.com/books/64/. These results are shown in Figs. 16.9–16.13, and 
they are similar to the described results of the analysis of the novel “Anna Karenina” 
in all essential aspects. 

Fig. 16.9 shows - in numeric and graphical forms - phonetic sequences of amounts 
ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and ΣĞ,n,1 of all appropriate phonetic monomers, doublets, and 
other n-plets (at n =1, 2, 3, …, 10), representing the phonetic sequence of this famous 
Russian novel. The real amounts of phonetic n-plets are compared with their 
appropriate model values SĂ/n, or SŤ/n, or SČ, or SĞ/n. 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă 342653 170997 114314 85601 68755 56889 48985 42864 38177 34182 

Real 342653 171327 114218 85663.25 68531 57109 48950 42832 38073 34265 
SĂ/n 0 0.19 -0.08 0.07 -0.33 0.38 -0.07 -0.08 -0.27 0.24 
Δ% 342653 170997 114314 85601 68755 56889 48985 42864 38177 34182 
Ť           

Real 120471 60122 40309 30177 23900 20240 17225 15015 13336 12013 
SŤ/n 120471 60235.5 40157 30118 24094 20079 17210 15059 13386 12047 
Δ% 0.00 0.19 -0.38 -0.20 0.81 -0.80 -0.09 0.29 0.37 0.28 
Č           

Real 375043 187598 125137 93713 75431 62716 53710 46871 41595 37645 
SČ/n 375043 187521.5 125014 93761 75009 62507 53578 46880 41671 37504 
Δ% 0.00 -0.04 -0.10 0.05 -0.56 -0.33 -0.25 0.02 0.18 -0.38 
Ğ           

Real 230312 115522 76399 57628 45609 38234 32719 28809 25611 23007 
SĞ/n 230312 115156 76771 57578 46062 38385 32902 28789 25590 23031 
Δ% 0 -0.32 0.48 -0.09 0.98 0.39 0.56 -0.07 -0.08 0.11 
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Fig. 16.9. Numeric and graphical representations of the sequences of phonetic 
oligomer sum ΣĂ,n,1 (in blue), ΣŤ,n,1 (in red), ΣČ,n,1 (in brown), and ΣĞ,n,1 (in green) in 
the full phonetic sequence Ď1, representing the Russian text of the novel «War and 
Peace». 
  
 Figs. 16.10-16.12 show results of the analysis of the phonetic epi-chains Ď2/1, 
Ď3/1, Ď4/1 (see Fig. 16.4) in the phonetic representation of this Russian novel by the 
oligomer sums method (by analogy with Figs. 16.5-16.7 for the novel «Anna 
Karenina»). 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 170998 85602 56890 42865 34183 28519 24392 21411 19093 17109 
SĂ/n 170998 85499 56999 42749.5 34200 28500 24428 21375 19000 17100 
Δ% 0 -0.12 0.19 -0.27 0.05 -0.07 0.15 -0.17 -0.49 -0.05 
Ť           

Real 60122 30177 20240 15015 12013 10187 8586 7395 6716 6062 
SŤ/n 60122 30061 20041 15031 12024 10020 8589 7515 6680 6012 
Δ% 0.00 -0.39 -0.99 0.10 0.09 -1.66 0.03 1.60 -0.54 -0.83 
Č           

Real 187598 93713 62716 46871 37645 31384 26860 23460 20791 18696 
SČ/n 187598 93799 62533 46900 37520 31266 26800 23450 20844 18760 
Δ% 0 0.09 -0.29 0.06 -0.33 -0.38 -0.22 -0.04 0.26 0.34 
Ğ           

Real 115522 57628 38234 28809 23007 18950 16482 14514 12760 11557 
SĞ/n 115522 57761 38507 28881 23104 19254 16503 14440 12836 11552 
Δ% 0 0.23 0.71 0.25 0.42 1.58 0.13 -0.51 0.59 -0.04 
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Fig. 16.10. Numeric and graphical representations of the sequences of 
phonetic oligomer sums ΣĂ,n,1 (in blue), ΣŤ,n,1 (in red), ΣČ,n,1 (in brown), and ΣĞ,n,1 (in 
green) in the epi-chain Ď2/1 of the second order, which is the subsequence of the full 
phonetic sequence Ď1 representing the Russian text of the novel «War and Peace». 
 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 114314 56890 38177 28519 22911 19093 16399 14318 12629 11273 
SĂ/n 114314 57157 38105 28578.5 22863 19052 16331 14289 12702 11431 
Δ% 0 0.47 -0.19 0.21 -0.21 -0.21 -0.42 -0.20 0.57 1.39 
Ť           

Real 40309 20240 13336 10187 7981 6716 5818 5028 4480 4044 
SŤ/n 40309 20154.5 13436 10077 8062 6718 5758 5039 4479 4031 
Δ% 0 -0.42 0.75 -1.09 1.00 0.03 -1.03 0.21 -0.03 -0.32 
Č           

Real 125138 62716 41595 31384 25065 20791 17834 15700 13906 12643 
SČ/n 125138 62569 41713 31285 25028 20856 17877 15642 13904 12514 
Δ% 0 -0.23 0.28 -0.32 -0.15 0.31 0.24 -0.37 -0.01 -1.03 
Ğ           

Real 76399 38234 25612 18950 15275 12760 10829 9474 8558 7656 
SĞ/n 76399 38200 25466 19100 15280 12733 10914 9550 8489 7640 
Δ% 0 -0.09 -0.57 0.78 0.03 -0.21 0.78 0.79 -0.82 -0.21 

 

 
 
Fig. 16.11. Numeric and graphical representations of the sequences of 

phonetic oligomer sums ΣĂ,n,1 (in blue), ΣŤ,n,1 (in red), ΣČ,n,1 (in brown), and ΣĞ,n,1 (in 
green) in the epi-chain Ď3/1 of the third order, which is the subsequence of the full 
phonetic sequence Ď1 representing the Russian text of the novel «War and Peace». 

 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 85602 42865 28519 21411 17109 14318 12241 10651 9586 8534 
SĂ/n 85602 42801 28534 21400.5 17120 14267 12229 10700 9511 8560 
Δ% 0.00 -0.15 0.05 -0.05 0.07 -0.36 -0.10 0.46 -0.79 0.31 
Ť           

Real 30177 15015 10187 7395 6062 5028 4231 3700 3378 3012 
SŤ/n 30177 15088.5 10059 7544 6035 5030 4311 3772 3353 3018 
Δ% 0 0.49 -1.27 1.98 -0.44 0.03 1.86 1.91 -0.75 0.19 
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Č           
Real 93713 46871 31384 23460 18696 15700 13377 11812 10336 9381 
SČ/n 93713 46856.5 31238 23428 18743 15619 13388 11714 10413 9371 
Δ% 0 -0.03 -0.47 -0.14 0.25 -0.52 0.08 -0.84 0.74 -0.10 
Ğ           

Real 57628 28809 18950 14514 11557 9474 8311 7227 6380 5785 
SĞ/n 57628 28814 19209 14407 11526 9605 8233 7204 6403 5763 
Δ% 0 0.02 1.35 -0.74 -0.27 1.36 -0.95 -0.33 0.36 -0.39 

 

 
 
Fig. 16.12. Numeric and graphical representations of the sequences of 

phonetic oligomer sums ΣĂ,n,1 (in blue), ΣŤ,n,1 (in red), ΣČ,n,1 (in brown), and ΣĞ,n,1 (in 
green) in the epi-chain Ď4/1 of the fourth order, which is the subsequence of the full 
phonetic sequence Ď1 representing the Russian text of the novel «War and Peace». 

 
Now let us return to the prediction of the quantum-information model that the 

amount S2 of any of 16 phonetic doublets ŇŇ was algebra-harmonically interrelated 
on the basis of the harmonic progression (2.4) with the total amounts S3, S4, S5, … of 
phonetic oligomers in the following sets: 4 triplets, which start with this attributive 
phonetic doublet ŇŇ; 16 tetraplets, which start with this attributive doublet ŇŇ; 64 
pentaplets, which start with this attributive doublet ŇŇ; and so on. More precisely, 
according to the model prediction, the ratios of these total amounts S2/S3, S2/S4, S2/S5, 
… should be correspondingly equal to the ratios of the second member 1/2 of the 
harmonic progression (2.4) to its subsequent members 1/3, 1/4, 1/5, ... that is, equal to 
values 3/2, 4/2, 5/2, … .  

Numeric data in Fig. 16.13 show that - for each of the considered 16 phonetic 
doublets - the ratios of the total amounts S2/S3, S2/S4, S2/S5 are equal to the ratios of 
the second member 1/2 of the harmonic progression (2.4) to its subsequent members 
1/3, 1/4, 1/5, that is, they are equal to values 3/2, 4/2, 5/2 in the case of the novel 
“War and Piece” (by analogy with the novel “Anna Karenina” in Fig. 16.8).  

 

DOUBLETS TRIPLETS TETRAPLETS PENTAPLETS S2/S3 S2/S4 S2/S5 
S2 = Σ(ĂĂ) S3 = Σ(ĂĂŇ)4 S4 = Σ(ĂĂŇŇ)16 S5 = Σ(ĂĂŇŇŇ)64 

1.5 2.0 2.5 9899 6683 5040 3988 
S2 = Σ(ĂŤ) S3 = Σ(ĂŤŇ)4 S4 = Σ(ĂŤŇŇ)16 S5 = Σ(ĂŤŇŇŇ)64 

1.5 2.0 2.5 10528 7175 5340 5340 
S2 = Σ(ĂČ) S3 = Σ(ĂČŇ)4 S4 = Σ(ĂČŇŇ)16 S5 = Σ(ĂČŇŇŇ)64 

1.5 2.0 2.5 95923 63779 47943 38202 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2020                   doi:10.20944/preprints202005.0471.v2

https://doi.org/10.20944/preprints202005.0471.v2


S2 = Σ(ĂĞ) S3 = Σ(ĂĞŇ)4 S4 = Σ(ĂĞŇŇ)16 S5 = Σ(ĂĞŇŇŇ)64 
1.5 2.0 2.5 54647 36677 27278 22284 

S2 = Σ(ŤĂ) S3 = Σ(ŤĂŇ)4 S4 = Σ(ŤĂŇŇ)16 S5 = Σ(ŤĂŇŇŇ)64 
1.5 2.0 2.5 4236 2833 2109 1677 

S2 = Σ(ŤŤ) S3 = Σ(ŤŤŇ)4 S4 = Σ(ŤŤŇŇ)16 S5 = Σ(ŤŤŇŇŇ)64 
1.5 2.0 2.5 2430 1595 1197 969 

S2 = Σ(ŤČ) S3 = Σ(ŤČN)4 S4 = Σ(ŤČŇŇ)16 S5 = Σ(ŤČŇŇŇ)64 
1.5 2.0 2.5 36093 24260 18135 14208 

S2 = Σ(ŤĞ) S3 = Σ(ŤĞŇ)4 S4 = Σ(ŤĞŇŇ)16 S5 = Σ(ŤĞŇŇŇ)64 
1.5 2.0 2.5 17363 11621 8736 7046 

S2 = Σ(ČĂ) S3 = Σ(ČĂŇ)4 S4 = Σ(ČĂŇŇ)16 S5 = Σ(ČĂŇŇŇ)64 
1.5 2.0 2.5 103846 69288 51766 41636 

S2 = Σ(ČŤ) S3 = Σ(ČŤŇ)4 S4 = Σ(ČŤŇŇ)16 S5 = Σ(ČŤŇŇŇ)64 
1.5 2.0 2.5 31266 20667 15675 12615 

S2 = Σ(ČČ) S3 = Σ(ČČŇ)4 S4 = Σ(ČČŇŇ)16 S5 = Σ(ČČŇŇŇ)64 
1.5 2.0 2.5 31923 21436 16023 12826 

S2 = Σ(ČĞ) S3 = Σ(ČĞŇ)4 S4 = Σ(ČĞŇŇ)16 S5 = Σ(ČĞŇŇŇ)64 
1.5 2.0 2.5 20563 13746 10249 8354 

S2 = Σ(ĞĂ) S3 = Σ(ĞĂŇ)4 S4 = Σ(ĞĂŇŇ)16 S5 = Σ(ĞĂŇŇŇ)64 
1.5 2.0 2.5 53674 35082 26823 21174 

S2 = Σ(ĞŤ) S3 = Σ(ĞŤŇ)4 S4 = Σ(ĞŤŇŇ)16 S5 = Σ(ĞŤŇŇŇ)64 
1.5 2.0 2.5 16125 10744 8100 6381 

S2 = Σ(ĞČ) S3 = Σ(ĞČŇ)4 S4 = Σ(ĞČŇŇ)16 S5 = Σ(ĞČŇŇŇ)64 
1.5 2.0 2.5 23506 15788 11713 9274 

S2 = Σ(ĞĞ) S3 = Σ(ĞĞŇ)4 S4 = Σ(ĞĞŇŇ)16 S5 = Σ(ĞĞŇŇŇ)64 
1.5 2.0 2.5 22217 14785 10992 8780 

 

Fig. 16.13. The confirmation of the quantum-information model prediction by 
the comparison of the amount S2 of each of 16 phonetic doublets to the total amounts 
S3, S4, S5 of phonetic n-plets (n = 3, 4, 5), which start with this doublet, in the 
phonetic sequence, representing the Russian novel «War and Peace». Tabular data 
present total sums of each kind of phonetic oligomers: for example, the total sum S4 = 
Σ(ĂĂŇŇ)16 of all 16 phonetic tetraplets, which start with the phonetic doublet ĂĂ, is 
equal to 5040. The symbol Ň denotes any of phonetic monomers Ă, Ť, Ğ, and Č. 
 

Similar results were received at such an analysis of other famous long Russian 
literary texts, some of which are presented in the next subsection. 
 

- 16.3. The analysis of Russian novels by F.M. Dostoevsky and A.S.Pushkin 
 

This subsection gives some results of the analysis - by the oligomer sums method 
- of the phonetic sequences representing a few long Russian literary works by F.M. 
Dostoevsky and A.S. Pushkin, as well as the Russian text of the Bible. Here, for 
brevity, the author shows only the initial data of the analysis of the named phonetic 
sequences without presenting many additional results that are similar to those shown 
above for Tolstoy’s novels in Figs. 16.5-16.8, 16.10-16.13. 

Fig. 16.14 gives numeric and graphic results of the named analysis of the phonetic 
sequence of the Russian text of the novel "Crime and Punishment" by Dostoevsky. 
The text contains 818099 phonetic letters, and it was taken from 
http://samolit.com/books/57/ . 
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n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 258836 129490 86219 64656 51620 43194 36976 32292 28640 25813 
SĂ/n 258836 129418 86279 64709 51767 43139 36977 32355 28760 25884 
Δ% 0.00 -0.06 0.07 0.08 0.28 -0.13 0.00 0.19 0.42 0.27 
Ť           

Real 95575 47872 31935 24008 19116 15893 13569 12172 10699 9561 
SŤ/n 95575 47787.5 31858 23894 19115 15929 13654 11947 10619 9558 
Δ% 0 -0.18 -0.24 -0.48 -0.01 0.23 0.62 -1.88 -0.75 -0.04 
Č           

Real 279404 139555 93348 69630 56055 46631 40085 34827 30937 28035 
SČ/n 279404 139702 93135 69851 55881 46567 39915 34926 31045 27940 
Δ% 0 0.11 -0.23 0.32 -0.31 -0.14 -0.43 0.28 0.35 -0.34 
Ğ           

Real 184284 92132 61197 46230 36828 30631 26241 22971 20623 18400 
SĞ/n 184284 92142 61428 46071 36857 30714 26326 23036 20476 18428 
Δ% 0 0.01 0.38 -0.35 0.08 0.27 0.32 0.28 -0.72 0.15 

 

 
 
Fig. 16.14.  The table shows real values and model values SĂ/n, or SŤ/n, or SČ, or SĞ/n 
(in red) in the case of the oligomer sums representations of the phonetic sequence of 
the Russian novel «Crime and Punishment» by F. Dostoevsky. Symbols Ă, Ť, Ğ, and 
Č refer to the phonetic monomers (Fig. 16.1, at right). The symbol Δ% denotes 
deviations of real values from model values in percent (the model values are taken as 
100%). Graphs show the hyperbolic-like sequences of the phonetic oligomer sums 
ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and ΣĞ,n,1, which practically coincide with the model hyperbolic 
sequences SĂ/n (in blue), SŤ/n (in red), SČ,(in brown), and SĞ/n (in green). 
 
 Fig. 16.15 gives numeric and graphic results of the named analysis of the 
phonetic sequence of the Russian text of the novel "Idiot" by Dostoevsky. The text 
contains 1001129 phonetic letters; it was taken from http://samolit.com/books/56/. 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 310571 155325 103572 77647 61814 51742 44356 38820 34503 30853 
SĂ/n 310571 155286 103524 77643 62114 51762 44367 38821 34508 31057 
Δ% 0 -0.03 -0.05 -0.01 0.48 0.04 0.03 0.00 0.01 0.66 
Ť           

Real 122981 61401 41058 30847 24641 20461 17617 15426 13705 12389 
SŤ/n 122981 61490.5 40994 30745 24596 20497 17569 15373 13665 12298 
Δ% 0 0.15 -0.16 -0.33 -0.18 0.17 -0.27 -0.35 -0.30 -0.74 
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Č           
Real 344200 172087 114890 86125 69127 57432 49224 42913 38386 34655 
SČ/n 344200 172100 114733 86050 68840 57367 49171 43025 38244 34420 
Δ% 0 0.01 -0.14 -0.09 -0.42 -0.11 -0.11 0.26 -0.37 -0.68 
Ğ           

Real 223377 111751 74189 55663 44643 37219 31821 27982 24642 22215 
SĞ/n 223377 111689 74459 55844 44675 37230 31911 27922 24820 22338 
Δ% 0 -0.06 0.36 0.32 0.07 0.03 0.28 -0.21 0.72 0.55 

 

 
 

Fig. 16.5. The table shows real values and model values SĂ/n, or SŤ/n, or SČ, 
or SĞ/n (in red) in the case of the oligomer sums representations of the phonetic 
sequence of the Russian novel «Idiot» by F. Dostoevsky. Symbols Ă, Ť, Ğ, and Č 
refer to the phonetic monomers (Fig. 16.1, at right). The symbol Δ% denotes 
deviations of real values from model values in percent (the model values are taken as 
100%). Graphs show the hyperbolic-like sequences of the phonetic oligomer sums 
ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and ΣĞ,n,1, which practically coincide with the model hyperbolic 
sequences SĂ/n (in blue), SŤ/n (in red), SČ,(in brown), and SĞ/n (in green). 
 

Fig. 16.16 gives numeric and graphic results of the named analysis of the 
phonetic sequence of the Russian text of the novel "Evgenij Onegin" by A.S. Pushkin. 
The text is relatively short and contains 107146 phonetic letters; it was taken from 
http://tululu.org/b57798/. 
 

n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 31725 15781 10683 7862 6436 5304 4561 3849 3536 3182 
SĂ/n 31725 15863 10575 7931.25 6345 5288 4532 3966 3525 3173 
Δ% 0 0.51 -1.02 0.87 -1.43 -0.31 -0.64 2.94 -0.31 -0.30 
Ť           

Real 12602 6380 4207 3211 2483 2114 1799 1599 1392 1263 
SŤ/n 12602 6301 4201 3151 2520 2100 1800 1575 1400 1260 
Δ% 0.00 -1.25 -0.15 -1.92 1.48 -0.65 0.07 -1.51 0.59 -0.22 
Č           

Real 40301 20225 13348 10126 8062 6680 5728 5105 4441 4065 
SČ/n 40301 20150.5 13434 10075 8060 6717 5757 5038 4478 4030 
Δ% 0.00 -0.37 0.64 -0.50 -0.02 0.55 0.51 -1.34 0.82 -0.87 
Ğ           

Real 22518 11187 7477 5587 4448 3759 3218 2840 2536 2204 
SĞ/n 22518 11259 7506 5630 4504 3753 3217 2815 2502 2252 
Δ% 0.00 0.64 0.39 0.75 1.23 -0.16 -0.04 -0.90 -1.36 2.12 
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Fig. 16.16. The table shows real values and model values SĂ/n, or SŤ/n, or SČ, 

or SĞ/n (in red) in the case of the oligomer sums representations of the phonetic 
sequence of the Russian novel «Evgenij Onegin» by A.S. Pushkin. Symbols Ă, Ť, Ğ, 
and Č refer to the phonetic monomers (Fig. 16.1, at right). The symbol Δ% denotes 
deviations of real values from model values in percent (the model values are taken as 
100%). Graphs show the hyperbolic-like sequences of the phonetic oligomer sums 
ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, and ΣĞ,n,1, which practically coincide with the model hyperbolic 
sequences SĂ/n (in blue), SŤ/n (in red), SČ,(in brown), and SĞ/n (in green). 
 

Fig. 16.17 gives numeric and graphic results of the named analysis of the 
phonetic sequence of the Russian text of the novel "Dubrovsky" by A.S. Pushkin. The 
text contains 106891 phonetic letters; it was taken from http://samolit.com/books/61/ . 

 
n 1 2 3 4 5 6 7 8 9 10 
Ă           

Real 34341 17293 11514 8570 6953 5735 4889 4238 3814 3493 
SĂ/n 34341 17171 11447 8585.25 6868 5724 4906 4293 3816 3434 
Δ% 0 -0.71 -0.59 0.18 -1.23 -0.20 0.34 1.27 0.04 -1.72 
Ť           

Real 12135 6071 4050 3085 2367 2065 1720 1540 1374 1148 
SŤ/n 12135 6067.5 4045 3034 2427 2023 1734 1517 1348 1214 
Δ% 0.00 -0.06 -0.12 -1.69 2.47 -2.10 0.78 -1.52 -1.90 5.40 
Č           

Real 37714 18772 12456 9436 7557 6200 5471 4778 4178 3766 
SČ/n 37714 18857 12571 9429 7543 6286 5388 4714 4190 3771 
Δ% 0 0.45 0.92 -0.08 -0.19 1.36 -1.55 -1.35 0.30 0.14 
Ğ           

Real 22701 11309 7610 5631 4501 3815 3190 2805 2510 2282 
SĞ/n 22701 11351 7567 5675 4540 3784 3243 2838 2522 2270 
Δ% 0 0.37 -0.57 0.78 0.86 -0.83 1.63 1.15 0.49 -0.52 
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Fig. 16.17. The table shows real values and model values SĂ/n, or SŤ/n, or SČ, or SĞ/n 
(in red) in the case of the oligomer sums representations of the phonetic sequence of 
the Russian novel «Dubrovsky» by A.S. Pushkin. Symbols Ă, Ť, Ğ, and Č refer to the 
phonetic monomers (Fig. 16.1, at right). The symbol Δ% denotes deviations of real 
values from model values in percent (the model values are taken as 100%). Graphs 
show the hyperbolic-like sequences of the phonetic oligomer sums ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, 
and ΣĞ,n,1, which practically coincide with the model hyperbolic sequences SĂ/n (in 
blue), SŤ/n (in red), SČ,(in brown), and SĞ/n (in green). 
 

Fig. 16.18 gives numeric and graphic results of the named analysis of the 
phonetic sequence of the Russian text of the Bible. The text contains 3122489 phonetic 
letters; it was taken from http://petoukhov.com/bible.zip. 
 
 

n 1 2 3 4 5 6 7 8 9 10 

Ă           
Real 1026290 513013 342965 256527 205099 171465 146474 128448 114178 102399 
SĂ/n 1026290 513145 342097 256572.5 205258 171048 146613 128286 114032 102629 
Δ% 0 0.03 -0.25 0.02 0.08 -0.24 0.09 -0.13 -0.13 0.22 

Ť           
Real 371375 185303 123591 92719 74407 61771 53044 46033 41276 37149 
SŤ/n 371375 185688 123792 92844 74275 61896 53054 46422 41264 37138 
Δ% 0 0.21 0.16 0.13 -0.18 0.20 0.02 0.84 -0.03 -0.03 

Č           
Real 1072094 536374 357539 268263 214546 179095 153361 134208 119333 107098 
SČ/n 1072094 536047 357365 268024 214419 178682 153156 134012 119122 107209 
Δ% 0 -0.06 -0.05 -0.09 -0.06 -0.23 -0.13 -0.15 -0.18 0.10 

Ğ           
Real 652730 326554 216734 163113 130445 108083 93190 81622 72156 65602 
SĞ/n 652730 326365 217577 163183 130546 108788 93247 81591 72526 65273 
Δ% 0 -0.06 0.39 0.04 0.08 0.65 0.06 -0.04 0.51 -0.50 
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Fig. 16.18. The table shows real values and model values SĂ/n, or SŤ/n, or SČ, 

or SĞ/n (in red) in the case of the oligomer sums representations of the phonetic 
sequence of the Russian text of the Bible. Symbols Ă, Ť, Ğ, and Č refer to the 
phonetic monomers (Fig. 16.1, at right). The symbol Δ% denotes deviations of real 
values from model values in percent (the model values are taken as 100%). Graphs 
show the hyperbolic-like sequences of the phonetic oligomer sums ΣĂ,n,1, ΣŤ,n,1, ΣČ,n,1, 
and ΣĞ,n,1, which practically coincide with the model hyperbolic sequences SĂ/n (in 
blue), SŤ/n (in red), SČ,(in brown), and SĞ/n (in green). 

 
Let us explain additionally in more detail why we analyze long literary texts in 

Russian specifically. This explanation uses  the well-known facts about linguistics 
and alphabet writing [Coulmas, 1996; https://en.wikipedia.org/wiki/Alphabet]. 
Alphabetical writing differs from pictographic (ideographic) writing, where signs 
denote concepts (Sumerian cuneiform writing), and from morphemic and logographic 
writing, where signs denote individual morphemes (Chinese writing) or words. The 
Russian alphabet belongs to the class of consonant vocal alphabets, where letters 
denote both vowels and consonants. When an alphabet is adopted or developed to 
represent a given language, an orthography generally comes into being, providing 
rules for the spelling of words in that language. In accordance with the principle on 
which alphabets are based, these rules will generally map letters of the alphabet to the 
phonemes (significant sounds) of the spoken language. In a perfectly phonemic 
orthography, there would be consistent one-to-one correspondence between the letters 
and the phonemes so that a writer could predict the spelling of a word given its 
pronunciation, and a speaker would always know the pronunciation of a word given 
its spelling, and vice versa. However this ideal is not usually achieved in practice; 
some languages (such as Spanish and Finnish) come close to it, while others (such as 
English) deviate from it to a much larger degree. 
      Languages may fail to achieve a one-to-one correspondence between letters and 
sounds in different ways. For example, a language may represent a given phoneme by 
a combination of letters rather than just a single letter. In this way, German uses the 
tetragraphs  (four letters) "tsch" for the phoneme [tʃ] and (in a few borrowed words) 
"dsch" for [dʒ]. National languages sometimes elect to address the problem of dialects 
by simply associating the alphabet with the national standard. Some national 
languages like Russian, Finnish, Armenian, Turkish, Bulgarian have a very regular 
spelling system with a nearly one-to-one correspondence between letters and 
phonemes. French has silent letters. In English, the pronunciations of many words 
simply have to be memorized as they do not correspond to the spelling in a consistent 
way. For English, this is partly because the Great Vowel Shift occurred after the 
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orthography was established, and because English has acquired a large number of 
loanwords at different times, retaining their original spelling at varying levels.  

In the Russian alphabet, a one-to-one correspondence between the letters and 
the phonemes exists. For this reason, analyzing long literary Russian texts, researches 
can study their phonetic structures. In this way, the author has received interesting 
results described above. But he would very much like to continue the analysis - by the 
method of oligomeric sums - of the phonetic representations of long literary texts in 
all those languages, in which letters and phonemes are near to a one-to-one 
correspondence. The results of such an analysis can more fully show the deep 
connection of genetic and linguistic languages, testifying that linguistic languages are 
a continuation and a superstructure over the general biological  language of 
eukaryotic and prokaryotic genomes. 

 
Some concluding remarks 

 
As is known, mutations and the pressure of natural selection influence the genomic 
sequences of nucleotides. For these reasons, one can assume that as a result of many 
millions of years of biological evolution, genomic sequences, due to various 
influences, receive a completely random structure as a whole. This article provides 
evidence that, despite mutations, the pressure of natural selection, and other 
evolutionary factors, the nucleotide sequences of the eukaryotic and prokaryotic 
genomes have universal algebraic invariants. One can believe that the algebraic unity 
of living organisms is found (this should be tested further and further on more and 
more number of genomes). New mathematical tools and approaches for an in-depth 
study of this world and its evolution appear. In particular, the oligomer sums method 
can be used for the analysis of amino acid primary sequences in long proteins (see an 
example in Section 15). 

The discovery of the algebraic genomic invariants gives new knowledge about 
the unity of the world of all living organisms and about the features of biological 
evolution. This concerns additionally the problem of the origin of life, since the 
following natural question arises: where and how did these genomic algebraic 
invariants come from, which are expressed in the described hyperbolic (harmonic) 
rules and related to the quantum-information model if they exist even in the genomes 
of archaea and bacteria? The received results are interesting also for discussions 
concerning various well-known theories of biological evolution: Darwinism, 
nomogenesis, orthogenesis, etc. Some of these results are briefly described in the 
published author’s letter [Petoukhov, 2020d]. 
        The genomic invariants, described in the article, are connected with hyperbolic 
sequences and transformations of hyperbolic rotations that shift the hyperbolic 
sequence along with itself. Hyperbolic rotations, which are also called Lorentz 
transformations and known in the special theory of relativity, draw attention to the 
structural connection of genetic phenomena with the hyperbolic geometry of the 
Minkowski plane. One of the well-known models of two-dimensional hyperbolic 
geometry is the Poincaré disk model, also called the conformal disk model. The 
Poincaré disk model is connected with split-quaternions by J. Cockle and seems to be 
interesting for studying some genetic structures and inherited physiological 
phenomena as it was mentioned in previous author's publications on matrix genetics 
(see, for example, [Petoukhov, 2012]). 

Living organisms are informational entities, in which everything is 
subordinate to the task of reliably transmitting genetic information to descendants. All 
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inherited physiological systems as parts of a whole organism must be structurally 
coupled with a genetic code for transmission to descendants in encoded form. 
Therefore, inherited physiological macrostructures can bear the imprint of structural 
features of the genetic code. For this reason, structural analogies exist between the 
genetic system and the properties of inherited physiological systems, for example, the 
unified properties of different sensor systems, which are reflected in the main 
psychophysical Weber-Fechner law [Petoukhov, 2016, 2019b, 2020a-c]. These 
problems are discussed at the International interdisciplinary seminar “Algebraic 
Biology and Theory of Systems” in Moscow [Petoukhov, Tolokonnikov, 2020]. 

The question on a possible deep connection of physiology and brain 
functioning with principles of quantum informatics is considered in publications on 
many authors [Abbott, Davies, Pati, 2008; Altaisky, Filatov, 2001; Fimmel, 
Petoukhov, 2020; Igamberdiev, 1993, 2004; Matsuno, Paton, 2000; Patel, 2001a-c; 
Penrose, 1996; Petoukhov, 2018a, 2019b]. The results presented in this article give 
new essential materials to this perspective direction of thoughts. For such thoughts 
about possible connections of brain activities with the mathematics of quantum 
mechanics, these oligomer sums method, algebra-harmonic hyperbolic rules, and the 
mentioned author's quantum-information model give new effective research 
instruments and phenomenological materials. In particular, these materials include 
results on such intellectual brain activity as the writing of long Russian literary texts, 
whose phonetic sequences obey the hyperbolic rules, which are similar to the 
hyperbolic rules of eukaryotic and prokaryotic genomes and correspond to the 
author's quantum-information model (see Section 16). 

Researchers of the genetic system study the Nature system of storage, 
processing, and transmission of information, which has no direct analogies in modern 
science and technology, but which is studied on the basis of analogies with their 
achievements. The disclosure of informational patents of living nature can make an 
important contribution to scientific and technological progress. 

It should be noted that the genomic hyperbolic rules are cardinally different 
from well-known hyperbolic Zipf's law. Zipf's law was originally formulated in terms 
of quantitative linguistics, stating that given some corpus of natural language 
utterances, the frequency of any word is inversely proportional to its rank in the 
frequency table (see, for example, [Fagan,  Gençay, 2010]). In linguistics and other 
fields, Zipf's law speaks on the frequency of encounter of separate words or other 
separate objects. In contrast, the hyperbolic rules of the genomes focus on OS-
sequences of the total amounts of n-plets and the genomic tetra-entanglement, that is, 
on the relative number of not separate oligomers, but the whole sums of sets of 
different n-plets distributed inside the genomic sequence, where each separate 
nucleotide is a part of many oligomers set existing simultaneously (each nucleotide is 
a distributed participant of many members of the appropriate genomic OS-sequence at 
once and makes a contribution to each of them). From the quantum-information 
model, OS-sequences serve as quantum-information characteristics of genomic 
sequences.  

The proposed oligomer sums method and the quantum-information model give 
new opportunities to study genetic systems and the inherited algebra-harmonic 
organization of living bodies. The modern situation in the theoretic field of genetic 
informatics, where many millions of nucleotide sequences are described, can be 
characterized by the following citation: “We are in the position of Johann Kepler 
when he first began looking for patterns in the volumes of data that Tycho Brahe had 
spent his life accumulating. We have the program that runs the cellular machinery, 
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but we know very little about how to read it.” [Fickett & Burks, 1989]. Kepler did not 
make his astronomic observations, but he found – in the huge astronomic data of 
Tycho Brahe - his Kepler’s laws of symmetric movements of planets relative to the 
Sun along ellipses. The author is convinced that further studies of symmetries in 
genetic and other physiological structures will reveal many more wonderful secrets of 
living matter.  

The presented study is a continuation of the author's researches on symmetries 
in biological objects described in his publications (see References below). This study 
further illustrates the effectiveness of symmetry analysis in natural systems. No 
wonder the theory of symmetries is one of the foundations of modern mathematical 
natural science. The presented results reveal the existence of a new broad class of 
symmetries in eukaryotic and prokaryotic genomes. They are connected with previous 
rules of a generalized symmetry for collective probabilities of sub-alphabets of n-plets 
in long DNA sequences, which were described by the author in the article 
[Petoukhov, 2018b] and whose importance were noted in the article “Petoukhov’s 
rules on symmetries in long DNA-texts” [Darvas, 2018]. In this article, the head of 
the International Institute “Symmetrion” (Budapest, Hungary) proposed to launch a 
corresponding international project: “Now, Petoukhov’s above rules of symmetries are 
candidates for the role of universal rules of long DNA-texts in living bodies. Further 
researches are needed to determine the degree of universality of these rules. Taking 
into account the huge number of species and long DNA-texts to be tested in these 
relations, I propose to launch an international project to study these genetic 
symmetries. Symmetrion initiates and can take part as a center of such an 
international project” [Darvas, 2018]. 

 
 
Appendix I. Numeric data on some epi-chains of the human chromosome № 1. 

 
 
This Appendix shows numeric data about epi-chains represented graphically 

above in Figs. 13.2.-13.6. 
 
 

n 1 2 3 4 5 6 7 8 9 10 

A           
Real 33537501 16768845 11179286 8383461 6706672 5588773 4792078 4192017 3726860 3354107 

Model 33537501 16768751 11179167 8384375 6707500 5589584 4791072 4192188 3726389 3353750 
Δ% 0 -0.001 -0.001 0.011 0.012 0.015 -0.021 0.004 -0.013 -0.011 

T           
Real 33620498 16808862 11207274 8405040 6724359 5601854 4801395 4202773 3735327 3360459 

Model 33620498 16810249 11206833 8405125 6724100 5603416 4802928 4202562 3735611 3362050 
Δ% 0 0.008 -0.004 0.001 -0.004 0.028 0.032 -0.005 0.008 0.047 

C           
Real 24024903 12013624 8005708 6008215 4803919 4002753 3433636 3003511 2668499 2402186 

Model 24024903 12012451.5 8008301 6006226 4804981 4004151 3432129 3003113 2669434 2402490 
Δ% 0 -0.010 0.032 -0.033 0.022 0.035 -0.044 -0.013 0.035 0.013 

G           
Real 24057606 12028924 8021235 6013412 4813156 4013372 3435824 3006763 2673815 2407301 

Model 24057606 12028803 8019202 6014402 4811521 4009601 3436801 3007201 2673067 2405761 
Δ% 0 -0.001 -0.025 0.016 -0.034 -0.094 0.028 0.015 -0.028 -0.064 
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n 11 12 13 14 15 16 17 18 19 20 

A           
Real 3049510 2793265 2579432 2394635 2235831 2095893 1974049 1863181 1766123 1677938 

Model 3048864 2794792 2579808 2395536 2235833 2096094 1972794 1863195 1765132 1676875 
Δ% -0.021 0.055 0.015 0.038 0.000 0.010 -0.064 0.001 -0.056 -0.063 

T           
Real 3054627 2802390 2588494 2400749 2240133 2101692 1976639 1866079 1768246 1680401 

Model 3056409 2801708 2586192 2401464 2241367 2101281 1977676 1867805 1769500 1681025 
Δ% 0.058 -0.024 -0.089 0.030 0.055 -0.020 0.052 0.092 0.071 0.037 

C           
Real 2185450 2001255 1845496 1718676 1600752 1501210 1413949 1335576 1263741 1200991 

Model 2184082 2002075 1848069 1716065 1601660 1501556 1413230 1334717 1264469 1201245 
Δ% -0.063 0.041 0.139 -0.152 0.057 0.023 -0.051 -0.064 0.058 0.021 

G           
Real 2186817 2006465 1851228 1717404 1605990 1503735 1414212 1337414 1267181 1202700 

Model 2187055 2004801 1850585 1718400 1603840 1503600 1415153 1336534 1266190 1202880 
Δ% 0.011 -0.083 -0.035 0.058 -0.134 -0.009 0.067 -0.066 -0.078 0.015 

 

Fig. I.1. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the second order N2/1 (Fig. 13.1b), which 
consists of nucleotides with serial numerations 1-3-5-7-9-… in the DNA sequence of 
the human chromosome № 1. The table demonstrates that the model hyperbolic 
progressions SA/n, ST/n, SC/n, SG/n (in red) almost completely coincide with the     
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, 
or T, or C, or G in this epi-chain correspondingly. Differences between the 
corresponding values in these numerical sequences are expressed by shown small 
percentage values Δ%. 
 

n 1 2 3 4 5 6 7 8 9 10 

A           
Real A Real 22360413 11179286 7453552 5588773 4472245 3726860 3196917 2793265 2483348 

Model Model 22360413 11180207 7453471 5590103.25 4472083 3726736 3194345 2795052 2484490 
Δ% Δ% 0 0.008 -0.001 0.024 -0.004 -0.003 -0.081 0.064 0.046 

T           
Real 22412993 11207274 7470145 5601854 4479492 3735327 3199876 2802390 2490602 2240133 

Model 22412993 11206496.5 7470998 5603248 4482599 3735499 3201856 2801624 2490333 2241299 
Δ% 0 -0.007 0.011 0.025 0.069 0.005 0.062 -0.027 -0.011 0.052 

C           
Real 16012711 8005708 5336968 4002753 3202830 2668499 2287279 2001255 1778911 1600752 

Model 16012711 8006355.5 5337570 4003178 3202542 2668785 2287530 2001589 1779190 1601271 
Δ% 0 0.008 0.011 0.011 -0.009 0.011 0.011 0.017 0.016 0.032 

G           
Real 16040889 8021235 5348337 4013372 3210839 2673815 2291215 2006465 1783466 1605990 

Model 16040889 8020445 5346963 4010222 3208178 2673482 2291556 2005111 1782321 1604089 
Δ% 0 -0.010 -0.026 -0.079 -0.083 -0.012 0.015 -0.068 -0.064 -0.119 

 
n 11 12 13 14 15 16 17 18 19 20 

A           
Real 2032220 1863181 1721074 1598554 1489212 1397489 1316829 1240400 1177210 1117975 

Model 2032765 1863368 1720032 1597172 1490694 1397526 1315318 1242245 1176864 1118021 
Δ% 0.027 0.010 -0.061 -0.087 0.099 0.003 -0.115 0.149 -0.029 0.004 

T           
Real 2038200 1866079 1723940 1598312 1493164 1401402 1318617 1245654 1178340 1119290 

Model 2037545 1867749 1724076 1600928 1494200 1400812 1318411 1245166 1179631 1120650 
Δ% -0.032 0.089 0.008 0.163 0.069 -0.042 -0.016 -0.039 0.109 0.121 

C           
Real 1455982 1335576 1231496 1144356 1067083 999584 941265 889682 843256 800223 

Model 1455701 1334393 1231747 1143765 1067514 1000794 941924 889595 842774 800636 
Δ% -0.019 -0.089 0.020 -0.052 0.040 0.121 0.070 -0.010 -0.057 0.052 
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G           
Real 1457871 1337414 1233259 1146423 1072344 1003210 942530 892426 844720 803863 

Model 1458263 1336741 1233915 1145778 1069393 1002556 943582 891161 844257 802044 
Δ% 0.027 -0.050 0.053 -0.056 -0.276 -0.065 0.111 -0.142 -0.055 -0.227 

 

Fig. I.2. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the third order N3/1 (Fig. 13.1d), which 
consists of nucleotides with serial numerations 1-4-7-10-13-… in the DNA sequence 
of the human chromosome № 1. The table demonstrates that the model hyperbolic 
progressions SA/n, ST/n, SC/n, SG/n (in red) almost completely coincide with the      
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, 
or T, or C, or G in this epi-chain correspondingly. Differences between the 
corresponding values in these numerical sequences are expressed by shown small 
percentage values Δ%. 

 

 

 

 
n 1 2 3 4 5 6 7 8 9 10 

A           
Real 16768845 8383461 5588773 4192017 3354107 2793265 2394635 2095893 1863181 1677938 

Model 16768845 8384423 5589615 4192211.25 3353769 2794808 2395549 2096106 1863205 1676885 
Δ% 0 0.011 0.015 0.005 -0.010 0.055 0.038 0.010 0.001 -0.063 

T           
Real 16808862 8405040 5601854 4202773 3360459 2802390 2400749 2101692 1866079 1680401 

Model 16808862 8404431 5602954 4202216 3361772 2801477 2401266 2101108 1867651 1680886 
Δ% 0 -0.007 0.020 -0.013 0.039 -0.033 0.022 -0.028 0.084 0.029 

C           
Real 12013624 6008215 4002753 3003511 2402186 2001255 1718676 1501210 1335576 1200991 

Model 12013624 6006812 4004541 3003406 2402725 2002271 1716232 1501703 1334847 1201362 
Δ% 0 -0.023 0.045 -0.003 0.022 0.051 -0.142 0.033 -0.055 0.031 

G           
Real 12028924 6013412 4013372 3006763 2407301 2006465 1717404 1503735 1337414 1202700 

Model 12028924 6014462 4009641 3007231 2405785 2004821 1718418 1503616 1336547 1202892 
Δ% 0 0.017 -0.093 0.016 -0.063 -0.082 0.059 -0.008 -0.065 0.016 

 
 
n 11 12 13 14 15 16 17 18 19 20 

A           
Real 1524710 1397489 1290062 1196717 1117975 1047993 987755 930924 882614 839279 

Model 1524440 1397404 1289911 1197775 1117923 1048053 986403 931603 882571 838442 
Δ% -0.018 -0.006 -0.012 0.088 -0.005 0.006 -0.137 0.073 -0.005 -0.100 

T           
Real 1527023 1401402 1293440 1199582 1119290 1049849 988367 934203 884323 839809 

Model 1528078 1400739 1292989 1200633 1120591 1050554 988757 933826 884677 840443 
Δ% 0.069 -0.047 -0.035 0.088 0.116 0.067 0.039 -0.040 0.040 0.075 

C           
Real 1093622 999584 923273 860649 800223 751218 706684 667789 631744 601012 

Model 1092148 1001135 924125 858116 800908 750852 706684 667424 632296 600681 
Δ% -0.135 0.155 0.092 -0.295 0.086 -0.049 0.000 -0.055 0.087 -0.055 

G           
Real 12028924 6013412 4013372 3006763 2407301 2006465 1717404 1503735 1337414 1202700 

Model 12028924 6014462 4009641 3007231 2405785 2004821 1718418 1503616 1336547 1202892 
Δ% 0 0.017 -0.093 0.016 -0.063 -0.082 0.059 -0.008 -0.065 0.016 
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Fig. I.3. The results of the analysis - by the oligomer sums method – the 
nucleotide sequence of the epi-chain of the 4th order N4/1, which consists of 
nucleotides with serial numerations 1-5-9-13-… in the DNA sequence of the human 
chromosome № 1. The table demonstrates that the model hyperbolic progressions 
SA/n, ST/n, SC/n, SG/n (in red) almost completely coincide with the OS-sequences of 
real total amounts of those n-plets, which start with a nucleotide A, or T, or C, or G in 
this epi-chain correspondingly. Differences between the corresponding values in these 
numerical sequences are expressed by shown small percentage values Δ%. 
 

 
n 1 2 3 4 5 6 7 8 9 10 

A           
Real 6706672 3354107 2235831 1677938 1341408 1117975 958626 839279 744475 670703 

Model 6706672 3353336 2235557 1676668 1341334 1117779 958096 838334 745186 670667 
Δ% 0 -0.023 -0.012 -0.076 -0.005 -0.018 -0.055 -0.113 0.095 -0.005 

T           
Real 6724359 3360459 2240133 1680401 1344421 1119290 961102 839809 746575 672348 

Model 6724359 3362179.5 2241453 1681090 1344872 1120727 960623 840545 747151 672436 
Δ% 0 0.051 0.059 0.041 0.034 0.128 -0.050 0.088 0.077 0.013 

C           
Real 4803919 2402186 1600752 1200991 961518 800223 686222 601012 533486 480738 

Model 4803919 2401959.5 1601306 1200980 960784 800653 686274 600490 533769 480392 
Δ% 0 -0.009 0.035 -0.001 -0.076 0.054 0.008 -0.087 0.053 -0.072 

G           
Real 4813156 2407301 1605990 1202700 962275 803863 686639 600918 536368 481023 

Model 4813156 2406578 1604385 1203289 962631 802193 687594 601645 534795 481316 
Δ% 0 -0.030 -0.100 0.049 0.037 -0.208 0.139 0.121 -0.294 0.061 

 
 

n 11 12 13 14 15 16 17 18 19 20 

A           
Real 610306 559209 515854 479353 446769 420435 394716 371969 353254 335131 

Model 609697 558889 515898 479048 447111 419167 394510 372593 352983 335334 
Δ% -0.100 -0.057 0.008 -0.064 0.077 -0.303 -0.052 0.167 -0.077 0.060 

T           
Real 611496 559871 517229 480135 447813 419315 395062 372883 354165 336406 

Model 611305 560363 517258 480311 448291 420272 395551 373576 353914 336218 
Δ% -0.031 0.088 0.006 0.037 0.107 0.228 0.124 0.185 -0.071 -0.056 

C           
Real 436216 400115 369357 343754 320358 300365 282859 267188 252122 240344 

Model 436720 400327 369532 343137 320261 300245 282583 266884 252838 240196 
Δ% 0.115 0.053 0.047 -0.180 -0.030 -0.040 -0.098 -0.114 0.283 -0.062 

G           
Real 437262 401484 370485 343053 321595 300385 283136 268414 253519 240527 

Model 437560 401096 370243 343797 320877 300822 283127 267398 253324 240658 
Δ% 0.068 -0.097 -0.065 0.216 -0.224 0.145 -0.003 -0.380 -0.077 0.054 

 
Fig. I.4. The results of the analysis - by the oligomer sums method – the 

nucleotide sequence of the epi-chain of the 10th order N10/1, which consists of 
nucleotides with serial numerations 1-11-21-31-41-… in the DNA sequence of the 
human chromosome № 1. The table demonstrates that the model hyperbolic 
progressions SA/n, ST/n, SC/n, SG/n (in red) almost completely coincide with the      
OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, 
or T, or C, or G in this epi-chain correspondingly. Differences between the 
corresponding values in these numerical sequences are expressed by shown small 
percentage values Δ%. 
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n 1 2 3 4 5 6 7 8 9 10 

A           
Real 1341408 670703 446769 335131 268213 223299 191485 167237 148619 133939 

Model 1341408 670704 447136 335352 268282 223568 191630 167676 149045 134141 
Δ% 0 0.000 0.082 0.066 0.026 0.120 0.076 0.262 0.286 0.150 

T           
Real 1344421 672348 447813 336406 269243 224202 192407 168101 149090 134818 

Model 1344421 672210.5 448140 336105 268884 224070 192060 168053 149380 134442 
Δ% 0 -0.020 0.073 -0.089 -0.133 -0.059 -0.181 -0.029 0.194 -0.280 

C           
Real 961518 480738 320358 240344 192359 160018 137048 120522 106967 96272 

Model 961518 480759 320506 240380 192304 160253 137360 120190 106835 96152 
Δ% 0 0.004 0.046 0.015 -0.029 0.147 0.227 -0.276 -0.123 -0.125 

G           
Real 962275 481023 321595 240527 192109 160749 137576 120343 107506 95930 

Model 962275 481138 320758 240569 192455 160379 137468 120284 106919 96228 
Δ% 0 0.024 -0.261 0.017 0.180 -0.231 -0.079 -0.049 -0.549 0.309 

 
 

n 11 12 13 14 15 16 17 18 19 20 

A           
Real 121816 111840 103193 95777 89643 83769 78850 74151 70625 67280 

Model 121946 111784 103185 95815 89427 83838 78906 74523 70600 67070 
Δ% 0.107 -0.050 -0.008 0.040 -0.241 0.082 0.071 0.499 -0.035 -0.313 

T           
Real 122336 111872 103678 96184 89269 83822 79208 74638 71151 67505 

Model 122220 112035 103417 96030 89628 84026 79084 74690 70759 67221 
Δ% -0.095 0.146 -0.252 -0.160 0.401 0.243 -0.157 0.070 -0.554 -0.422 

C           
Real 87210 79875 73792 68526 64277 60322 56542 53407 49983 48018 

Model 87411 80127 73963 68680 64101 60095 56560 53418 50606 48076 
Δ% 0.230 0.314 0.231 0.224 -0.274 -0.378 0.032 0.020 1.231 0.120 

G           
Real 87691 80548 73923 68766 64118 60188 56555 53892 50857 47678 

Model 87480 80190 74021 68734 64152 60142 56604 53460 50646 48114 
Δ% -0.242 -0.447 0.133 -0.047 0.052 -0.076 0.087 -0.809 -0.417 0.906 

 
Fig. I.5. The results of the analysis - by the oligomer sums method – the 

nucleotide sequence of the epi-chain of the 50th order N50/1, which consists of 
nucleotides with serial numerations 1-51-101-151-201-… in the DNA sequence of the 
human chromosome № 1. The table demonstrates that the model hyperbolic 
progressions SA/n, ST/n, SC/n, SG/n (in red) almost completely coincide with the OS-
sequences of real total amounts of those n-plets, which start with a nucleotide A, or T, 
or C, or G in this epi-chain correspondingly. Differences between the corresponding 
values in these numerical sequences are expressed by shown small percentage values 
Δ%. 

 
 

Fig. I.6 shows that normalized values of amounts SA, ST, SC, and SG of each 
nucleotide A, T, C, and G are practically identical in all considered epi-chains of the 
human chromosome №1, that is, they are independent of the epi-chain order. 
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Epi-ch. SA/(SA+ST+SC+SG) ST/(SA+ST+SC+SG) SC/(SA+ST+SC+SG) SG/(SA+ST+SC+SG) 
N1/1 0.2910	 0.2918	 0.2085	 0.2087	
N2/1 0.2910 0.2917 0.2085 0.2088 
N3/1 0.2910 0.2917 0.2084 0.2088 
N4/1 0.2910 0.2917 0.2085 0.2088 
N10/1 0.2910 0.2918 0.2084 0.2088 
N50/1 0.2910 0.291 0.2086 0.2088 
 
Fig. I.6. The normalized values SN/(SA+ST+SC+SG) of amounts SA, ST, SC, and SG 

of each nucleotide A, T, C, and G are practically identical in all considered epi-chains 
of  different orders 1, 2, 3, 10, and 50 in the human chromosome № 1, that is, they are 
independent of the epi-chain orders. Here N refers to any nucleotide. 
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