Preprint
Article

A Logarithmic Turbulent Heat Transfer Model in Applications with Liquid Metals for PR = 0.01-0.025

Altmetrics

Downloads

142

Views

247

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 May 2020

Posted:

31 May 2020

You are already at the latest version

Alerts
Abstract
The study of turbulent heat transfer in liquid metal flows has gained interest because of applications in several industrial fields. The common assumption of similarity between the dynamical and thermal turbulence, namely the Reynolds analogy, has been proven to be not valid for these fluids. Many methods have been proposed in order to overcome the difficulties encountered in a proper definition of the turbulent heat flux, such as global or local correlations for the turbulent Prandtl number or four parameter turbulence models. In this work we assess a four parameter logarithmic turbulence model for liquid metals based on RANS approach. Several simulation results considering fluids with Pr = 0.01 and Pr = 0.025 are reported in order to show the validity of this approach. The Kays turbulence model is also assessed and compared with integral heat transfer correlations for a wide range of Peclet numbers.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated