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Abstract

We compute explicitly trace of one-dimensional diffusion process which can be
regarded as a Dirichlet form on graphs and we study its conservativeness prop-
erty. Finally, we give an example of a discretization of one-dimensional diffusion of
Bessel’s process with order ν.

1 Introduction

Throughout this paper we are concerned with a one-dimensional diffusion process gener-
ated by the Feller operator d

dm
d
ds

which is itself associated with the Dirichlet forms via
Kato’s representation theorem. We emphasize that such diffusion process on an open
interval I can be characterized by two important measures which called scale function s
and speed measure dm. Further we claim that latter measure is absolutely continuous
w.r.t Lebesgue measure dx and it is supported by I.

Let us recall that concept and construction of traces are established by Fukushima-
Oshima-Takeda (see [FOT11]), we can see that there are various methods elaborated to
construct traces. For instance we refer to [BBST19] which the authors elaborate a new
method for constructing traces by using monotone convergence of quadratic forms and
the canonical decomposition into regular and singular part.
Conservativeness is the most important global property of diffusion processes and Dirich-
let forms which has many physical interpretations, for example we can say that a process
is conservative or stochastic completeness when it has infinite lifetime with probability
equals one. There are many authors like Masamune et al in [Mas11] which investigate
conservative property of symmetric jump processes. In [KL12] yields another characteri-
zation for Dirichlet forms on graphs.
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The main goal of this paper is to determine the explicit expression for some Dirichlet
forms on graphs which can be regarded as traces of one-dimensional diffusion related to a
discrete measure and we study when conservativeness property is inherited by computing
its trace form. In order to compute explicitly the trace of one-dimensional diffusion on a
countable set we shall applying the method developed in [BBFB14, Theorem 1] for the
transient case, where the authors give an explicit description of the trace of E1. We are
interested by the fact that V is a countable set which may has or not an accumulation
point. Hence we give an explicit computation of the trace of Dirichlet form with respect to
the convergence or divergence of the sequence (xk)k∈N. For our work we remark that when
the sequence is convergent we deduce that trace of the Dirichlet form admits a decompo-
sition into non-local and killing terms which it allows us to conclude its conservativeness
property. Thereby, we compute the trace for the same reason that sequence converge
at has 0 as an accumulation point and in this way we choose a mixed type measure in
order to obtain a decomposition of the trace into strongly local type and non-local type
Dirichlet forms.

The paper is organized as follows. In the section 2 we first introduce some necessary
definitions and notations of Dirichlet forms related to one-dimensional diffusion processes
as well as Feller’s classical properties of boundaries. Section 3 is devoted to compute the
trace of Dirichlet forms on countable infinite set. In section 4 we study conservativeness
property of Dirichlet forms on graphs. At the end we give an application of trace of
n-dimensional Bessel’s process on the right half line (0,∞) which can be interpreted as
a discretization of Bessels operator with it still stable by its conservation property. We
conclude finally that convergence of the sequence (xk)k has an important role to study
conservative property of the trace of Dirichlet form.

2 Framework and basic notations

We start by introducing some notations. Let I := (r1, r2) where −∞ ≤ r1 < r2 ≤ ∞. Let
us consider a scaling function s : I → R, i.e. s is a strictly increasing continuous function.
Thus s has the following representation

s(x) =

∫ x

c

σ(t) dt, ∀x ∈ I,

where σ > 0 and σ ∈ L1
loc(I). Obviously ds(x) = σ(x) dx.

Let us designate by ACloc(I) the space of locally absolutely continuous function on I
and by ACs(I) the space of s-absolutely continuous functions on I, i.e. for any function
u on I there exists an absolutely continuous function φ such that u = φ ◦ s.
Let us consider a speed measure m with full support I defined by

dm(x) = ρ(x) dx,

where ρ > 0 and ρ ∈ L1
loc(I).
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We designate by

D(s) :=
{
u : I → R : u ∈ ACs(I),

∫ r2

r1

(u′(x))2
dx

σ(x)
<∞

}
Let us define a Dirichlet form E with domain in L2(I, ρ dx) based on the scaling function
s and its associated space D by

D := D(s) ∩ L2(I, ρ dx) E [u] :=

∫ r2

r1

(u′(x))2
dx

σ(x)
for all u ∈ D. (2.1)

Lemma 2.1. Every function from D is continuous on I.

Proof. An elementary identity leads to

u(ξ)− u(y) =

∫ ξ

y

du

ds
(x) ds(x), ∀ r1 < ξ < y < r2.

By Hölder inequality, we get(
u(ξ)− u(y)

)2 ≤ s([y, ξ]).E [u], ∀ r1 < ξ < y < r2, (2.2)

which is implies that D ⊂ C(I) .

2.1 Feller’s boundary classification

Let us introduce the following quantities

Γ1(x) =

∫ x

c

m((c, y))ds(y) (2.3)

and

Γ2(x) =

∫ x

c

s((c, y))dm(y), (2.4)

for all r1 < c < r2.
Therefore, the boundaries r1 and r2 of I can be classified w.r.t the Feller operator d

dm
d
ds

into four classes as follows (we refer the reader to [Ito06, p.151-152] or [Man69, p.24-25])

(a) ri a regular boundary if Γ1 <∞, Γ2 <∞,

(b) ri an exit boundary if Γ1 <∞, Γ2 =∞,

(c) ri an entrance boundary if Γ1 =∞, Γ2 <∞,

(d) ri a natural boundary if Γ1 =∞, Γ2 =∞.

Definition 2.2. We call that boundary r1, (resp. r2) is approachable whenever

s(r1) > −∞ (resp. s(r2) <∞).
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According to the inequality (2.2), if r1, (resp. r2) is approachable, then for any element
from D(s) we have u(r1) = limx→r1,x∈I u(x) < ∞, (resp. u(r2) = limx→r2,x∈I u(x) < ∞)
and u ∈ C([r1, r2)), (resp. u ∈ C((r1, r2])).
One has in particular that space D(s) is a uniformly dense sub-algebra of C([r1, r2]) if both
r1 and r2 are approachable (for more details we refer to [CF12, Chap. II] ).

Definition 2.3. We call that boundary r1 (resp. r2) is called regular whenever

it is approachable and m((r1, c)) <∞, ( resp. m((c, r2)) <∞) ∀ c ∈ (r1, r2).

2.2 Extended Dirichlet form

We shall now set De the extended Dirichlet space of E . By definition u ∈ De if and only if
there exists a sequence {un} ⊂ D such that it is E-Cauchy and limn→∞ un = u, m− a.e.
[FOT11, Theorem 2.1.7] show that every element in De admits a quasi-continuous repre-
sentative. We maintain the notation E for E extended to De. Then (De, E) is a Hilbert
space whenever E is a scalar product on D . By [FOT11], it is known that the transience
of (E ,D), (i.e., u ∈ De, E(u, u) = 0 ⇒ u = 0), is equivalent to (De, E) is a real Hilbert
space.

In the following let us consider the space

D(s)
0 := {u ∈ D(s) : u(ri) = 0 whenever ri is approachable} (2.5)

To determine the extended Dirichlet form in our case we shall using the following theorem
which is mentioned by [Fuk10] or [CF12]

Theorem 2.4.
(E ,D) = (E (s),D(s)

0 ∩ L2(I,m)) (2.6)

is a regular, strongly local, irreducible Dirichlet form on L2(I,m).
Then

De = D(s)
0 , E = E (s). (2.7)

If both r1 and r2 are approachable but non-regular (see [CF12, Prop. 2.2.9] ) the

Dirichlet form (E ,D) is called transient and we have also D ⊂ De = D(s)
0 .

However, it is well known that E is transient if and only if either r1 or r2 is approachable
and non-regular. Otherwise it is recurrent ( see [CF12, Theorem 2.2.11] ) .
By virtue of classical Feller’s test of non-explosion, E is conservative if and only if ( see
[CF12, p. 126] and the discussion made there)∫

(r1,c)

m((x, c))ds(x) =

∫
(c,r2)

m((c, x))ds(x) =∞, ∀ r1 < c < r2. (2.8)

In this case, the boundaries r1 and r2 are non-exit points.
Owing to Feller’s canonical form, we can define the differential operator L on I by

L := − d

dm

d

ds
= −1

ρ

d

dx

(
1

σ

d

dx

)
= − 1

ρσ

d2

dx2
+

σ′

ρσ2

d

dx
.
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It is well known that E is a regular strongly local Dirichlet form in L2(I, ρ dx) (hence
in particular closed and densely defined). Moreover, the positive self-adjoint operator
associated with the form E via Kato’s representation theorem, which we denote by L, is
given by (see [LIN04] and [FOT11])

D(L) =
{
u ∈ D : u′ ∈ ACloc(I), Lu = − 1

ρσ
u′′ +

σ′

ρσ2
u′ ∈ L2(I, ρ dx),

with boundary conditions at r1 and r2
}

Lu =Lu for all u ∈ D(L).

Remark 2.5. We have the following discussion about the boundary conditions at r1 and
r2 on D(L)

(i) If r1, (resp. r2) is an exit endpoint then we have the boundary condition at r1,
(resp. r2)

lim
x→r1

u(x) = 0, (resp. lim
x→r2

u(x) = 0).

(ii) If r1, (resp. r2) is an entrance endpoint then we have the boundary condition at r1,
(resp. r2)

lim
x→r1

1

σ(x)

du(x)

dx
= 0, (resp. lim

x→r2

1

σ(x)

du(x)

dx
= 0).

(iii) If r1, (resp. r2) is a natural endpoint then there is no boundary condition needed.

Let V = {xk, k ∈ N } ⊂ (r1, r2) be a finite or countable set, where (xk)k∈N is a strictly
increasing sequence, i.e., xk < xk+1 for all k ∈ N. Assume that

d := inf
k∈N

(xk+1 − xk) > 0, (2.9)

and
h := sup

k∈N
(xk+1 − xk) <∞. (2.10)

In addition, let x∞ = limk→∞ xk which can be finite or not. Next, we will investigate the
following two cases

(a) V has no accumulation point.

(b) V has x∞ as an accumulation point.

3 Computation of the trace form Ě
We shall start by the first case (a) which said that V has no accumulation point, i.e.
x∞ =∞. We suppose in this case that interval (r1, r2) = (x1,∞).
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3.1 V has no accumulation point

Let (ak)k∈N be a sequence of real numbers such that ak > 0 for all k ∈ N. Let us consider
the atomic measure defined as follows

µ =
∑
k∈N

akδxk .

We define now the Hilbert space `2(V, µ) equipped with the product given by

(u, v) :=
∑
k∈N

u(xk)v(xk) ak and ‖u‖ :=
√

(u, u).

Definition 3.1. We define the 1-capacity Cap associated with the Dirichlet form (E ,D)
by

Cap(U) := inf{E1[u] : u ∈ D, u ≥ 1,m− ae. in U}

for an open set U ⊂ I, and

Cap(A) := inf{Cap(U) : U ⊂ I open, A ⊂ U}

for a Borel set A ⊂ I, where

E1[u] := E [u] +

∫
I

u2(x) ρ(x) dx, for u, v ∈ D.

Lemma 3.2. For all x ∈ V we have Cap({x}) > 0.

Proof. Owing to (2.2), we get by integrating the both hand side on each compact set
K ⊂ I that there is a positive constant CK such that

sup
x∈K

u(x)2 ≤ CKE1[u], ∀u ∈ D. (3.1)

Hence Cap({x}) ≥ 1
CK

> 0, for every x ∈ V which means that each point of I has a
positive capacity relative to the Dirichlet form (E ,D).

Let J be the restriction operator defined from D(J) ⊆ (E ,De) to `2(V, µ) by

D(J) :=
{
u ∈ De :

∑
k∈N

aku(xk)
2 <∞

}
,

Ju := u|V for all u ∈ D(J).

We quote that since functions with finite support are dense in `2(V, µ), the operator J
has dense range. Obviously ker J =

{
u ∈ D : u(xk) = 0 for all k ∈ N

}
.

Accordingly we can compute Ě following [BBST19, Prop.3.1] and [BBFB14, Th. 1.1]. To
that end we designate by P the orthogonal projection in the Dirichlet space (E ,De) onto
the E-orthogonal complement of ker J .
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In the recurrent case, by virtue of Theorem 1.1 of [BBFB14], the trace form Ě1 has
the following description

D(Ě1) := ran J,

Ě1(Ju, Jv) := E1(Pu, Pv) for all u, v ∈ De.

Furthermore, if we suppose that both r1 and r2 are non-approachable. Then by [CF12,
prop. 2.2.10] we obtain De = D(s). By [CF12, prop. 2.2.8] if both of r1 and r2 are regular,
then we get D = De = D(s).
In this case we will discuss the following Sturm-Liouville problem with Dirichlet condition

−(Pu)′′ +
σ′

σ
(Pu)′ + σPu = 0 in (r1, r2) \ V, (3.2)

Pu = u on V.

According to Frobenius method ( see [Har99, Chap. 7] ) we have the following discussion

(a) If the both function σ′(x)
σ(x)

and σ(x) are regular at x = 0, then the first equation of

(3.2) has two distinct power series solution of the form

Pu(x) =
∞∑
k=1

bkx
k, bk 6= 0.

We can say that for all u ∈ De, Pu is the unique solution in De of (3.2).

(b) If the both function σ′(x)
σ(x)

and σ(x) are singular at x = 0 and on the other hand

xσ
′(x)
σ(x)

and x2σ(x) are regular at 0 then (3.2) has at least one solution of the form

Pu(x) =
∞∑
k=1

bkx
k+l, bk 6= 0.

(c) If σ′(x)
σ(x)

, σ(x), xσ
′(x)
σ(x)

and x2σ(x) are singular functions so in this case (3.2) may has
no solution.

In the transient case, according to [BBST19], Prop.3.1 the trace form Ě w.r.t measure µ
is give as follows

D(Ě) := ran J,

Ě(Ju, Jv) := E(Pu, Pv) for all u, v ∈ De.

Lemma 3.3. Let u ∈ D. Then Pu is the unique solution in De of the following Sturm-
Liouville problem

− 1

σ
(Pu)′′ +

σ′

σ2
(Pu)′ = 0 in (x1,∞) \ V, (3.3)

Pu = u on V.
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Proof. Let u ∈ D(J). Since P is the E-orthogonal projection from De onto (KerJ)⊥,
then we obtain

E(Pu, v) = 0, ∀v ∈ C∞c ((x1,∞) \ V ),

which is equivalent to

− 1

σ
(Pu)′′ +

σ′

σ2
(Pu)′ = 0 in the sense of distribution in (x1,∞) \ V. (3.4)

By multiplying the latter equation by a positive term 1
ρ

and assuming that coefficients

are smooths on (x1,∞) \ V . Then Pu is s-absolutely continuous in (x1,∞) \ V and the
equation (3.4) is fulfilled pointwise on (x1,∞) \ V .
Pu is the E-orthogonal projection from De onto (KerJ)⊥, hence u = Pu everywhere on
V . The converse is obvious.

Let us now compute explicitly the E-orthogonal projection Pu the solution of the bound-
ary value problem (3.3).

Lemma 3.4. Let u ∈ D. Pu can be expressed in the following way

Pu(x) = −
∫ xk
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)−u(xk)

)
+u(xk) +

∫ x
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)−u(xk)

)
, (3.5)

for all x ∈ [xk, xk+1] and k ∈ N, where c is a constant in (x1,∞) such that s(c) = 0.

Proof. In fact the differential equation (3.3) has the solution for all k ∈ N as follows

Pu(x) = C1 + C2

∫ x

c

σ(τ) dτ, ∀ c > x1, in [xk, xk+1], (3.6)

where C1 and C2 are two real constants to be determined according to the boundary
conditions.

Then, we have

Pu(xk) = C1 + C2

∫ xk

c

σ(τ)dτ = u(xk),

Pu(xk+1) = C1 + C2

∫ xk+1

c

σ(τ)dτ = u(xk+1), ∀r1 < c < r2,

which leads to get the following expression

Pu(x) = −
∫ xk
c
σ(τ) dτ∫ xk+1

xk
σ(τ) dτ

(
u(xk+1)− u(xk)

)
+ u(xk) +

∫ x
c
σ(τ) dτ∫ xk+1

xk
σ(τ) dτ

(
u(xk+1)− u(xk)

)
= −

∫ xk
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)− u(xk)

)
+ u(xk) +

∫ x
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)− u(xk)

)
,

for all x ∈ [xk, xk+1], and c ∈ (x1,∞).
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Lemma 3.5. For every u ∈ De, it holds

Ě [Ju] =
∞∑
k=1

[
(Pu)′(x−k+1)u(xk+1)

1

σ(xk+1)
− (Pu)′(x+k )u(xk)

1

σ(xk)

]
=

∞∑
k=1

(∫ xk+1

xk

σ(τ)dτ

)−1 (
u(xk+1)− u(xk)

)2
(3.7)

where (Pu)′(x+k ) and (Pu)′(x−k+1) are the right derivative at xk and the left derivative at
xk+1 respectively.

Proof. Let u ∈ De. A straightforward computation leads to

Ě [Ju]

=

∫ r2

r1

((Pu)′(x))2
dx

σ(x)
=

∫ ∞
x1

((Pu)′(x))2
dx

σ(x)

=
∞∑
k=1

∫ xk+1

xk

(
−(Pu)′′(x)

σ(x)
+
σ′(x)(Pu)′(x)

σ(x)2

)
(Pu)(x)dx+

∞∑
k=1

(Pu)′(x)(Pu)(x)

σ(x)
|xk+1
xk

=
∞∑
k=1

[
(Pu)′(x−k+1)u(xk+1)

1

σ(xk+1)
− (Pu)′(x+k )u(xk)

1

σ(xk)

]
(3.8)

From the expression of Pu we can compute its derivative (Pu)′ for all k ∈ N

(Pu)′(x) =
σ(x)

s([xk, xk+1])

(
u(xk+1)− u(xk)

)
, in [xk, xk+1].

Finally we obtain the trace form Ě of pure jump type

Ě [Ju] =
∞∑
k=1

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
=

∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
(3.9)

In the sequel we shall recall some definition of weighted graphs to construct the discrete
Dirichlet forms.

Definition 3.6. Let (V, b, c, µ) be a weighted graph consists of a countable set V defined
as before, a measure µ : V −→ (0,∞) and weight function b : V × V −→ [0,∞) with
b(x, x) = 0 for all x ∈ V satisfying the following two properties

(a) b(x, y) = b(y, x) for all x, y ∈ V .

(b)
∑

y∈V ;y∼x b(x, y) <∞ for all x ∈ V .
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We define a function c : V −→ (0,∞) which can be interpreted as a killing term or as
a potential. We say that two vertices x, y ∈ V are neighbors or connected by an edge if
b(x, y) > 0 and we write x ∼ y.

In order to describe the trace form Ě we have to introduce the next form
For every u ∈ `2(V, µ). Set

Q[u] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
. (3.10)

Then, Ě = Q|ranJ .

Theorem 3.7. Suppose that µ(V ) =∞. Then

D(Ě) := {u ∈ `2(V, µ) : Q[u] <∞}, Ě [u] = Q[u], for all u ∈ D(Ě).

Proof. Let us rewrite the trace form Ě as follows

Ě [Ju] =
∑
xk∈V

∑
xj∼xk

b(xk, xj)
(
u(xk))− u(xj)

)2
=

∑
k∈N

b(xk+1, xk)
(
u(xk+1))− u(xk)

)2
=

∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
(3.11)

where b(xk+1, xk) = 1
s(xk+1)−s(xk)

> 0 if xk+1 ∼ xk (i.e. ∃r > 0 : |xk+1 − xk| = r) and

b(xk+1, xk) = 0 otherwise. Moreover, if µ(V ) =
∑

k∈N ak = ∞ and b(xk, xk+1) > 0 for all
k ∈ N, the condition (A) from [KL12] is fulfilled which yields the assertion.

Then, the associated self-adjoint discrete operator Ľ is given by

D(Ľ) =
{
u ∈ `2(V, µ) : L̃u ∈ `2(V, µ)

}
Lu = L̃u for all u ∈ D(Ľ),

where for all k ∈ N

L̃u(xk) = (3.12)

− u(xk+1)

ak(s(xk+1)− s(xk))
+

u(xk)(s(xk+1)− s(xk−1))
ak(s(xk+1)− s(xk))(s(xk)− s(xk−1))

− u(xk−1)

ak(s(xk)− s(xk−1))
.

Remark 3.8. Assume V = Z and ak = 1 for all k ∈ Z. Then the expression (3.12) can
be regarded as a discrete Jacobi operator which has the following form

J u(k) := A(k)u(k + 1) +B(k)u(k) + A(k − 1)u(k − 1), ∀k ∈ N. (3.13)
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3.2 V has an accumulation point

Now we consider the second case (b) where the sequence (xk)k∈N of the set V is convergent
and it has x∞ as an accumulation point .
We keep the same definitions as in the third section. We consider again the case where E
is transient Dirichlet form.
For u ∈ D. Pu is the unique solution in De of the differential equation with boundary
condition

− 1

σ
(Pu)′′ +

σ′

σ2
(Pu)′ = 0 in

∞⋃
k=1

(xk, xk+1) ∪ (x∞,∞), (3.14)

Pu = u on V ∪ {∞} := {x1, ..., x∞} ∪ {∞}.

solution

Pu(x) = −
∫ xk
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)− u(xk)

)
+ u(xk) +

∫ x
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)− u(xk)

)
,

for all x ∈ [xk, xk+1], k ∈ N,

and

Pu(x) =

∫ x∞
c

σ(τ) dτ

s([x∞,∞))
u(x∞) + u(x∞)−

∫ x
c
σ(τ) dτ

s([x∞,∞))
u(x∞),

for all x ∈ (x∞,∞) and for all fixed arbitrary c ∈ (x1,∞).

We can compute now the trace Ě which is decomposed into the sum of a non-local
and a killing Dirichlet form.

Lemma 3.9. For every u ∈ De, it holds

Ě [Ju] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

u(x∞)2

s([x∞,∞))
. (3.15)

Proof. Since the end-point∞ is an approachable boundary then we have limx→∞ Pu(x) =
limx→∞ u(x) = 0. Owing to this argument we can obtain the following explicit computa-
tion of Ě .
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Let u ∈ De. We get

Ě [Ju]

=

∫ r2

r1

((Pu)′(x))2
dx

σ(x)
=

∫ ∞
x1

((Pu)′(x))2
dx

σ(x)

=
∞∑
k=1

∫ xk+1

xk

((Pu)′(x))2
dx

σ(x)
+

∫ ∞
x∞

((Pu)′(x))2
dx

σ(x)

=
∞∑
k=1

∫ xk+1

xk

(
−(Pu)′′(x)

σ(x)
+
σ′(x)(Pu)′(x)

σ(x)2

)
(Pu)(x)dx+

∞∑
k=1

(Pu)′(x)(Pu)(x)

σ(x)
|xk+1
xk

+

∫ ∞
x∞

(
−(Pu)′′(x)

σ(x)
+
σ′(x)(Pu)′(x)

σ(x)2

)
(Pu)(x)dx+

(Pu)′(x)(Pu)(x)

σ(x)
|∞x∞

=
∞∑
k=1

[
(Pu)′(x−k+1)u(xk+1)

1

σ(xk+1)
− (Pu)′(x+k )u(xk)

1

σ(xk)

]
− (Pu)′(x∞)u(x∞)

σ(x∞)

=
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2 − (Pu)′(x∞)u(x∞)

σ(x∞)
(3.16)

where (Pu)′(x+k ) and (Pu)′(x−k+1) are the right derivative at xk and the left derivative at
xk+1 respectively.
Since

(Pu)′(x) = − σ(x)

s([x∞,∞))
u(x∞), ∀x ∈ (x∞,∞),

Therefore we obtain

Ě [Ju] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

u(x∞)2

s([x∞,∞))
.

3.3 Trace of the Dirichlet form related to one-dimensional dif-
fusion process w.r.t mixed type measure

Let us now consider an other case of the sequence of negative number (xk)k is convergent
to the point 0 and so the set V ⊂ (r1, 0) has 0 as an accumulation point. We consider a
new measure on (r1,∞) of mixed type, i.e. measure which has an absolutely continuous
part and a discrete part as follows

µ := µdisc + µabs,

where

µdisc =
∞∑
k=1

akδxk , ∀ak > 0, k ∈ N and µabs = 1(0,∞)ρ(x)dx.
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Hence F = {xk, k ∈ N} ∪ [0,∞) is the support of the measure µ. In order to compute
the trace of E w.r.t measure µ we shall define the trace operator J by

J : D ∩ L2(F, µ)→ L2(F, µ), Ju = u|F .

Obviously, we have

Ker(J) := {u ∈ D : u(xk) = 0, ∀k ∈ N, u|(0,∞)
= 0}.

Then the Sturm-Liouville problem has Pu a unique solution of

− 1

σ
(Pu)′′ +

σ′

σ2
(Pu)′ = 0 in

∞⋃
k=1

(xk, xk+1), (3.17)

Pu = u on V ∪ (0,∞).

We can express the general solution of Pu in the same way as the third section

Pu(x) = −
∫ xk
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)−u(xk)

)
+u(xk)+

∫ x
c
σ(τ) dτ

s([xk, xk+1])

(
u(xk+1)−u(xk)

)
, (3.18)

for all x ∈ [xk, xk+1] and k ∈ N, and c is an arbitrary fixed point in (r1,∞).

Lemma 3.10. Let u ∈ D. It holds

Ě [Ju] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

∫ ∞
0

(u′(x))2
dx

σ(x)
(3.19)

Proof. A straightforward computation leads

Ě [Ju] =

∫ r2

r1

((Pu)′(x))2
dx

σ(x)
=

∫ ∞
x1

((Pu)′(x))2
dx

σ(x)

=
∞∑
k=1

∫ xk+1

xk

((Pu)′(x))2
dx

σ(x)
+

∫ ∞
0

((Pu)′(x))2
dx

σ(x)

=
∞∑
k=1

[
(Pu)′(x−k+1)u(xk+1)

1

σ(xk+1)
− (Pu)′(x+k )u(xk)

1

σ(xk)

]
+

∫ ∞
0

(u′(x))2
dx

σ(x)

=
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

∫ ∞
0

(u′(x))2
dx

σ(x)
.

(3.20)

Remark 3.11. Let u ∈ L2(F, µ). Set

Q[u] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

∫ ∞
0

(u′(x))2
dx

σ(x)
. (3.21)

Since Q is closed, then Ě = Q|ranJ .
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We introduce Ďmax the space of the trace form Ě by

Ďmax = {u ∈ L2(F, µ) : u ∈ ACloc([0,∞)),
∞∑
k=1

(
u(xk+1)− u(xk)

)2
s(xk+1)− s(xk)

+

∫ ∞
0

(u′(x))2dx

σ(x)
<∞}.

We denote by Ě (J) and Ě (c) the quadratic forms such that

dom(Ě (J)) = dom(Ě (c)) = Ďmax

and

Ě (c) =

∫ ∞
0

(u′(x))2
dx

σ(x)
,

Ě (J) =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
,

where Ě (c) and Ě (J) are the strongly local type and non-local type Dirichlet forms respec-
tively.
We quote that the trace of the Dirichlet form Ě decomposed into Ě (c) and Ě (J). In fact,
let us stress that this decomposition is mentioned by [BM] for dimension n = 3.

4 Conservativeness of the trace of Dirichlet form re-

lated to one-dimensional diffusion process

Let us now start with the case where the set V has no accumulation point.

Theorem 4.1. Assume that µ is infinite. Then the discrete Dirichlet form on the graph
(V, b) is conservative if and only if

∞∑
k=1

(
s(xk+1)− s(xk)

) k∑
j=1

aj =∞. (4.1)

Proof. The conservativeness of the Dirichlet form E is equivalent to the fact that the
equation

L̃u+ αu = 0, α > 0, u ∈ `∞, (4.2)

has no nontrivial bounded solution (we refer the reader to [KL12]).

We rewrite

L̃u(xk) + αu(xk) =
1

ak

∑
j

(
s(xk)− s(xj)

)(
u(xk)− u(xj)

)
+ αu(xk) = 0. (4.3)

This leads to,

u(x2) =
(
1 + αa1(s(x2)− s(x1))

)
u(x1), (4.4)
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and(
s(xk+1)− s(xk)

)
(u(xk)− u(xk+1))

ak
+

(
s(xk)− s(xk−1)

)
(u(xk)− u(xk−1))

ak
+ αu(xk) = 0,(4.5)

for all k ≥ 2.

Thus by induction and the recursive formula we get

u(xk+1)− u(xk) =
s(xk+1)− s(xk)
s(xk)− s(xk−1)

(u(xk)− u(xk−1)) + akα
(
s(xk+1)− s(xk)

)
u(xk)

...

=
s(xk+1)− s(xk)
s(x2)− s(x1)

(u(x2)− u(x1)) + α
(
s(xk+1)− s(xk)

) k∑
j=2

aj u(xj)

= a1α
(
s(xk+1)− s(xk)

)
u(x1) + α

(
s(xk+1)− s(xk)

) k∑
j=2

aj u(xj)

= α
(
s(xk+1)− s(xk)

) k∑
j=1

aj u(xj), ∀ k ≥ 1. (4.6)

Assume that the sequence (u(xk))k is strictly monotone increasing. Accordingly, mak-
ing use of formula (4.6) we derive

u(xk+1)− u(xk) ≤
(
α
(
s(xk+1)− s(xk)

) k∑
j=1

aj
)
u(xk), ∀ k ≥ 1, (4.7)

and

u(xk+1)

u(xk)
≤ 1 + α

(
s(xk+1)− s(xk)

) k∑
j=1

aj, ∀ k ≥ 1. (4.8)

Finally we achieve

u(xN+1) ≤ u(x1)
N+1∏
k=1

(
1 + α

(
s(xk+1)− s(xk)

) k∑
j=1

aj
)

(4.9)

Obviously the latter product is finite provided
∑∞

k=1

(
s(xk+1)− s(xk)

)∑k
j=1 aj <∞ and

then we get a bounded non-zero solution.
In the other sense, we suppose that

∑∞
k=1

(
s(xk+1)−s(xk)

)∑k
j=1 aj =∞. Then summing

over k in formula (4.6) and keeping in mind that the sequence (u(xk))k∈N is increasing.
We obtain

u(xN+1)− u(x1) = α
N∑
k=1

(
s(xk+1)− s(xk)

) k∑
j=1

aju(xj). (4.10)
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Hence

u(xN+1) ≥ αu(x1)
N∑
k=1

(
s(xk+1)− s(xk)

) k∑
j=1

aj →∞ as N →∞,

which finishes the proof.

Theorem 4.2. If µ is a finite measure. Then

Ě [u] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
is not conservative.

Proof. Since µ is finite, i.e., µ({xk, k ∈ N}) =
∑∞

k=1 ak < ∞, then conservativeness and
recurrence are equivalent. According to [FOT11] transience property is inherited by the
trace form which yields that Ě is transient and hence it is not conservative.

For the other case where V has x∞ as an accumulation point. We remark that second
trace form Ě is decomposed into a non-local type and killing Dirichlet forms. Hence we
have

Theorem 4.3. Assume that V is a finite set. Then there exists N ∈ N such that x∞ = xN ,
Ď = RN and for each u ∈ RN

Ě [u] =
N−1∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

u(xN)2

s([xN ,∞))

is not conservative.

Proof. Non-conservativeness of the trace form Ě follows from the fact that 1 ∈ Ď and
Ě [1] = 1

s([xN ,∞))
6= 0.

Theorem 4.4. Assume that set V has an infinite elements. Then

Ě [u] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

u(x∞)2

s([x∞,∞))
(4.11)

for each u ∈ Ď is not conservative.

Proof. For any sequence (un)n∈N ⊂ Ď with 0 ≤ un ≤ 1 and un ↑ 1 µ − a.e., we have for
every v ∈ Ď

lim
n→∞

Ě(un, v) = lim
n→∞

[
∞∑
k=1

(
un(xk+1)− un(xk)

)(
v(xk+1)− v(xk)

)
s(xk+1)− s(xk)

+
un(x∞)v(x∞)

s([x∞,∞))

]
.

By monotone convergence theorem we get

lim
n→∞

Ě(un, v) = 0 +
v(x∞)

s([x∞,∞))
6= 0.

Since v 6= 0 on I, we get the non-conservativeness of Ě .
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5 Application : A discretization of the one-dimentional

diffusion of Bessel’s process related to Dirichlet

forms

We start with the case that the sequence (xk)k∈N diverge and so it has no accumulation
point.

For each n ∈ N, n ≥ 2. We consider the speed measure m defined on I = (0,∞) by

dm(x) = 2x2ν+1dx, where ν =
n

2
− 1

and we define the scaling function s as follows

ds(x) =
1

x2ν+1
dx.

Hence, we are concerned with the space (E ,D) defined on L2(I, 2x2ν+1dx) by

D := D0 ∩ L2(I, 2x2ν+1dx), E [u] :=

∫ ∞
0

(u′(x))2x2ν+1dx for all u ∈ D

where

D0 :=
{
u : (0,∞)→ R : u is abs. cont. w.r.t ds,

∫ ∞
0

(u′(x))2x2ν+1dx <∞
}
.

Since n ≥ 2 the Bessel process is transient which yields that associated Dirichlet form is
transient too.
We can easily check that for n ≥ 3, (i.e. ν ≥ 1

2
) we obtain r1 = 0 is a non-approachable

boundary, i.e., s(0) =∞, and r2 =∞ is an approachable boundary, i.e., s(∞) <∞.

According to the Feller’s boundary classification, 0 is an entrance boundary. Indeed,
Γ1(0) = ∞ and Γ2(0) = c2

2ν+2
< ∞, for all constant c > 0. In these circumstances, we

define the the Bessel operator L with index ν on the half-line by

L := −1

2

d2

dx2
− 2ν + 1

2x

d

dx
, for all ν > −1

2
.

Let L be the positive self-adjoint operator associated with the form E which is given by

D(L) =
{
u ∈ D : u′ ∈ ACloc(I), lim

x↓0+
x2ν+1u′(x) = 0, Lu = −1

2
u′′ − 2ν + 1

2x
u′ ∈ L2(I,m)

}
Lu = Lu for all u ∈ D(L).

In the following we consider the discrete measure defined as the first section by

µ =
∑
k∈N

akδxk

which is supported by an infinite countable set V = {xk, k ∈ N } ⊂ (0,∞).
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Remark 5.1. In our case for n ≥ 2, r1 = {0} is an entrance boundary and it is well
known that Cap({0}) = 0 (we refer to [JYC09] for more details) and for each element
xk ∈ V we have Cap({xk}) > 0.

Therefore, as before we get Pu is the unique solution in D of the Sturm-Liouville
problem

−1

2
(Pu)′′ − 2ν + 1

2x
(Pu)′ = 0 in (0,∞) \ V,

Pu = u on V,

which possessed the general solutions for all k ∈ N

Pu(x) = C1 + C2

∫ x

c

1

τ 2ν+1
dτ, ∀c > 0 in [xk, xk+1], (5.1)

and
Pu(x) = C1, in (0, x1],

where C1 and C2 are two real constants.
Finally, to compute the trace of the general Bessel’s Dirichlet form we have to apply the
density σ(x) = 1

x2ν+1 of the scaling function s to

Ě [u] :=
∞∑
k=1

1

s([xk, xk+1])

(
u(xk+1)− u(xk)

)2
.

Hence, we get

Ě [u] =
∞∑
k=1

1( ∫ xk+1

xk

1
x2ν+1 dx

)(u(xk+1)− u(xk)
)2

=
∞∑
k=1

2ν
x2νk+1.x

2ν
k

(x2νk+1 − x2νk )

(
u(xk+1)− u(xk)

)2
The trace of the Dirichlet form Ě is defined by

Ď := {u ∈ `2(V, µ) :
∞∑
k=1

2ν
x2νk+1.x

2ν
k

(x2νk+1 − x2νk )

(
u(xk+1)− u(xk)

)2
<∞}

Ě [u] =
∞∑
k=1

2ν
x2νk+1.x

2ν
k

(x2νk+1 − x2νk )

(
u(xk+1)− u(xk)

)2
. (5.2)

In this case, we can determine the discrete Bessel operator associated with trace form Ě
as follows
for each k ∈ N

L̃u = −
ν x2νk x

2ν
k−1 u(xk−1)

ak(x2νk − x2νk−1)
+

ν

ak

( x2νk x
2ν
k+1

(x2νk+1 − x2νk )
+

x2νk x
2ν
k−1

(x2νk − x2νk−1)
)
u(xk)−

ν x2νk x
2ν
k+1 u(xk+1)

ak(x2νk+1 − x2νk )
(5.3)
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For the conservativeness property of the general Bessel’s Dirichlet forms we have following
result as an application of the Theorem 3.1. where the weight function here

b(xk, xk+1) = ν
x2νk x

2ν
k+1

(x2νk+1 − x2νk )
, if xk ∼ xk+1 and 0 otherwise.

If µ is infinite. We can say that Trace of the general Bessel’Dirichlet form on the graph
(V, b) is conservative if and only if

∞∑
k=1

1

ν

(x2νk+1 − x2νk )

x2νk x
2ν
k+1

k∑
j=1

aj =∞. (5.4)

For we keep in same example but in this case we suppose that sequence (xk)k∈N
converge and has x∞ as an accumulation point. We conclude that trace of Dirichlet form
Ě is decompose into non-local type and killing term as follows

Ě [u] =
∞∑
k=1

1

s(xk+1)− s(xk)
(
u(xk+1)− u(xk)

)2
+

u(x∞)2

s([x∞,∞))

=
∞∑
k=1

2ν
x2νk+1.x

2ν
k

(x2νk+1 − x2νk )

(
u(xk+1)− u(xk)

)2
+ 2ν.x2ν∞u(x∞)2. (5.5)

For the conservativeness property, if the set V has a finite element so in this case Ě is not
recurrent and hence it is not conservative.
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