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Some Dirichlet forms on graphs as traces of
one-dimensional diffusions

Rafed Moussa *f

May 29, 2020

Abstract

We compute explicitly trace of one-dimensional diffusion process which can be
regarded as a Dirichlet form on graphs and we study its conservativeness prop-
erty. Finally, we give an example of a discretization of one-dimensional diffusion of
Bessel’s process with order v.

1 Introduction

Throughout this paper we are concerned with a one-dimensional diffusion process gener-
ated by the Feller operator %% which is itself associated with the Dirichlet forms via
Kato’s representation theorem. We emphasize that such diffusion process on an open
interval I can be characterized by two important measures which called scale function s
and speed measure dm. Further we claim that latter measure is absolutely continuous
w.r.t Lebesgue measure dx and it is supported by I.

Let us recall that concept and construction of traces are established by Fukushima-

Oshima-Takeda (see [FOT11]), we can see that there are various methods elaborated to
construct traces. For instance we refer to [BBST19] which the authors elaborate a new
method for constructing traces by using monotone convergence of quadratic forms and
the canonical decomposition into regular and singular part.
Conservativeness is the most important global property of diffusion processes and Dirich-
let forms which has many physical interpretations, for example we can say that a process
is conservative or stochastic completeness when it has infinite lifetime with probability
equals one. There are many authors like Masamune et al in [Masl1] which investigate
conservative property of symmetric jump processes. In [KL12] yields another characteri-
zation for Dirichlet forms on graphs.

*corresponding author
fDepartment of Mathematics, Higher school of science and technology of Hammam Sousse. University
of Sousse, Tunisia. E-mail: rafed.moussa@gmail.com

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202005.0513.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0513.v1

The main goal of this paper is to determine the explicit expression for some Dirichlet
forms on graphs which can be regarded as traces of one-dimensional diffusion related to a
discrete measure and we study when conservativeness property is inherited by computing
its trace form. In order to compute explicitly the trace of one-dimensional diffusion on a
countable set we shall applying the method developed in [BBFB14, Theorem 1] for the
transient case, where the authors give an explicit description of the trace of £&. We are
interested by the fact that V' is a countable set which may has or not an accumulation
point. Hence we give an explicit computation of the trace of Dirichlet form with respect to
the convergence or divergence of the sequence (z)ren. For our work we remark that when
the sequence is convergent we deduce that trace of the Dirichlet form admits a decompo-
sition into non-local and killing terms which it allows us to conclude its conservativeness
property. Thereby, we compute the trace for the same reason that sequence converge
at has 0 as an accumulation point and in this way we choose a mixed type measure in
order to obtain a decomposition of the trace into strongly local type and non-local type
Dirichlet forms.

The paper is organized as follows. In the section 2 we first introduce some necessary
definitions and notations of Dirichlet forms related to one-dimensional diffusion processes
as well as Feller’s classical properties of boundaries. Section 3 is devoted to compute the
trace of Dirichlet forms on countable infinite set. In section 4 we study conservativeness
property of Dirichlet forms on graphs. At the end we give an application of trace of
n-dimensional Bessel’s process on the right half line (0, 00) which can be interpreted as
a discretization of Bessels operator with it still stable by its conservation property. We
conclude finally that convergence of the sequence (xy); has an important role to study
conservative property of the trace of Dirichlet form.

2 Framework and basic notations

We start by introducing some notations. Let [ := (r1,79) where —oo < 11 < ry < 00. Let
us consider a scaling function s : I — R, i.e. s is a strictly increasing continuous function.
Thus s has the following representation

s(z) = /Ia@) dt, Vrel,

where 0 > 0 and o € £} .(I). Obviously ds(x) = o(z) dz.
Let us designate by AC,.(I) the space of locally absolutely continuous function on /

and by AC,(I) the space of s-absolutely continuous functions on I, i.e. for any function

u on [ there exists an absolutely continuous function ¢ such that u = ¢ o s.

Let us consider a speed measure m with full support I defined by

dm(z) = p(x) dr,

where p > 0 and p € £}, (I).

loc
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We designate by

dz

Db = {u: I - R: ue ACL(I), /7“2(1/(:5))2 —— <0

1 O(ZL‘)

d0i:10.20944/preprints202005.0513.v1

Let us define a Dirichlet form £ with domain in L?*(I, p dz) based on the scaling function

s and its associated space D by

T2
D =D N LX1,p dz) E[u] == / (u'(z))? v for all uw € D.

Lemma 2.1. Fvery function from D is continuous on I.
Proof. An elementary identity leads to

€ du
ds

u(é) —u(y) = / —(x) ds(z), Vri <&<y<m.

By Holder inequality, we get

(w(®) —u(y))” < sy, €)-Elul, Y71 < € <y <ra,

which is implies that D C C(I) .

2.1 Feller’s boundary classification

Let us introduce the following quantities

and

o) - [ " s((e.y))dm(y),

for all iy < ¢ < 7.

(2.1)

(2.2)

(2.3)

(2.4)

d d

Therefore, the boundaries ry and 73 of I can be classified w.r.t the Feller operator 5

m ds

into four classes as follows (we refer the reader to [Ito06, p.151-152] or [Man69, p.24-25])

(a) r; a regular boundary if I'y < 0o, 'y < o0,
(b) r; an exit boundary if I'y < oo, T'y = o0,
(c) r; an entrance boundary if I'; = oo, T’y < 00,

(d) 7; a natural boundary if I'y = 0o, 'y = 0.

Definition 2.2. We call that boundary ry, (resp. rs) is approachable whenever

s(ry) > —oo (resp. s(rq) < 00).
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According to the inequality (2.2), if 71, (resp. 7o) is approachable, then for any element
from D) we have u(ry) = lim, ,, 7 u(z) < 00, (resp. u(ry) = limg ., per u(z) < 00)
and u € C([r1,72)), (resp. u € C((r1,73))).

One has in particular that space D is a uniformly dense sub-algebra of C([r1,75]) if both
r1 and 7y are approachable (for more details we refer to [CF12, Chap. II] ).

Definition 2.3. We call that boundary ry (resp. r3) is called regular whenever

it is approachable and m((rq,¢)) < oo, ( resp. m((c,12)) < 00) Ve € (r1,72).

2.2 Extended Dirichlet form

We shall now set D, the extended Dirichlet space of £. By definition v € D, if and only if
there exists a sequence {u,} C D such that it is £-Cauchy and lim,, o u, = u, m — a.e.
[FOT11, Theorem 2.1.7] show that every element in D, admits a quasi-continuous repre-
sentative. We maintain the notation £ for £ extended to D.. Then (D, &) is a Hilbert
space whenever £ is a scalar product on D . By [FOT11], it is known that the transience
of (£,D), (i.e., u € D, E(u,u) = 0 = u = 0), is equivalent to (D, E) is a real Hilbert
space.

In the following let us consider the space
D(()s) = {u e D® : u(r;) = 0 whenever r; is approachable} (2.5)

To determine the extended Dirichlet form in our case we shall using the following theorem
which is mentioned by [Fuk10] or [CF12]

Theorem 2.4.
(£,D) = (), D 0 LA(I,m)) (2.6)

is a regular, strongly local, irreducible Dirichlet form on L*(I,m).
Then
D, =D, £€=¢£. (2.7)

If both r and 7y are approachable but non-regular (see [CF12, Prop. 2.2.9] ) the
Dirichlet form (€, D) is called transient and we have also D C D, = D(()S).
However, it is well known that £ is transient if and only if either r; or ry is approachable
and non-regular. Otherwise it is recurrent ( see [CF12, Theorem 2.2.11] ) .
By virtue of classical Feller’s test of non-explosion, £ is conservative if and only if ( see
[CF12, p. 126] and the discussion made there)

/ m((z,c))ds(x) = / m((c,x))ds(x) =00, V11 < c<rg. (2.8)
(r1,¢)

(e,r2)

In this case, the boundaries r; and 75 are non-exit points.
Owing to Feller’s canonical form, we can define the differential operator £ on I by
dd_ld(ld) 1 d? o d

b=t~ pdn

odz po dx? + po? dz’

4
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It is well known that £ is a regular strongly local Dirichlet form in L?(I, pdx) (hence
in particular closed and densely defined). Moreover, the positive self-adjoint operator
associated with the form &£ via Kato’s representation theorem, which we denote by L, is

given by (see [LIN04] and [FOT11))

1 o’
D(L)={ueD: v € ACp.(I), Lu= —p—au” + PU/ c L*(I,p dz),
with boundary conditions at r; and TQ}

Lu=Lu for all u e D(L).

Remark 2.5. We have the following discussion about the boundary conditions at r; and
ro on D(L)

(i) If ry, (resp. r9) is an exit endpoint then we have the boundary condition at ry,

(resp. ra)
lim u(xz) =0, (resp. lim u(z) = 0).

T—ry T—rre

(ii) If 71, (resp. r9) is an entrance endpoint then we have the boundary condition at ry,

(resp. ra)
1 1
i g =0 e i o =)

(iii) If r1, (resp. r3) is a natural endpoint then there is no boundary condition needed.

Let V = {xy, k € N } C (r1,72) be a finite or countable set, where (xy)ren is a strictly
increasing sequence, i.e., xy < xp. for all k£ € N. Assume that

d:= ’:}:]élg(xk_i_l —x) > 0, (2.9)
and
h :=sup(zry1 — Tg) < 00. (2.10)
keN

In addition, let o, = lim_,o, x Which can be finite or not. Next, we will investigate the
following two cases

(a) V has no accumulation point.

(b) V has z as an accumulation point.

3 Computation of the trace form &

We shall start by the first case (a) which said that V' has no accumulation point, i.e.
T = 00. We suppose in this case that interval (rq,79) = (21, 00).

d0i:10.20944/preprints202005.0513.v1
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3.1 V has no accumulation point

Let (ax)ren be a sequence of real numbers such that a;, > 0 for all k£ € N. Let us consider
the atomic measure defined as follows

W= Z ai0g, -

keN

We define now the Hilbert space ¢2(V, 1) equipped with the product given by

(u,v) := Zu(zk)v(:vk) ar and |jul| := /(u,u).

keN

Definition 3.1. We define the 1-capacity Cap associated with the Dirichlet form (£, D)
by
Cap(U) :=inf{&[u] : weD,u>1,m—ae.in U}

for an open set U C I, and
Cap(A) := inf{Cap(U) : U C I open, AC U}

for a Borel set A C I, where

Erlu) == Eu] + /IUQ(x) p(x) dx, for u,v € D.

Lemma 3.2. For all x € V we have Cap({z}) > 0.

Proof. Owing to (2.2), we get by integrating the both hand side on each compact set
K C I that there is a positive constant C'x such that

sup u(r)® < Cxé& [u], Yu € D. (3.1)
zeK

Hence Cap({z}) > é > 0, for every x € V which means that each point of I has a

positive capacity relative to the Dirichlet form (&€, D). O
Let J be the restriction operator defined from D(J) C (€,D,) to £*(V, u) by

D(J) = {u €D, : Zaku(a:k)Q < oo},
keN
Ju:=uly forall u e D(J).

We quote that since functions with finite support are dense in ¢2(V, i), the operator J
has dense range. Obviously ker J = {u € D : u(z;) =0 for all k € N}.

Accordingly we can compute £ following [BBST19, Prop.3.1] and [BBFB14, Th. 1.1]. To
that end we designate by P the orthogonal projection in the Dirichlet space (£, D,) onto
the £-orthogonal complement of ker J.

d0i:10.20944/preprints202005.0513.v1
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In the recurrent case, by virtue of Theorem 1.1 of [BBFB14], the trace form & has
the following description

D(&) :=ran J,
& (Ju, Jv) = & (Pu, Pv) for all u,v € D..
Furthermore, if we suppose that both r; and 7o are non-approachable. Then by [CF12,
prop. 2.2.10] we obtain D, = D). By [CF12, prop. 2.2.8] if both of r; and r, are regular,

then we get D = D, = D).
In this case we will discuss the following Sturm-Liouville problem with Dirichlet condition

/

—(Pu)" + %(Pu)’ +oPu=0 in (r,m)\V, (3.2)
Pu=u onV.

According to Frobenius method ( see [Har99, Chap. 7] ) we have the following discussion

(a) If the both function Z((f)) and o(x) are regular at x = 0, then the first equation of
(3.2) has two distinct power series solution of the form

Pu(x) = Zbkxk, br # 0.
k=1

We can say that for all u € D,, Pu is the unique solution in D, of (3.2).
(b) If the both function % and o(x) are singular at x = 0 and on the other hand
o'(x)

o(z)

x and z%0(x) are regular at 0 then (3.2) has at least one solution of the form

Pu(z) = Z bz, by # 0.
k=1

(c) If 29 5(z), xffl(z) and z%0(x) are singular functions so in this case (3.2) may has

U(xf ) (z)
no solution.

In the transient case, according to [BBST19], Prop.3.1 the trace form £ w.r.t measure u
is give as follows

D(&) :=ran J,
E(Ju, Jv) := E(Pu, Pv) for all u,v € D..

Lemma 3.3. Let u € D. Then Pu is the unique solution in D, of the following Sturm-
Liouville problem

1 /
——(Pu)’' + Z(Puy =0 in (z1,00)\V, (3.3)
g g
Pu=u onV.

7
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Proof. Let uw € D(J). Since P is the £-orthogonal projection from D, onto (KerJ)*:,
then we obtain
E(Pu,v) =0, Yv e C((x1,00)\ V),

which is equivalent to

/

—%(Pu)" - %(Pu)' =0 in the sense of distribution in (x1,00) \ V. (3.4)
By multiplying the latter equation by a positive term % and assuming that coefficients
are smooths on (z1,00) \ V. Then Pu is s-absolutely continuous in (z;,00) \ V' and the
equation (3.4) is fulfilled pointwise on (x,00) \ V.

Pu is the E-orthogonal projection from D, onto (KerJ)*, hence u = Pu everywhere on
V. The converse is obvious. O

Let us now compute explicitly the £-orthogonal projection Pu the solution of the bound-
ary value problem (3.3).

Lemma 3.4. Let u € D. Pu can be expressed in the following way

ff o(r) dr

s([Tx, Tr41])

f:k o(r) dr

Pul®) = = o zera)

(u(rir) —u(zy)) +ulay) + (u(zp1) —ulzy)), (3.5)

for all € [xg, xx41) and k € N, where ¢ is a constant in (xq,00) such that s(c) = 0.

Proof. In fact the differential equation (3.3) has the solution for all & € N as follows
Pu(z) =C) + CQ/ o(r) dr, ¥V ¢>xy, in [zg, Tri], (3.6)
where C} and Cy are two real constants to be determined according to the boundary

conditions.
Then, we have

Tk
Pu(:z:k) = Cl + CQ/ O'(T)dT = U(Z'k),
Tt
Pu(zpy) =C1 + 02/ o(T)dr = u(xpyr), Vr < c < ry,

which leads to get the following expression

Pu(z) = _jfcaﬂ@(xkﬂ) - U(xk)) + u(zy) + ffc o) dr

oy dr T or) dr

(U(fﬂkﬂ) - U(xk)),

(U(l'kﬂ) - U(l"k))

N _%(U(ﬂm) — u(wy)) +ulze) +

f: o(r) dr
[k, Tr41])

for all © € [zg, xk41], and ¢ € (z1, 00). O

d0i:10.20944/preprints202005.0513.v1
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Lemma 3.5. For every u € D,, it holds

ELu] = Z{(Pu)/@;mu@m)#—<Pu>/<xz>u<xk> !

p o(Tpi1) o(zr)

- i ([ o)) (ulanen) o)’ (.7

1

where (Pu)(x;7) and (Pu)(x;,) are the right derivative at x), and the left derivative at
Tyl respectively.

Proof. Let u € D,. A straightforward computation leads to

E[Ju]
2 ’ Qd_x . > W) (2 Qd_x
- [ ey = [ ey
0 expig Pu)"(x o () (Pu) (x ©_(PuV () Pu)(x

=2 {(PU)’($Z+1)U($1€+1); = (Pu)' () u(zy) 1 } (3.8)

0 (Tp+1)
From the expression of Pu we can compute its derivative (Pu)’ for all k € N

! = & u(x —ulx in |xg, x
(Pu)(z) = 3([~Tk7xk+1])( (Tryr) — ulay)), in[zx, e,

Finally we obtain the trace form & of pure jump type

W = X e )
- Z S(Z'kJrl)l_ s(xy) (u(rsn) - u(zk))2 (3.9)
[

In the sequel we shall recall some definition of weighted graphs to construct the discrete
Dirichlet forms.

Definition 3.6. Let (V,b, ¢, u) be a weighted graph consists of a countable set V' defined
as before, a measure p : V' — (0,00) and weight function b : V' x V' — [0, 00) with
b(x,x) =0 for all x € V satisfying the following two properties

(a) b(z,y) =0b(y,x) for all z,y € V.

(b) D yeviyma 0(T,y) <occforallz € V.


https://doi.org/10.20944/preprints202005.0513.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 d0i:10.20944/preprints202005.0513.v1

We define a function ¢ : V' — (0,00) which can be interpreted as a killing term or as
a potential. We say that two vertices z,y € V are neighbors or connected by an edge if
b(xz,y) > 0 and we write z ~ y.

In order to describe the trace form € we have to introduce the next form
For every u € (2(V, ). Set

Qi = 3 s (i) — ()’ (310)

! Trt1) — s(zk)
Then, £ =Q,...,-
Theorem 3.7. Suppose that u(V') = oco. Then
D(E):={uc P(V,u): Qu] < oo}, E[u] = Qu], for all u € D(E).

Proof. Let us rewrite the trace form & as follows

Elau = >N blaw,wy) (ular) — ulz))”

eV xj~voy

= Z b(Tpi1, Tk) (u(xk+1)) - U(Ik))Q

keN
-y ! ’ 3.11
= 2 ) — s () ~ ) 31y
where b(zgy1, 2x) = m >0if opq ~ oy (e Ir>0 @ |xp — o] =7) and
b(p41,2x) = 0 otherwise. Moreover, if pu(V) = 3", yar = 0o and b(xy, 441) > 0 for all
k € N, the condition (A) from [KL12] is fulfilled which yields the assertion. O

Then, the associated self-adjoint discrete operator L is given by

D(L)={ue P(V,p): Lu € 13V, 1)}
Lu= Lu for all u € D(L),

where for all £ € N

Lu(xy) = (3.12)
w(Thi1) u(@r)(s(zp41) — 5(25-1)) 3 u(zg-1)
ar(s(zr1) — s(zr)  ar(s(zpar) — s(aw))(s(an) — s(@i-1))  aw(s(zr) — s(zp-1))

Remark 3.8. Assume V = Z and a; = 1 for all £k € Z. Then the expression (3.12) can
be regarded as a discrete Jacobi operator which has the following form

Ju(k) = A(R)u(k + 1) + B(k)u(k) + A(k — Du(k — 1), Vk € N.  (3.13)

10
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3.2 V has an accumulation point

Now we consider the second case (b) where the sequence (xy)gen of the set V' is convergent
and it has x,, as an accumulation point .

We keep the same definitions as in the third section. We consider again the case where £
is transient Dirichlet form.

For u € D. Pu is the unique solution in D, of the differential equation with boundary

condition
—%(Pu)” + Z—;(Pu)’ 0 i (i) U (2. 00), (3.14)
Pu—tu on¥U {00} = {21, o, s} U {o0).
solution
Putz) = —3 T I () — awn)) + utme) + AT () — uta),

S([ZEk,ZEk+1]) S([xhxk-‘rl])

for all € [zg, xgs1], k € N,

and
ff“ o(T) dr ff o(r) dr

§([00, 0)) §([00, 0))

for all z € (24, 00) and for all fixed arbitrary ¢ € (1, 00).

Pu(z) = U(Te0),

U(Too) + u(Tso) —

We can compute now the trace € which is decomposed into the sum of a non-local
and a killing Dirichlet form.

Lemma 3.9. For every u € D,, it holds

1

Try1) — s(zr)

U200 )
$([Zos, 00))”

(u(wpsr) — ulzr))’ + (3.15)

ElJu) :ZS(

1

Proof. Since the end-point oo is an approachable boundary then we have lim, ., Pu(z) =
lim, o u(z) = 0. Owing to this argument we can obtain the following explicit computa-
tion of £.

11
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Let u € D.. We get

ElJu]

-/ :2<<Pu>'<x>>2% - [Twrwar s

- i | ewwr S5 [ aeawr s

= ki: / + ( x 33) + ”I(xzf((]; ;;)/@:)) (Pu)(z)dz + kf; <PU)’(:(>gu)(x) i
N /j( ol (x) , o'z Z—((Z;)( )) (Pu)(x)dz + (Pu)’(:ggu)(x)’?m

= i {(PU)/(xk-',—l)u(karl)0(x1+1) - (Pu>'(x;)u(xk)a(;>} (P “)’éﬂ(ﬁz?wm)

_ Z 1 (u<xk+1) B U(J?k))Q B (Pu)’(xoo)u(xoo) (3.16)

s(xri1) — () 0(To0)

where (Pu)(z;7) and (Pu)’(2,,) are the right derivative at ), and the left derivative at
Try1 respectively.
Since

o(z)
§([%00, 0))

(Pu)'(x) =

Therefore we obtain

U(Too), VI € (Too,0),

2 “(IOO)z

E[Ju] = ) (w(@psr) — u(zy))” + o 00))

o
P S «Tk+1 - S xk

1

O

3.3 Trace of the Dirichlet form related to one-dimensional dif-
fusion process w.r.t mixed type measure

Let us now consider an other case of the sequence of negative number (zy), is convergent
to the point 0 and so the set V' C (r1,0) has 0 as an accumulation point. We consider a
new measure on (r1,00) of mixed type, i.e. measure which has an absolutely continuous
part and a discrete part as follows

M= Hdisc + Habs

where
o

Udise = Zakd,;k, Varp >0,k € N and  pigps = 1(0,00)0(x)d.
k=1

12
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Hence F' = {xy, k € N} U[0,00) is the support of the measure p. In order to compute
the trace of £ w.r.t measure p we shall define the trace operator J by

J:DNL*F,p) — L*(F,p), Ju=u,.
Obviously, we have
Ker(J):={u €D : u(zx) =0,Yk €N, vy, , =0}
Then the Sturm-Liouville problem has Pu a unique solution of
Lpwy T Puy =0 D(mk,xk+1), (3.17)
o o -
Pu=wu onVU(0,00).

We can express the general solution of Pu in the same way as the third section

ff’“ o(r) dr ff o(r) dr

P = o m) (o 241

(w(@pgr) —u(zp)) +ulzy) + (w(@pgr) —u(zr)), (3.18)

for all z € [zg, xr41] and k € N, and ¢ is an arbitrary fixed point in (71, c0).

Lemma 3.10. Let v € D. It holds

o0

1

$(Tg41) — s(xr)

E[Ju] =

> (w(zper) — ulze))’ + /0 (@) (3.19)

Proof. A straightforward computation leads

&Mz/ﬂww<wdx=/ﬂwwmw%%

o(x) ) o(x

l?l @rs+ [Py

[
hE

- 1 o 1 ©
= ; { (7w xkﬂ)—a(mkﬂ) — (Pu)'(x}, )u(xk)a(xk)} _|_/0 (W (z)) e
) N
- ; S(!I?k+1) — s(zg) (u<x’““) a u(xk)) +/0 (u'(x)) o(z)
(3.20)
O
Remark 3.11. Let u € L*(F, u). Set
3 R L
Z s(zp1) — s(xp) (u(zppr) — ulzr)) —l—/o (u'(x)) @) (3.21)

k=1

Since Q is closed, then £ = Qlrans
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We introduce D,,,, the space of the trace form & by

P = {u € LX(F 1) : u € AChe(]0,00) (u(@rsr) —ula))” / * (u'(x))*dx

s(Tht1) — ()

HM%%

We denote by £¢) and £© the quadratic forms such that
dom(ED) = dom(£'9) = Dpaa

and

g _ Z ( ! (w(@psr) — U(xk))2,

P Tt1) — 8(T)

where £ and £) are the strongly local type and non-local type Dirichlet forms respec-
tively.

We quote that the trace of the Dirichlet form &€ decomposed into £© and £¢). In fact,
let us stress that this decomposition is mentioned by [BM] for dimension n = 3.

4 Conservativeness of the trace of Dirichlet form re-
lated to one-dimensional diffusion process

Let us now start with the case where the set V' has no accumulation point.

Theorem 4.1. Assume that p is infinite. Then the discrete Dirichlet form on the graph
(V,b) is conservative if and only if

k

Z $(wpi1) — s(zy)) Zaj = o0. (4.1)

k=1 j=1

Proof. The conservativeness of the Dirichlet form £ is equivalent to the fact that the
equation 3
Lu+aou=0, a>0, uel>™, (4.2)

has no nontrivial bounded solution (we refer the reader to [KL12]).

We rewrite
Lu(x) + au(zy) = aik D (slw) = s() (ulee) — () +oule) =0, (43)

This leads to,
u(@s) = (1 + aai(s(@s) = s(@1)))ul21), (4.4)

14

d0i:10.20944/preprints202005.0513.v1


https://doi.org/10.20944/preprints202005.0513.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 d0i:10.20944/preprints202005.0513.v1

and
(o) = senale) ~wloin) , (o)~ o)) o)) | o - iy
for all & > 2.

Thus by induction and the recursive formula we get

—ul\xr = 8<Ik+1)_8(l‘k)u$ — ulxr apo|\sS\T — S\ u\x
w(pr1) — u(zy) s(mk)—s(xk_l)( (2k) = u(wp—1)) + apa(s(@pe) — s(ap))ulwr)

_ S(wpa) — s(a) (w(wa) — u(z1)) + a(s(@pr1) — s(z)) Zaj u(z;)

s(w2) — s(1)

= ara(s(zep) — s(zi))u(@r) + a(s(@pr) — s(z)) Z aj u(z;)
= a(s(zpr) — s(zr)) Zaj u(xj), Yk > 1. (4.6)

Assume that the sequence (u(xy))y is strictly monotone increasing. Accordingly, mak-
ing use of formula (4.6) we derive

w(wpsr) — u(zr) < (a(s(@prr) — s(zr)) Z a;)u(zy), Yk > 1, (4.7)
and
—USZS) <1+ afs(@psr) — s(zr)) Zaj, Vk>1. (4.8)

Finally we achieve

u(rni1) < ulxq) H (1 + a(s(zrs1) — s(zr)) Z a;) (4.9)

Obviously the latter product is finite provided Y 77, (s(zx41) — s(zx)) 2?21 a; < oo and
then we get a bounded non-zero solution.

In the other sense, we suppose that > oo, (s(zx11) — s(zk)) Z?Zl a; = 0o. Then summing
over k in formula (4.6) and keeping in mind that the sequence (u(z))ken is increasing.

We obtain

k

w(ens) —u(m) = a Y (s(pe) — s(z) Y aju(z;). (4.10)

k=1 Jj=1
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Hence
k

s(zgy1) —sxk))Zaj—)ooaSN—)oo,
k:l Jj=1
which finishes the proof. O

Mz

u(rny) > au(zy)

Theorem 4.2. If i is a finite measure. Then

£l = Y (i) — ()

~ s(xr41) — s(zk)
18 not conservative.

Proof. Since p is finite, i.e., p({zg, k € N}) =377 a; < oo, then conservativeness and
recurrence are equivalent. According to [FOT11] transience property is inherited by the
trace form which yields that £ is transient and hence it is not conservative. [

For the other case where V' has x., as an accumulation point. We remark that second
trace form & is decomposed into a non-local type and killing Dirichlet forms. Hence we
have

Theorem 4.3. Assume thatV is a finite set. Then there exists N € N such that xo. = xy,
D =RY and for each u € RN

N—-1 9

D p— )(u<xk+l>—u<xk>)2+M

— 5(xpi1) — s(xn s([zn, 00))

18 not conservative.

Proof. Non-conservativeness of the trace form & follows from the fact that 1 € D and
517 1
E = e 70 =

Theorem 4.4. Assume that set V has an infinite elements. Then
=1

for each uw € D is not conservative.

u(xOO)2
$([7o0, 00))

(u(mrs) — ular)® + (4.11)

s(xpr1) — s(xg)

Proof. For any sequence (ty,)peny C D with 0 < u, < 1 and u, 1 1 g — a.e., we have for
every v € D

. 5 o - (un(xk—i—l) - un<$k')) (U<xk‘+1> - U(Ik)) un(xm)v(xOO)
nh—{Eog(un’U) n 7}1—{20 ; s(xrpr1) — s(xy) - 5([To0, 00))

By monotone convergence theorem we get

s V(Zoo)
lim &(u,,v) =0+ ——F"—= #0.
A S ) =0 S ) 7
Since v # 0 on I, we get the non-conservativeness of £ O]
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5 Application: A discretization of the one-dimentional
diffusion of Bessel’s process related to Dirichlet
forms

We start with the case that the sequence (z)ren diverge and so it has no accumulation
point.

For each n € N, n > 2. We consider the speed measure m defined on I = (0, 00) by
dm(z) = 22*'dx, where v = g -1

and we define the scaling function s as follows

1
ds(x) = ——dx

o v+l

Hence, we are concerned with the space (€, D) defined on L?(I,2x*'dz) by

D =Dy N L*(I,22* 1 dx), E[u] == / (u/(2))22*dx  for all u € D
0
where
Dy = {u: (0,00) = R : wis abs. cont. w.r.t ds, / (u'(2))22x*dx < oo}.
0

Since n > 2 the Bessel process is transient which yields that associated Dirichlet form is
transient too.

We can easily check that for n > 3, (i.e. v > %) we obtain ;1 = 0 is a non-approachable
boundary, i.e., s(0) = oo, and 7, = oo is an approachable boundary, i.e., s(00) < oc.

According to the Feller’s boundary classification, 0 is an entrance boundary. Indeed,

I';(0) = oo and T'y(0) = % < 00, for all constant ¢ > 0. In these circumstances, we

define the the Bessel operator £ with index v on the half-line by

E'——l d? _2v+1d
T 2dx? 2¢ dx’

Let L be the positive self-adjoint operator associated with the form £ which is given by

1 2v+1
DL _ D: / A ocI 1 2u+1, /1 — a2t
(L)y={ue u € AC,.(I), xﬁ)r}r:v u'(x) =0, Lu S U o

1
for all ——.
orall v> 5

u' € L*(I,m)}
Lu = Lu forallue€ D(L).

In the following we consider the discrete measure defined as the first section by

n= Z ak5xk

keN

which is supported by an infinite countable set V' = {x}, k € N } C (0, 00).
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Remark 5.1. In our case for n > 2, r; = {0} is an entrance boundary and it is well
known that Cap({0}) = 0 (we refer to [JYCO09] for more details) and for each element
x € V we have Cap({x}) > 0.

Therefore, as before we get Pu is the unique solution in D of the Sturm-Liouville
problem
1 2v+1
u _—
2z

(Pu)'=0 in (0,00)\V,
Pu=u onlV,
which possessed the general solutions for all £ € N
Pu(z) =C) + C’g/c ) dr, Ye>0in [z, Tpeq], (5.1)
and

PU,(QI) = 017 n (wal]a

where C] and Cy are two real constants.
Finally, to compute the trace of the general Bessel’s Dirichlet form we have to apply the
density o(z) = —57 of the scaling function s to

ISV vy

k=1

(5, Trra]) ($k+1) - U(l‘k))2~

Hence, we get

$k+1 dx) (u(xk-H) - u(xk))

$2u+1

i

xk—i—l 5’31@ ( 2
Try1) — u(xy)
—1 '77k+1 - xk ) ( )

The trace of the Dirichlet form & is defined by

Di={uel(V,p) : 22 D1 Tt )(<xk+1>—u<xk>)2<oo}

xkﬂ - xk

Zz xk“ x’“ (w@rpr) — u(z))’. (5.2)

xk+1 T, )

In this case, we can determine the discrete Bessel operator associated with trace form &

as follows
for each k£ € N

fu— v xiyxiy1 u(zp-1) n v ( l'i”fti’;l 5‘%“’%”1 )u( ) v 5’3%”37%11 U(Tpy1)
- - L) —
ak(zk - xk—l) ag ($k+1 - xk‘ ’) (xk: - wk—l) ak@iﬁﬂ - xiy)

(5.3)
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For the conservativeness property of the general Bessel’s Dirichlet forms we have following
result as an application of the Theorem 3.1. where the weight function here
2v,.2v

xVx
k Tyl . .
b(xy, Try1) = ﬁ if x, ~ x,.1 and 0 otherwise.

L1 — Tk

If 1 is infinite. We can say that Trace of the general Bessel’Dirichlet form on the graph
(V,b) is conservative if and only if

o0 2v 21/ k
1(zh, —x

g — k“ i E aj = 00. (5.4)
1% .T fL‘

k=1 k k+1 =1

For we keep in same example but in this case we suppose that sequence (x)ren
converge and has x,, as an accumulation point. We conclude that trace of Dirichlet form
£ is decompose into non-local type and killing term as follows

L 1 i) — ulz) u(To0)”
= 2 Sy st () ) SR
= Z 21/% (w(@psr) — u(xk)) + 2. u (14 ). (5.5)

1 (@i — 7))

B
Il

For the conservativeness property, if the set V has a finite element so in this case £ is not
recurrent and hence it is not conservative.
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