Preprint
Article

MFNR: Multi-Frame Method for Complete Noise Removal of all PDF Types in Multi-Dimensional Data Using KDE

Altmetrics

Downloads

1537

Views

1209

Comments

0

Submitted:

06 June 2020

Posted:

07 June 2020

You are already at the latest version

Alerts
Abstract
In research applications across several areas, noise removal is indispensable for accuracy of final results. Noise is caused due to physical principals, such as background electronic noise, quantum effect, and wave rebound effect to name a few. Noise removal can help improve results in medical, astronomy, defense, and numerous other fields. Addressing this limitation would result in potentially low cost, automatic, and reliable systems. In this paper, a generalized new approach i.e. Multi-Frame Noise Removal (MFNR) is proposed for noise removal. Given any type of data, the probability density function (PDF) of the noise can be determined. Herein, we extracted the noise PDF parameters using KDE (Kernel Density Estimation). Because the data is corrupted by “deterministic” noise, hence can be cleaned. This could be used as a general purpose noise removal tool. The data point with same position in multiple frames helps us determine the noise PDF characteristics and hence making it possible to remove noise. The conventional wisdom which states that noise removal and detail preservation are contrary to each other is not true for MFNR. Experimental results validate our proposed method which showed practically complete noise reduction based on number of frames used, as compared to existing benchmark methods.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated