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Some Dirichlet forms on graphs as traces of
one-dimensional diffusions

Rafed Moussa *f

August 11, 2020

Abstract

We compute explicitly traces of one-dimensional diffusion processes. The ob-
tained trace forms can be regarded as Dirichlet forms on graphs. Then we discuss
conditions ensuring the trace forms to be conservative. Finally, the obtained results
are applied to the one-dimensional diffusion related to the Bessel’s process of order
v.

1 Introduction

Throughout this paper we are concerned with computation of traces of one-dimensional
diffusions generated by the Feller operator %%' We recall the known fact that such
diffusions on an open interval I are characterized by a scale function s, i.e. a continuous
strictly increasing function on I and speed measure m. Moreover, they are related in an

appropriate way to Dirichlet forms with domains in L?(I,m) defined by
d
£ = (@) dsta),
7 ds

on its domain dom £®). Further details about the form are given in the next section.
Given a diffusion of the above type, a positive measure p with support V' C [ and a linear
operator J : dom ™) — L?(V, 1) we shall first compute the trace of £*) with respect to
the measure p by means of the method elaborated in [BBST19]. We shall demonstrate
in particular that the obtained trace form in L*(F, p) is in fact a graph Dirichlet form if
the measure y is discrete.

Once the computation has been performed we shall turn our attention to study con-
servativeness property, i.e. conservation of total mass, for the trace Dirichlet form. We
shall show that, for fixed £(), conservativeness depends strongly on the measure y and
its support V.
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The motivation rests on two facts: first to put the particular case for the Bessel’s
process analyzed in [BM20] in a general framework. Second, the significance of conserva-
tiveness property both in analysis and in probability. In fact in analysis conservativeness
is equivalent to existence and uniqueness of solution of the heat equation with bounded
initial data. Whereas in probability conservativeness implies that, almost surely, the
related stochastic process starting at any point will have an infinite lifetime.

At this stage we mention that there is a huge literature concerned with conservative
Dirichlet forms. Regarding the subject we refer the reader to [Stu94, AG12, MUW12]
[Gim16, Gim17, KL12].

The paper is organized as follows. In section 2 we introduce some necessary definitions
and notations concerning Dirichlet forms related to one-dimensional diffusions as well as
Feller’s classical properties of boundaries.

Section 3 is devoted to compute the trace of Dirichlet form on discrete sets as well as
on composite of continuous and discrete sets. In Section 4 we study conservativeness
property for traces of Dirichlet forms on discrete sets. In this respect we shall give
necessary and sufficient conditions ensuring the trace form to be conservative. Thereby
we extend [BM20, Theorem 3.7] to this general framework.

The obtained theoretical results will be applied to the one-dimensional diffusion related
to the Bessel’s process of order v, in the last section.

2 Framework and basic notations

We start by introducing some notations.

Let I := (ry,7m9) where —oo < r; < ry < oo. Let us consider a continuous strictly
increasing function s : I — R (a scaling function for short ). Thus s has the following
representation

s(z) = /xa(t) dt, Vxel,

where 0 > 0 and o € £}, .(I). Obviously ds(x) = o(z) dz.
Let us designate by AC,.(I) the space of locally absolutely continuous function on /

and by ACs(I) the space of s-absolutely continuous functions on I, i.e. the set of functions

u : I — R such that there exists an absolutely continuous function ¢ with u = ¢ o s.

Let us consider a speed measure m with full support I defined by

where p > 0 and p € £}, ().

loc

We designate by

DE) = {u: I —-R: ue AC(I), /T2(u/(x))2 e < oo}

" ()
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Let us define a quadratic form £ with domain D C L*(I, p dx) by

D =D NL1,p dx), Elu] == / (u'(x))? % for all v € D. (2.1)
1 o

From the classical reference book [FOT11, chap.1] on theory of Dirichlet forms we recall
that a Dirichlet form (Q,dom Q) is a densely defined, closed, symmetric and Markovian
form on L?(I,m). Hence, the obtained quadratic form £ is a Dirichlet form (see [CF12,
p.63-64]).

Lemma 2.1. Fvery function from D s continuous on I.

Proof. Since every u € D is s-absolutely continuous, it is a composition of continuous
functions, hence continuous. O

It is well known that £ is a regular strongly local Dirichlet form in L?*(I, pdz) (hence
in particular closed and densely defined). Moreover, the positive self-adjoint operator
associated with the form £ via Kato’s representation theorem, which we denote by L, is
given by (see [Lin04] and [FOT11, Chap. 1])

D(L)={ueD: v € ACp.(I), Lu=——u"+ T e L*(I, p dx),
with boundary conditions at r; and TQ}
Lu=Lu for all u e D(L).
Remark 2.2. The second-order ordinary differential operator (J[CF12, p.63-64])

Lu(x) = a(x)u" () + b(z)u' ()

with real-valued functions @ > 0 and b can be converted into Feller’s canonical form -+ 4

) dm ds
with

B(x) z
ds = e P@dz dm = ¢ dx, B(x)= / bly) dy.
Z0
Hence, by formal computation we get

du du dv 9
—/ Lu.w dm——/ v.d%— Tods ds, Yu,v € CZ(I).

Further, owing to Feller’s canonical form, we can define the differential operator £ on [

by

dd_ld(li) 1 &2 o d

dm ds pdr \odx po dx? + po? dx’

2.1 Feller’s boundary classification

Let us introduce the following quantities

c

T = / " (e 2))ds(x), By = / s((c, 2))dm(z) (2.2)

T1 T1

3
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and
I, = / m((z,0))ds(z), T = / s((z, ¢))dm(z), (2.3)

for some r; < ¢ < ry.

It is well known ([JYC09]) that the boundaries r and 75 of I can be classified w.r.t the

Feller operator %% into four classes as follows (we refer the reader to [Ito06, p.151-152]

or [Man69, p.24-25))
(a) r; a regular boundary if I'; < 0o, %; < 00,
(b) 7; an exit boundary if I'; < oo, %; = o0,
(¢) r; an entrance boundary if T'; = oo, 3; < 00,
(d) 7; a natural boundary if I'; = oo, ¥; = c0.
Definition 2.3. We say that the boundary r; (resp. rq) is approachable whenever
s(ry) > —oo (resp. s(r2) < 00).

According to the inequality (3.2), if 71, (resp. r3) is approachable, then for any element
from D) we have u(ry) = limg,, ser u(z) < 00, (resp. u(ry) = limyyy, per u(r) < o0) and
u € C([r1,72)), (resp. u € C((r1,rs])).

One has in particular that space D) is a uniformly dense sub-algebra of C([r1,73]) if both
r1 and 7o are approachable (for more details we refer to [CF12, Chap. II]).

Definition 2.4. We call that boundary r; (resp. r3) is called regular whenever
it is approachable and m((ry,¢)) < oo, ( resp. m((c,72)) < 00) Ve € (11,72).

Remark 2.5. Regularity condition of boundaries r;, ¢ = 1,2 (see [RWO00, chpa.5] for
more details) is very like the concept of irreducibility which has the following probabilistic

terminology
P,(H, < 00) >0, Va,y € I,
where H, is the hitting time of {y} relative to a diffusion process. Likewise, ([RWO00,

chap.5]) it allows us to characterise one-dimensional diffusion essentially by a scaling
function s and a speed measure m.

2.2 Extended Dirichlet space

Let us now introduce the extended Dirichlet space of £ ([CF12, chap.1]), which we denote
by D..

Definition 2.6. Let (£,D) be a closed symmetric form on L?(I,m). Denote by D, the
totality of m-equivalence classes of all m-measurable functions f on I such that |f| <
oo [m] and there exists an £-Cauchy sequence {f,,n > 1} C D such that lim, ., f, =
f, m—a.e.on I. {f,} C D in the above is called an approximating sequence of f € D,.
We call the space D, the extended space attached to (£, D). When the latter is a Dirichlet
form on L*(I,m), the space D, will be called its extended Dirichlet space.

4
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To determine the extended Dirichlet form in our case we shall using the following propo-
sition which is mentioned by [CF12, p.66].

Proposition 2.7. Assume that both r1 and ry are approachable but non-reqular. If we let
D(()S) ={ueD® : u(r)=0=u(r)}, (2.4)

then
DcD. =D, (2.5)

and (€, D) is a reqular, strongly local, transient, and irreducible Dirichlet form on L*(I,m).

It is well known that £ is transient if and only if ( see [CF12, Theorem 2.2.11] ) either 7
or ry is approachable and non-regular. Otherwise it is recurrent .

By virtue of classical Feller’s test of non-explosion, £ is conservative if and only if (see
[CF12, p. 126] and the discussion made there)

/ m((z,c)) ds(x) = / m((c,z)) ds(x) =00, V11 <c<rs. (2.6)
(r1,0)

(Crr2)
In this case, the boundaries r; and 75 are non-exit points.

Remark 2.8. We have the following discussion about the boundary conditions at r; and
ro on D(L):

(i) If ry (resp. r2) is an exit endpoint then we have the boundary condition at r; (resp.

7’2)
lim u(xz) = 0 (resp. lim u(z) = 0).

T—rry T—rro

(ii) If r; (resp. 72) is an entrance endpoint then we have the boundary condition at ry

(resp. ra)

, 1 du(z)

lim —— =0 . lim —— = 0).
s o(x) dx (vesp 2oy o(x) dx )

~—~—

(iii) If 71, (resp. r2) is a natural endpoint then there is no boundary condition needed.

3 Computation of the trace of transient form &

Let V = {xy, k € N } C (r1,72) be a finite or countable set, where (xy)ren is a strictly
increasing sequence, i.e., ry < xp,1 for all k£ € N. Assume that

d = sup(rgr1 — xp) < 00. (3.1)
keN

In addition, let o, = lim_,o, xx Which can be finite or not. Next, we will investigate the
following two cases for a transient Dirichlet form &:

(a) V has no accumulation point.
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(b) V has z as an accumulation point.

We have the following definition of capacity which is a set function associated to Dirichlet
form and it plays an important role to measure the size of sets adapted to the form.

Definition 3.1. We define the 1-capacity Clap associated with the Dirichlet form (&€, D)
by
Cap(U) :=inf{&[u] : weD,u>1,m—ae.in U}

for an open set U C I, and
Cap(A) :=inf{Cap(U) : U C I open, A C U}

for a Borel set A C I, where
Efu] = Eu] + /UQ(IL‘) p(z) dzx, for u,v € D.
I

The following lemma show that a diffusion process associated with a Dirichlet form &£
enjoys a strong irreducibility property which means that any two point of I are connected
for a diffusion process (we refer to [Fuk14]).

Lemma 3.2. For all x € V we have Cap({x}) > 0.

Proof. An elementary identity leads to

3
u(€) —u(y) = /y %(m) ds(z), Vri <&<y<rs.
By Holder inequality, we get
() —uly))” < s(ly,€)-Elul, Vi <& <y <ra. (32)

Then we get by integrating the both hand side on each compact set K C I that there is
a positive constant C'x such that

sup u(r)? < Cxé&ilu], Yu € D. (3.3)
zeK

Hence Cap({z}) > é > (, for every x € V, i.e. each point of I has a positive capacity
relative to the Dirichlet form (€, D). O

We shall start by the first case (a) which said that V' has no accumulation point, i.e.
Too = 00. We suppose in this case that interval (ry,r9) = (21, 00).
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3.1 V has no accumulation point

Let (ax)ren be a sequence of real numbers such that a;, > 0 for all k£ € N. Let us consider
the atomic measure defined as follows

= Z a0y, -
keN
We define now the Hilbert space ¢2(V, 1) equipped with the product given by

(u,v) := Zu(xk)v(:vk) ar and |jul| := /(u,u).

keN

Let € be the trace of £ on the discrete set V' (see [FOT11, BBST19]). We shall adopt the
method elaborated in [BBST19] to compute explicitly €.

Let J be the restriction operator defined from D(J) C (€, D.) to ¢*(V, u) by

D(J):={ueD,: Zaku(mk)Q < o0},

Ju:=uly forall u e D(J).

We quote that since functions with finite support are dense in ¢?(V, i), the operator J
has dense range. Obviously

ker J = {u € D(J): u(zy) =0 forall k € N}.

We shall first determine the extended domain D, of the trace form & according to Propo-
sition 2.7.

o d
De=A{u:I —-R: ue AC(I), / (u'(z))? <0 st u(z1) =0 = lim u(x)}.

z1 O'(Q/‘) T—00

Accordingly we can compute £ following [BBST19, Prop.3.1]. To that end we desig-
nate by P the orthogonal projection in the Dirichlet space (£, D.) onto the E-orthogonal
complement of ker J. Clearly

(ker J)*¢ ={ueD, : E(u,v) =0, forallvekerJ}.

We can define the quadratic from £ as follows
E[Ju] = E[Pu], for all u € D(J).
Since J is closed in (D,, £), then, from [BBST19, Prop.3.1], the form & is closed in £2(V, 1).

Lemma 3.3. Let u € D. Then Pu is the unique solution in D, of the following Sturm-
Liouwville problem

SIS ——". oy

o
Pu=u onV.

7
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Proof. Let uw € D(J). Since P is the £-orthogonal projection from D, onto (KerJ)*:,
then we obtain
E(Pu,v) =0, Yv e C((x1,00)\ V),

which is equivalent to

/

1
——(Pu)" + %(Pu)' =0 in the sense of distribution in (x1,00) \ V. (3.5)
o o

Multiplying the latter equation by a positive term /l). Pu be a solution with smooths

coefficients on (z1,00) \ V. Moreover since J is a closed operator then KerJ is also
closed, hence u— Pu € KerJ and Pu € D(J), then Pu € D, and hence Pu is s-absolutely
continuous in (x1,00) \ V and the equation (3.5) is fulfilled pointwise on (z1,00) \ V.

Pu is the E-orthogonal projection from D, onto (KerJ)*, hence u = Pu everywhere on
V. The converse is obvious. O

Let us now compute explicitly the £-orthogonal projection Pu the solution of the bound-
ary value problem (3.4).

Lemma 3.4. Let u € D. Pu can be expressed in the following way

ff’“ o(r) dr

s([Tr, Try])

ff o(r) dr

Pu(z) = — s([zk, Th41])

(u(@rr1) —ulzr)) +ulzr) + (w(zrr1) —ulzr)), (3.6)

for all x € [xg, xk11] and k € N, where ¢ is a constant in (x1,00) such that s(c) = 0.

Proof. In fact the differential equation (3.4) has the solution for all k& € N as follows
Pu(z) =C) + C’g/ o(r)dr, ¥ ¢>xy, in [Tk, Tria], (3.7)

where C; and Cy are two real constants to be determined according to the boundary
conditions.
Then, we have

Tk
Pu(a) = Ci+Ca [ olr)dr =ula),
C$k+1
Pu(zgi1) = C) + 02/ o(T)dr = u(xpyr), Vri < c < ry,

which leads to get the following expression

) = _deomdr ey, Jeo(m)dr
P ( ) ‘/‘JikJrlo_(T) dT( ( k+1) ( k)) + ( k)"— f;:ﬂ U(T) dr
- fcmk o(r) dr ol ol " fcz o(r) dr
= sl e () ) Fule) + G

(U($k+1) - u(fl/’k))

(u(zrsr) — ulzr)),

for all = € [zg, xk41], and ¢ € (z1, 00). O
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Lemma 3.5. For every u € D,. It holds

1 iy
m—(PU) (2 )u( k)O'(:L‘k)

£l - i[(zﬂuy@;ﬂ)u@m)
- i( / <>d) () — ()’ 59

1

where (Pu)(x;7) and (Pu)(x;,,) are the right derivative at x), and the left derivative at
Tyl respectively.

Proof. Let u € D,. A straightforward computation leads to
E[Ju]
2 dz o x
= [ew@rs = [ (paers

a(x)  Ju

/xk-H (_ (P:);(:U) + U’(x)(Pu)/(:U) (Pu)(x)d:zt 4 i (PU)/(x)(PU)(:U) Tht1

() o(x)? pot o(z) o

I
NE

=S [Pttt - P Do) ] 39

From the expression of Pu we can compute its derivative (Pu)’ for all k € N,

! = & u(x —ulx in |xg, x
(Pu)(z) = 3([~Tk7xk+1])( (Tryr) — ulay)), in[zx, e,

Finally we obtain the trace form & of pure jump type

U = 3 S () o)
=2 S(karl)l_ s(z) (ulwrsa) = () (3.10)
[

In the sequel we shall recall some definition of weighted graphs to construct the discrete
Dirichlet forms.

Definition 3.6. Let (V,b, ¢, u) be a weighted graph consists of a countable set V' defined
as before, a measure p : V' — (0,00) and weight function b : V' x V' — [0, 00) with
b(x,x) =0 for all x € V satisfying the following two properties

(a) b(z,y) =0b(y,x) for all z,y € V.

(b) D yeviyma 0(T,y) <occforallz € V.
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We define a function ¢ : V' — (0,00) which can be interpreted as a killing term or as
a potential. We say that two vertices z,y € V are neighbors or connected by an edge if
b(xz,y) > 0 and we write z ~ y.

In order to describe the trace form € we have to introduce the next form
For every u € (2(V, ). Set

Qlu] = Z = ! (u(@psr) — u(a:k))z (3.11)

! Trt1) — s(zk)
Then, £ =Q,...,-
Theorem 3.7. Suppose that u(V') = oco. Then
D(E):={uc P(V,u): Qu] < oo}, E[u] = Qu], for all u € D(E).

Proof. Let us rewrite the trace form & as follows

Ed = 3 blaw, ) (ulw) — u())’

€V xj~xy

= Z b(Ik+1,xk>(u(xk+1)) - “(%))2

1

- £ s(zpy1) — s(zp) (u($k+1) — u(xk)) , (3.12)

where b(zgy1, 2x) = m

b(p41,2x) = 0 otherwise. Moreover, if pu(V) = 3", yar = 0o and b(xy, 441) > 0 for all
k € N, the condition (A) from [KL12] is fulfilled which yields the assertion. O

>0if xpy ~ap (le. Ir>0 : |zp — x| =7) and

Then, the associated self-adjoint discrete operator L is given by

D(L)={ue P(V,p): Lu € 1*(V, 1)}
Lu=Lu forall u € D(L),

where for all £ € N. We get

Lu(xy) = (3.13)
w(Thi1) u(@r)(s(zp41) — 5(25-1)) 3 u(zg-1)
ar(s(zr1) — s(zr)  ar(s(zpar) — s(aw))(s(an) — s(@i-1))  aw(s(zr) — s(zp-1))

Remark 3.8. Assume V = Z and a; = 1 for all k¥ € Z. Then the expression (3.13) can
be regarded as a discrete Jacobi operator which has the following form

Ju(k) = A(R)u(k + 1) + B(k)u(k) + A(k — Du(k — 1), Vk € N, (3.14)

10
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3.2 V has an accumulation point

Now we consider the second case (b) where the sequence (xy)gen of the set V' is convergent
and it has x,, as an accumulation point .

We keep the same definitions as in the third section. We consider again the case where £
is transient Dirichlet form. For u € D Pu is the unique solution in D, of the differential
equation with boundary condition

o0

1 /
_;(pu)u%(zau)':o in (@, 2e1) U (200, 00), (3.15)
k=1

Pu=u onV :={x,..., 25},

which can be expressed as follows

= —m u\xr — Uu\x u\x
PU(ZL‘) - 3([33k7xk+1])( ( k-‘rl) ( k)) + ( k) +

fcx o(T) dr

s([zr, Tr41])

(u(@pi1) — ulz)),
for all € [zg, xg41], k € N,

and

fcxw o(T) dr fcx o(r) dr
$([2o0, 00)) $([7o0, 00))

for all z € (24, 00) and for all fixed arbitrary ¢ € (z1, 00).

Pu(x) = u(Too),

U(Too) + U(Too) —

We can compute now the trace €& which is decomposed into the sum of a non-local
and a Kkilling Dirichlet form.

Lemma 3.9. For every u € D,, it holds

°° 2

1

s(Try1) — s(wr)

U(To)
$([#o, 00))

E[Ju] = (u(zpsr) — ula)” + (3.16)

k=1

Proof. Since the end-point oo is an approachable boundary, i.e., s(00) < oo, then we have
lim, 00 Pu(z) = lim, oo u(z) = 0 and $([ze0, 00)) < 00. meg to this argument we can
obtain the following explicit computation of €.

Let u € D.. We get

EJu] = / " (Puy ()2 / Oo<<P“>’<x>>2@

T
k+1 T

\§B£M8||M8

Tp+1

o(x) o(x)? o(x)

() | o' (@)(Pu)(x) (P )( )( u)(x) |~
() o()? o()

Tk

>/«
/xk+l( u)”(x) +a’(:c)(Pu)'(x)> (Pu)(x dx+z (Pu)(z)(Pu)(x)
[ (5

) (Pu)(z)dz +

ZToo

11
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Y w) (., )u(z L w) (z7 ) u(x L | (P Ju(ze)
=3 [P enn) s — (P o) s | = P

s 1 o) ey (P @ )ules)

=D oy st (k) = u(a) . (3.17)

b
Il

1

where (Pu)'(z}) and (Pu)'(x;_,) are the right derivative at x; and the left derivative
at xyy1 respectively.
Since

(Pu)'(x) =

Therefore we obtain
= 2
E[Ju] = (w(pir) — u(zy))” +

k=

‘s (xpe1) — s(zp)

]

3.3 Trace of the Dirichlet form related to one-dimensional dif-
fusion process w.r.t mixed type measure
Let (z1)x be a sequence of negative numbers which converges to 0 and so the set V' C (71, 0)
has 0 as an accumulation point. We consider a new measure on (z1,00) of mixed type,
i.e. measure which has an absolutely continuous part and a discrete part as follows
W= Udisc T Habs,
where

Ldise = Zakéxk, Vap >0,k € N and  fiaps = 1(0,00)p(7)d.
k=1

Hence F' = {x}, k € N} U [0,00) is the support of the measure p. In order to compute
the trace of & w.r.t measure p we shall define the trace operator J by

J:DNL*F,p) — L*(F,p), Ju=uj.
Obviously, we have
Ker(J):={u€eD : u(zy) =0,Vk €N, u, , =0}

Then the Sturm-Liouville problem has Pu a unique solution of

/
1 o ,

—;(Pu)”—I—;(PU) =0 in U(l'k»xk-i-l)» (3.18)

Pu=wu onVU(0,00).
We can express the general solution of Pu in the same way as the third section

*o(r) dr “o(r) dr

for all € [zg, xx41] and k € N, and ¢ is an arbitrary fixed point in (7, 00).

Pu(z) = — (w(@pgr) —u(ze)) +ulzy) +

12
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Lemma 3.10. Let v € D. It holds
> 1

=2 Sy —s@n

k=1

(o) —u@)’ + [ @W@PSS e20)

0 o(r

Proof. A straightforward computation leads

aw:/?ww<wdx:/ﬂwwmw%%

o) = L.,
l?l @rs+ [Py

{ xk+1 u(Tpy1) 1 —(Pu)’(:cz)u(xk) 1 ]+/000(u1(x))2%

Q

[
W

i
I

[
Mg

k=1 o (xs1) o(z)
3 N L
— ; s(mkH) o (w(zpg1) — ulxy)) +/0 (u'(z)) )
(3.21)
O]
Remark 3.11. Let u € L*(F, u). Set
v 2 o, dx
Z s(zer1) — s(zp) (U(xk+1) - u(xk)) +/0 (u'(x)) m, (3.22)

k=1
Since Q is closed, then € = Qlrans
We introduce D,,q. the space of the trace form & by

Do = {u € LA(F,p1) : ue AC([0,)), S (l;(zf:l))—_z(ég) N /0 * (u(x))*dx

We denote by £¢) and £ the quadratic forms such that
dom(ED) = dom(£9) = Dpaa

and - p
5%@—/<wmf4?
0 o(x)
=1
where £© and £¢) are the strongly local type and non-local type Dirichlet forms respec-
tively. . § )
We quote that the trace of the Dirichlet form £ decomposed into £ and £Y). In fact,

let us stress that this decomposition is mentioned by [BM20] for dimension n = 3 and

V =(0,1) UN.

2

(U($k+1) - U(l’k)) )

s(xrpr1) — s(xy)

13
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4 Conservativeness of traces of one-dimensional dif-
fusions

In this section we further assume that £ is conservative. Our aim is to establish necessary
and sufficient conditions ensuring the trace form £ to inherit conservativeness property.
The form £ is said to be conservative if

T;1 = 1 for some and for every ¢t > 0,

where T} stands for L*>°-semi-group induced by the Dirichlet form & .
Let us now start with the case where the set V' has no accumulation point.

Theorem 4.1. Assume that p is infinite. Then the discrete Dirichlet form on the graph
(V,b) is conservative if and only if

o) k

Z (s(@pr1) — s(z)) Z a; = o0. (4.1)
k= j=1

1

Proof. The conservativeness of the Dirichlet form &£ is equivalent to the fact that the
equation )
Lu+au=0, a>0, uel>, (4.2)

has no nontrivial bounded solution (we refer the reader to [KL12]).

We rewrite
Fu(zy) + auley) = é 3 (s(aw) = stay)) (ulon) — uey) + aulw) =0. (43
This leads to,
() = (1 + aan(s(as) — (o) (o), (4.4
and
(ss0) = s(a)) wlr) = ulor)) | (o) = st uto) = o) |
ar ar
(4.5)
for all k > 2.

14



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2020

Thus by induction and the recursive formula we get

w(wier) —u(ze) = SO G )t aga(s(@een) — s ula)
s(xy) — s(wr—1)

= Si-?(izz)l)_—s‘z;:f;) (u(za) — u(z1)) + a(s(zpe1) — s(z)) Z a; u(x;)
= ala(s(mk+1) — s(:ﬂk))u(xl) + a(s(wkﬂ) — s(mk)) Z a; u(z;)
= a(s(zp1) — s(zr)) Zaj u(z;), Vk>1. (4.6)

The latter formula gives rise to two observations (which can be proved by induction):

1. u(zy) has the sign of u(x;) for all & € N. This is if u(x1) > 0, then u(zy) > 0, for
all £ € N and if u(z) < 0, hence u(zy) < 0, for all k € N.

2. u(xy) is monotone, depending on the sign of u(x).

Hence without loss of generality we may and shall assume that w(z;) > 0. In this case
(u(zk))ren is positive and strictly monotone increasing sequence.
Accordingly, making use of formula (4.6) we derive

k
w(rpy1) — u(zg) < <a [s(zps1) — s(zp)] Z aj> u(zg), Vk > 1, (4.7)
and
% <1+ afs(@pr) — s(op)] Zaj, Vik>1. (4.8)

Finally we achieve

w(rnyr) < ulxq) H (1 + als(@pi1) — s(ay)] Z aj). (4.9)

Jj=1

Obviously the latter product is finite provided Y -, [s(mkﬂ) — s(a:k)} Z?Zl
then we get a bounded non-zero solution.

In the other sense, we suppose that Yy [s(zg41) — s(ay)] Zle a; = 0o. Then summing
over k in formula (4.6) and keeping in mind that the sequence (u(zy))gen is increasing.

We obtain

a; < oo and

k

w(@n) —ul@) =Y [s(@r) = s(z)] Y ajulz). (4.10)

k=1 Jj=1

15
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Hence
k

[s(zps1) — ()] Zaj — 00 as N — 00,
1 j=1
which finishes the proof. n

WE

u(rny1) > au(w)

b
Il

Theorem 4.2. If 11 is a finite measure. Then E[u] is not conservative.

Proof. Since p is finite, i.e., p({zy, k € N}) =37 a; < oo, then conservativeness and
recurrence are equivalent. We have already compute the trace of a transient Dirichlet form
E. Therefore, according to [FOT11, Lemma 6.2.2., p.317] transience property is inherited
by the trace form which yields that £ is transient and hence it is not conservative. O

The case where V' is a finite set can be resolved easily. For the case where V' has z., as
an accumulation point, we remark that the trace form & has a killing part. Hence owing
to theoretical results (see [BM20]) it can’t be conservative.

Theorem 4.3. Assume that'V is a finite set. Then there exists N € N such that ro, = Ty,
D =R and for each u € RN

. 1

u(xy)?
=2 Sy = st

(u(zrer) — ulen)” + s([zw, 00))

18 not conservative.

Proof. Non-conservativeness of the trace form & follows from the fact that 1 € D and
Ell] = 2= #0. O

s([zn,00))

Theorem 4.4. Assume that set V' is infinite and accumulates at © = x,. Then

_ > 1 2 U(To0)”
Elu] = ; TR (u(zi) — ulzy))? + () (4.11)
for each u € D. Moreover & is not conservative.
Proof. For every u € ¢*(V, ). We set
L 1 s ulan)?
Qlul = Z 8(Tg41) — s(zp) (U(IkH) N U(xk)) " m

T

1

which is acting on

dom @ = {ueﬁ(v,,u) ; ZS( ! (u(xkﬂ)—u(xk))z—i-u(Lﬂ)) <oo}.
ke

- Tpy1) — s(zk) $([€ o0, 00

It is easy to check that @ is closed, then the trace form & is the restriction of VQ to ran.J.
Furthermore if Y 77 | a; = 0o, we get from [KL12, Theorem 6] that D := D(£) = dom Q
and Eu| = Qu] for all u € D.

16
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For any sequence (u,)nen C D with 0 < u, < 1 and u,, T 1 p — a.e., we have for every
veD

lim &(up,v) = lim i (un(zr11) = wn () (0(2h11) = 0(T) | Un(Too)V(200)

n—o0 n—oo | £ s(xrpr1) — s(xy) 5([To0, 00))

By dominated convergence theorem we get

s 0(To)
lim &(up,v) =0+ ——— #0.
dm E(un, 0) =04+ T = 7
Since v # 0 on I, we get the non-conservativeness of €. n

5 Application : traces of the one-dimensional diffu-
sion related to Bessel’s process

For each n € N, n > 2. We consider the speed measure m defined on I = (0, 00) by
2w+1 n
dm(x) = 2x*"dx, where v = 5~ L.

We define the scaling function s as follows

ds(x) = ;dx

- v+l

We shall be concerned with the Dirichlet form £ with domain D C L?(I,2z**'dx)
defined by

D =Dy N L*(1,22* ' dx), E[u] == / (u'(2))22*dx  for all u € D
0
where
Dy = {u: (0,00) = R : uis abs. cont. w.r.t ds, / (u/(z))22x® T dr < oo}.
0

Since n > 2 the Bessel process is transient [CF12, p.126] which yields that associated
Dirichlet form is transient too.

We can easily check that for n > 3, (i.e. v > %) we obtain r; = 0 is a non-approachable
boundary, i.e., s(0) = oco. Whereas the boundary point 7, = oo is an approachable bound-
ary, i.e., s(00) < 0o.

According to the Feller’'s boundary classification, 0 is an entrance boundary. Indeed
2

c
2v+ 2

I'1(0) = 0o and %,(0) = < oo for all constant ¢ > 0.

17
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In these circumstances, the selfadjoint adjoint operator related to £, which we denote by
L is the generator of the Bessel process of index v on the half-line. Moreover we have the
following description of L. Set

1 d? 2v+1d 1
S L forall v -
£ 2 dz? 2% dr’ % 2
Then
, Qw1 s 1, 2v+1, 9
D(L)={ueD: v € ACj(I), lim z** '/ (z) =0, Lu=—-u" — ——u' € L*(I,m)}

zl0+ 2 2x
Lu = Lu forall u e D(L).

We start with the case that the sequence (xy)ren diverges and so it has no accumulation
point. Accordingly we consider the discrete measure defined as the first section by

H = Z ak:éxka
keN

which is supported by an infinite countable set V' = {x, k € N } C (0,00).

Remark 5.1. In our case for n > 2, r; = {0} is an entrance boundary and it is well
known that Cap({0}) = 0 (we refer to [JYCO09] for more details) and for each element
z € V we have Cap({x}) > 0.

To compute the trace of the general Bessel’s Dirichlet form & with domain D C ¢2(V, 1)
we have to apply Theorem 3.7. with scaling function ds(z) = 932”% dx to obtain the
following expression

ElJu] = Z m(u(xk+l) — u(zy))”
1 2
~ Ly ) o)

M T4 I

21/(%%”41'1—_‘%%(11@;“1) —U(Ik)) .
1 +

B
Il

Let u € (*(V, ). Set

Z xxk—f—l 35; ) (U($k+1) B u(xk))2
e k+1 k

We have £ = q),an,- Indeed, ¢ is a closed quadratic form together with the fact that £ is
the closure of ¢ restricted to ranJ. Hence, u(V) = oo leads to

D= D(€) = {ue A(V,p) : Zz D1 Tt )(<xk+l>—u<xk>>2<oo}

karl - xk

Elu] = q[u] for all u € D(E). (5.1)

18
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In this case, we can determine the discrete Bessel operator associated with trace form &
as follows
for each k € N

fu = v 9521195%/1 u(zp—1) v ( :vi”xiil xiywiy1 )u( ) v $%y$zi1 u(Tpq1)
- - L) —
ak(% - xk—l) ak (-73k+1 - xk Y) (-77k - -73k—1) ak<le—ji-1 - xiy)

(5.2)
For the conservativeness property of the general Bessel’s Dirichlet forms we have following
result as an application of the Theorem 3.1.
If p is infinite, then &£ is conservative if and only if

) k

PP x’““ — ) S 4, = oo (5.3)

k=1 e 1

Finally we consider the case where the sequence (zy)ren converges to .. According to
Lemma 3.9. we obtain

3 — N ulx — ulx 2 11;(111’—00)2
Ul = 2o s (ulr) — () + S
- Z xxkﬂ T u)( ($k+1)—U($k)) + v u(zs )2 (5.4)
k= k+1 Ll

For every u € (*(V, ). Put

Z 2v x::kirl—x;k )( w(Tpy1) — u(xk.)) + 2v. 0% (10 )2

We can easily check that trace form & is the closure of Q| ,. We assume that (V') = oco.
Then ) )
D=D() ={uecP(V.p) : E[u] <oo}, &[u] = Q[u].

Regarding conservativeness property, according to Theorem 4.4., the trace form & is not
conservative.
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