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Abstract: To investigate the impact of radiologic experience on the diagnostic accuracy of computed 

tomography CT vs. magnetic resonance imaging (MRI) reporting for liver metastases of pancreatic 

ductal adenocarcinoma (LM of PDAC). Intra-individual CT and MRI examinations of 112 patients 

with clinically proven LM of PDAC were included. Four radiologists with varying years of 

experience (A > 20, B > 5, C > 1 and D < 1) assessed liver segments affected by LM of PDAC, as well 

as associated metastases occurring in each patient. Their sensitivity and specificity in evaluating the 

segments were compared. Cohen's Kappa (κ) for diagnosed liver segments and Intra-class 

Correlation Coefficients (ICC) for the number of metastatic lesions in each patient were calculated. 

The radiologists’ sensitivity and specificity for the CT vs. MRI were, respectively: Reader A -94.4, 

90.3% vs. 96.6, 94.8%; B - 86.7, 79.7% vs. 83.9, 82.0%; C - 78.0, 76.7% vs. 83.3, 78.9% and D - 71.8, 79.2% 

vs. 64.0, 69.5%. Reviewers A and B achieved greater agreement in assessing results from the MRI (κ 

= 0.72, p < 0.001; ICC = 0.73, p < 0.001) vs. the CT (κ = 0.58, p < 0.001; ICC = 0.61, p < 0.001), in contrast 

to readers C and D (MRI: κ = 0.34, p < 0.001; ICC = 0.42, p < 0.001, and CT: κ = 0.48, p < 0.001; ICC = 

0.59, p < 0.001). Our results indicate that accurate diagnosis of LM of PDAC depends more on 

radiologic experience in MRI over CT scans. 

Keywords: magnetic resonance imaging; multidetector computed tomography; liver; neoplasm 

metastasis; gadoxetic acid 

 

1. Introduction 

International guidelines advise contrast-enhanced computed tomography (CE-CT) for routine 

diagnosing and staging of pancreatic cancer, whereas magnetic resonance imaging (MRI) is mostly 

used for the characterization of indeterminate liver lesions [1,2]. Accurate assessment of liver 

metastases (LM), both colorectal (CRLM) and non-colorectal LM, is crucial in multidisciplinary 

oncology [1–4]—especially for patients with pancreatic ductal adenocarcinoma (PDAC). Enhanced 

detection of LM could reduce futile resection of tumors and markedly increase life expectancy.  

At present, CE-CT has been widely used as a standard imaging modality to determine the stage 

of pancreatic cancer. However, its ability to detect LM less than 1 cm in size is reported to be limited 

and unsatisfactory, given its rate of accuracy currently stands at just 50% [3,4]. Fortunately, liver-

specific magnetic resonance contrast agents like gadoxetate disodium appear to offer great promise 

because of their ability to provide more precise evaluations of tumor infiltrations [5,6], and are now 

recommended for the diagnosis and characterization of malignant lesions in non-cirrhotic livers [7]. 
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Moreover, prior studies have demonstrated that multidisciplinary team meetings associate with 

significant improvements in clinical outcomes, as imaging data is reviewed by all physicians involved 

in the patient’s care, regardless of their radiologic experience [8–11]. It is possible that the widespread 

availability of medical imaging data may eventually lead to independent read-outs of CT and MRI 

examinations without consultation of the corresponding radiological report. Yet, since marking 

images is not a standardized practice amongst radiologists, but depends more on their reporting 

preferences and level of experience [12], the comprehensibility of oncologic findings for 

inexperienced readers remains unknown [2].  

In this study, we aimed to determine the impact of observer experience in CT and MRI 

examinations on the diagnostic accuracy of (LM of PDAC). 

2. Results 

2.1. Diagnostic performance 

Sensitivity, specificity, PPV and NPV were calculated on a segmental basis. Overall, a trend was 

found in that the diagnostic performance was proportional to experience for both reporting of CT 

and MRI examinations in Table 2. In particular, reviewer A reached the highest sensitivity and 

specificity for both CT (94.4 and 90.3%, respectively) and MRI (96.6 and 94.8%, respectively), 

compared with reviewer B (CT: 86.7 and 79.7%, MRI: 83.9 and 82.0%, respectively), C (CT: 78.0 and 

76.7%, MRI: 83.3 and 78.9%, respectively), and D (CT: 71.8 and 79.2%, MRI: 64.0 and 69.5%, 

respectively). Furthermore, Reader A achieved the greatest PPV and NPV for CT (88.6 and 95.7%, 

respectively) and MRI (96.2 and 95.2%, respectively), compared with observer B (CT: 73.3 and 90.7%, 

MRI: 83.2 and 82.7%, respectively), C (CT: 73.1 and 81.2%, MRI: 79.5 and 82.6%, respectively), and D 

(CT: 77.8 and 73.3%, MRI: 67.3 and 66.6%, respectively). Comprehensive data regarding diagnostic 

performance is provided in Table 2. Differences between reviewers A and B, as well as B and D, were 

significant for CT reporting (p = 0.001 for both). Regarding MRI, the following comparisons reached 

the level of significance, respectively: readers A and C (p = 0.013), A and D (p < 0.001), B and D (p = 

0.001) and C and D (p = 0.014). Additional data is summarized in Table 3. 

Table 1. Mean and standard deviation (SD) of segment-based sensitivity, specificity, PPV and NPV 

for CT and MRI assessments 

 CT MRI 

 Mean SD Mean SD 

Sensitivity 82.76 8.55 82.15 11.65 

Specificity 81.51 5.21 81.34 9.06 

PPV 78.24 6.30 81.54 10.41 

NPV 85.27 8.62 81.84 10.15 

Table 2. CT and MRI sensitivity, specificity, positive predictive value (PPV) and negative predictive 

value (NPV) on a segmental base achieved by reviewers A (> 20 y of experience), B (> 10 y), C (> 1 y), 

and D (< 1 y). Diagnostic performance was mainly proportional to radiological experience. 

 
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. 

CT MRI 

 Reader 

A 

95%-

CI 

Reader 

B 

95%-

CI 

Reader 

C 

95%-

CI 

Reader 

D 

95%- 

CI 

Reader 

A 

95%- 

CI 

Reader 

B 

95%-

CI 

Readr 

C 

95%-

CI 

Reader 

D 

95%- 

CI 

Sensitivity 

(%) 

94.44 91.7- 

97.78 

86.77 81.9- 

92.28 

78.04 72.9- 

84.34 

71.80 66.5- 

78.58 

96.63 92.2- 

97.79 

83.99 77.5- 

87.55 

83.39 76.7- 

87.10 

64.02% 56.2- 

69.42 

Specificity 

(%) 

90.36 86.0- 

93.73 

79.77 74.3- 

84.50 

76.71 70.9- 

81.81 

79.25 73.1- 

84.50 

94.85 91.1- 

97.31 

82.05 76.5- 

86.75 

78.93 73.2- 

83.89 

69.53% 63.1- 

75.37 

PPV 

(%) 

88.65 85.0- 

93.26 

73.37 67.8- 

80.24 

73.10 67.8- 

79.71 

77.84 72.6- 

84.19 

96.25 91.83 

97.52 

83.29 76.81 

86.92 

79.58 72.8- 

83.61 

67.04% 59.1- 

72.42 

NPV 

(%) 

95.74 92.3- 

97.94 

90.71 86.15 

94.16 

81.28 75.69 

86.05 

73.36 67.1- 

78.97 

95.26 91.67 

97.61 

82.76 77.2- 

87.39 

82.68 77.1- 

87.33 

66.67% 60.36 

72.56 
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Table 3. Statistical comparisons of diagnostic performance were performed using the McNemar test 

Reviewers CT (p-value) MRI (p-value) 

A+B 0.0015 0.0763 

C+D 0.0768 0.0138 

Significant values (p < 0.05) are given in bold italics. 

2.2. Inter-observer agreement 

Among all the reviewers, inter-reader agreement for the liver segments that were affected by 

malignancy was higher for MRI (κ = 0.44, p < 0.001) than for CT (κ = 0.43, p < 0.001). In particular, the 

experienced reviewers, A and B, achieved greater agreement for MRI (κ = 0.72, p < 0.001) than for CT 

(κ = 0.58, p < 0.001), unlike the less experienced C and D reviewers (MRI: κ = 0.34, p < 0.001 and CT: 

κ = 0.48, p < 0.001, respectively). A similar trend was found for the inter-observer agreement regarding 

the number of LM present in each patient. All reviewers, together, achieved greater inter-observer 

agreement for MRI (ICC = 0.59, p < 0.001) than for CT (ICC = 0.53, p < 0.001). The experienced 

reviewers, A and B, showed higher agreement for MRI (ICC = 0.73, p < 0.001) than for CT (ICC = 0.61, 

p < 0.001), as opposed to the less experienced reviewers, C and D (MRI: ICC = 0.41, p < 0.001 and CT: 

ICC = 0.59, p < 0.001). Complementary data is shown in Table 4. 

Table 4. Inter-observer agreement regarding liver segments that were affected by LM of PDAC (κ) 

and the number of lesions reported per patient (ICC) for CT and MRI analyses. The experienced 

reviewers showed a significantly higher agreement for MRI than for CT reporting. 

 Κ ICC 

Readers CT MRI CT MRI 

A+B+C+D 0.43 0.44 0.53 0.59 

A+B 0.58 0.72 0.61 0.73 

C+D 0.48 0.34 0.59 0.42 

3. Discussion 

This study aimed to investigate the impact of observer experience on diagnostic performance 

and inter-observer agreement in reporting LM of PDAC using CT and MRI scans because data from 

these imaging modalities are commonly reviewed by physicians with varying levels of experience in 

the clinical and radiological practice of oncology [13]. 

We found that diagnostic performance was primarily proportional to reviewer experience, with 

the most experienced reviewer, A, achieving the highest sensitivity, specificity, PPV and NPV [14–

16]. Thus, our results indicate that observer experience is essential for exhibiting a high diagnostic 

accuracy in the aforementioned imaging modalities (Figure 1). More importantly, values indicating 

diagnostic accuracy differed more distinctly for MRI than for CT, as sensitivity, specificity, PPV and 

NPV were distributed over a larger range for the MRI analyses [14–16]. Therefore, our data suggest 

that reviewer experience has a greater impact on MRI than on CT reporting. This hypothesis is further 

supported by the fact that the more experienced radiologists, reviewers A and B, showed a greater 

difference in diagnostic performance indices for MRI. This suggests that there is a greater learning 

curve for MRI interpretation after 5 years of radiologic experience compared with CT reporting. 

Accordingly, we detected a greater inter-observer agreement among the experienced reviewers for 

the MRI analyses, both for the amount of LM of PDAC detected per patient and the affected liver 

segments, as opposed to the less experienced reviewers, who achieved a higher inter-observer 

agreement using CT images. This may indicate that experienced reviewers are more likely to be 

consistent in their findings when evaluating MRI scans, unlike less experienced reviewers. 

Potential factors that may contribute to the need for more experience in MRI analyses over CT 

interpretations are the greater number of images that need to be assessed, as well as its challenging 

physical theory. For instance, chemical shift and diffusion-weighted imaging in MRI may be more 

difficult to assess for less experienced reviewers than CT series that are based on density values and 

primarily defined by the time of image acquisition relative to the contrast media administration. 
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Contrastingly, standard CT scans for liver imaging in patients with LM of PDAC include a reduced 

amount of series and often consist solely of a non-contrast and portal-venous phase image acquisition 

[16]. Thus, our data advocate that reporting of CT images may be more comprehensible and intuitive 

for less experienced reviewers. Our results suggest that marking and explaining findings in MRI 

reports will make them easier to understand for less experienced readers and clinicians, who evaluate 

imaging data in the absence of an experienced radiologist. Additionally, these results further justify 

the educational practice in radiological departments wherein residents undergo CT before MRI 

training.  

Evidence regarding the influence of observer experience in interpreting oncological CT and MRI 

examinations is scarce, despite the fact that both clinicians and radiologists with varying levels of 

experience routinely review such studies and thus may affect therapeutic regimens and patient care. 

Although few investigations have examined the impact of reader experience on the reproducibility 

of tumor measurements [12,17], a prior study examined the influence of observer expertise on CT 

and MRI reporting in patients with CRLM [11]. The authors concluded that MRI analysis of CRLM is 

more affected by observer experience than CT interpretation [11]. Our results are consistent with this 

hypothesis and likewise indicate that reviewer experience is a crucial determinant in diagnostic 

accuracy. More importantly, they also support the assumption that this effect is more distinct within 

MRI over CT reporting. Therefore, we conclude that experience may have a greater impact on 

diagnostic accuracy for MRI reporting of LM of varying primary carcinomas compared with CT 

analyses. In addition to this prior investigation, we found consistent results using CT and MRI 

examinations on the same individuals, which included a diffusion-weighted MRI series. 

This study has limitations that should be mentioned. First, we only included four radiologists 

with varying levels of experience. Because the influence of experience on diagnostic accuracy is 

challenging to investigate, results may be more representative following a larger population of 

reviewers in future studies. Additionally, subtle changes of LM of PDAC that were not indicated by 

criteria in the image analyses may limit comparability of the intra-individual CT and MRI 

examinations. 

4. Materials and Methods 

4.1. Patients 

This retrospective study was approved by our local institutional review board (Ethical 

Committee of Kindai University No. 23-101), and written informed consent was obtained from each 

patient before undergoing a CT or MRI scan. This study used data from clinical records and images 

collected from Kindai University Hospital, a high-volume regional referral center. Between January 

2009 and December 2017, patients with histologically-confirmed pancreatic cancer who underwent a 

CE-CT and gadoxetic acid-enhanced MRI were enrolled in the study. CT and MRI examinations of 

164 patients with LM of PDAC were retrospectively included. From the initial study group, 52 

patients were excluded because their time intervals between the CT and MRI examination were 

greater than one month, so 112 individuals in total participated (62 males, mean age ± standard 

deviation: 62 ± 12.4 y). There were 172 of LM of PDAC and 157 liver segments that were affected by 

LM of PDAC.  

4.2. CT imaging protocol 

Intravenous CE-CT imaging was performed using a 64-channel multidetector row scanner 

(Light Speed VCT Vision, GE Healthcare, Waukesha, WI) with a tube voltage of 100-170 kV, an 

automatic dose modulation, a pitch of 2.0 and a slice thickness of 1 mm. Axial, coronal and sagittal 

slices were reconstructed with a section thickness of 5.0 mm and an increment of 3 mm. After the 

unenhanced images were acquired, 510 mg/kg of iodinated contrast material (Optiray 320, Guerbet 

Japan, Tokyo, Japan) was administered intravenously into the antecubital vein at a rate of 3–4 mL/s. 

Scanning was performed at the beginning of the pancreatic parenchymal phase (after 40 s) and the 

subsequent liver phase was obtained 70 s after intravenous administration of the contrast material. 
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4.3. MR imaging protocol 

Enhanced magnetic resonance imaging (EOB-MRI) was performed with two superconducting 

magnet systems on a 3.0-T scanner (Magnetom Trio, Siemens Medical Systems, Erlangen, Germany; 

n = 48; Achieva TX, Philips Healthcare, Best, The Netherlands; n = 64) using a 32-channel phased-

array body coil for all patients. The Magnetom Trio scanner was actively shielded with a 45 mT/m 

gradient field strength and slew rate of 200 T/m/s. The Achieva TX scanner was actively shielded 

with a 50 mT/m gradient field strength and slew rate of 220 T/m/s. FOr both scanners, after breath-

hold double-echo T1-weighted gradient recalled echo (GRE) images (in-phase and opposed-phase 

images) and navigator-triggered fat-suppressed T2-weighted turbo spin-echo (TSE) images were 

obtained, dynamic fat-suppressed T1-weighted images were obtained with a three-dimensional (3D) 

GRE sequence before (pre-contrast), 14 – 30 s after (arterial phase by means of a bolus-triggered 

technique), 70 s after and 3 min after intravenous administration of gadoxetic acid (EOB Primovist; 

Bayer Yakuhin, Osaka, Japan), which was injected as a bolus (2.0 mL/s) at a dose of 0.025 mmol/kg of 

body weight, followed by a 20 mL saline flush. Hepatocyte-phase images were obtained 20 min after 

the gadoxetic acid injection. 

The Siemens scanner acquired breath-hold T1-weighted GRE images (repetition time/echo time 

[TR/TE] of 120/2.46 ms, flip angle of 66°, matrix size of 320 × 180, bandwidth of 434.3 Hz/pixel, one 

signal acquired, section thickness of 7 mm, intersectional gap of 1.4 mm and acquisition time of 28 s), 

navigator-triggered fat-suppressed T2-weighted TSE images using PACE (TR/TE of 3865–5534/71 ms, 

flip angle of 120°, matrix size of 384 × 202, bandwidth of 506.4 Hz/pixel, one signal acquired, section 

thickness of 7 mm, intersectional gap of 1.4 mm  and acquisition time of approximately 90 s). For the 

EOB-MRI, fat-suppressed T1-weighted GRE images were acquired with a 3D-VIBE sequence (TR/TE 

of 3.68/1.22 ms, flip angle of 10°, matrix size of 256 × 192, one signal acquired, section thickness of 3 

mm, intersectional gap of 0.6 mm and acquisition time of 21 s.  

The Philips scanner included a respiration-triggered T1-weighted turbo field-echo in-phase 

sequence (TR/TE of 10/2.3 ms, flip angle of 15°, matrix size of 288 × 230, bandwidth of 434.3 Hz/pixel, 

one signal acquired, section thickness of 7 mm, intersectional gap of 1.2 mm and acquisition time of 

26 s) and a respiration-triggered fat-suppressed T2-weighted sequence with a reduction factor of 2 or 

4 (TR/TE of 1342/80 ms, flip angle of 90°, matrix size of 320 × 256, bandwidth of 506.4 Hz/pixel, one 

signal acquired, section thickness of 7 mm, intersectional gap of 1.2 mm and acquisition time of 

approximately 100 s). For the EOB-MRI, a fat-suppressed T1-weighted 3D turbo field-echo sequence 

was performed (T1 high-resolution isotropic volume examination [THRIVE], Philips Healthcare) 

(TR/TE of 3.4/1.8 ms, flip angle of 10°, matrix size of 336 × 206, bandwidth of 995.7 Hz/pixel) with a 3 

mm section thickness and a field-of-view of 32–38 cm. 

4.4. Image analysis 

All CT and MRI series were reviewed by four reviewers with varying levels of experience in 

oncologic radiology (Reviewer A > 20 y, B > 15 y, C > 1 y, D < 1 y) according to Albrecht ‘s 

methodology [20].  They were aware that this study focused on the detection of LM, though were 

not told that LM of PDAC was present in each patient and were blinded to patients’ ages, primary 

cancers, clinical course and previous treatments. Images were assessed in a randomized order, with 

a mandatory time interval between intra-individual read-outs of CT and MRI datasets of one week, 

so as to reduce potential recall biases. Preset window settings could be freely adjusted. Reviewers 

reported the amount of metastases they detected per patient, as well as the liver segments that were 

affected by LM of PDAC, according to the Couinaud classification of hepatic anatomy. Segment 4 

was evaluated as a cranial (4a) and caudal portion (4b). Thus, each liver segment was either rated as 

affected (positive) or not affected (negative) regarding malignant infiltration by LM of PDAC.  

The criteria for radiological diagnosis of LM on the CE-CT were that they had to be ill-defined, 

heterogeneous nodules with a higher attenuation than bile and having some degree of enhancement. 

The criteria for radiological diagnosis of LM on the EOB-MRI were that they had to be focal, discrete 

nodular lesions that showed a high signal intensity relative to the liver parenchyma on T2-weighted 

FSE images (with a lower signal intensity than the gallbladder or cerebrospinal fluid), a low signal 
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intensity relative to the liver parenchyma on T1-weighted GRE images obtained at 70 s and 3 min 

after the gadoxetic acid injection, and were more conspicuous on the hepatocyte-phase images. The 

diagnosis of LM was more definite when perilesional enhancement was detected on the T1-weighted 

GRE images obtained 30 s after the gadoxetic acid injection (Figure 1). 

 

 

Figure 1. Images of CT and MRI examinations of a 74-year-old female patient with small metastasis 

of PDAC (A, arterial-phase CT; B, portal-venous phase CT; C, arterial-phase MRI; D, portal-venous 

phase MRI; E, hepatobiliary phase MRI). A small lesion in segment 5 (arrow) was only detected by 

the experienced readers A and B using MRI (only depicted by hepatobiliary phase MRI), but the lesion 

was missed by all readers using CT. 

4.5. Standard of reference 

In patients who underwent endoscopic ultrasonography fine-needle aspiration (EUS-FNA) for 

liver tumors, the diagnosis of LM was made based on a combination of histopathological findings of 

EUS-FNA samples and follow-up imaging examinations. In cases without histopathological 

diagnosis, the final diagnosis was confirmed by combining all available imaging examinations 

performed 2 to 3 m after the initial CT and MRI. If possible, observation with these imaging 

examinations of the lesions was followed up every 2 mos. In cases lacking a histopathological 

diagnosis, the final diagnosis was made when a significant change in the tumor’s size was confirmed 

using these imaging examinations. Most of tumor (159 tumors) were increased in the interval. A few 

tumors were confirmed to have shrunk by chemotherapy and were not abscesses by combining all 

available imaging examinations. In this study, LM were considered to pre-exist at the time of the 

initial examination, despite no detection by any imaging modalities (metastatic lesions were 

identified by follow-up imaging within 3 m of the initial examination). 

4.6. Statistical analysis 
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Statistical evaluation was performed using dedicated software (MedCalc, v. 12.7.2 and BiAS, v. 

10.11); p-value < 0.05 was considered to indicate a statistically significant difference. Segment-based 

sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) were 

compared using the McNemar test. Confidence intervals (CI) of 95% were calculated. For the 

qualitative lesion- and segment-based analysis, Cohen’s kappa (κ) statistics were performed. Values 

were interpreted as follows: κ < 0.40, poor agreement; κ = 0.40 - 0.75, fair to good agreement; κ > 0.75, 

excellent agreement [18] The quantitative analysis for the number of metastases detected per patient 

was conducted using Intraclass Correlation Coefficients (ICC). ICC values were classified as follows: 

ICC < 0.40, poor agreement; ICC = 0.40–0.60, moderate agreement; ICC = 0.60 – 0.80, substantial 

agreement; ICC > 0.80, good agreement [19]. 

5. Conclusions  

Our results indicate that accurate diagnosis of LM of PDAC depends more on radiologic 

experience in MRI over CT scans. Although observer experience is crucial for a high diagnostic 

accuracy regarding both CT and MRI analysis in patients with LM of PDAC, this effect seems to be 

more pronounced in MRI reporting. 
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