Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to diagnose and give a decision about the presence of retinopathy. The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy. The performance of the proposed model is compared with the related methods of DREAM, KNN, GD-CNN and SVM. Experimental results show that the proposed CNN performs better.
Keywords:
Subject: Computer Science and Mathematics - Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.