Preprint
Article

Breast Cancer Prediction Using Stacked GRU-LSTM-BRNN

Altmetrics

Downloads

862

Views

382

Comments

0

This version is not peer-reviewed

Submitted:

22 June 2020

Posted:

24 June 2020

You are already at the latest version

Alerts
Abstract
Breast Cancer diagnosis is one of the most studied problems in the medical domain. In the medical domain, cancer diagnosis has been studied extensively which instantiates the need of early prediction of cancer disease. For obtaining advance prediction, health records are exploited and given as input to an automated system. This paper focuses on constructing an automated system by employing deep learning based recurrent neural network models. A stacked GRU-LSTM-BRNN is proposed in this paper that accepts health records of a patient for determining possibility of being affected by breast cancer. Proposed model is compared against other baseline classifiers such as stacked Simple-RNN model, stacked LSTM-RNN model, stacked GRU-RNN model. Comparative results obtained in this study indicate that stacked GRU-LSTM-BRNN yield better classification performance for predictions related to breast cancer disease.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated