Preprint
Article

Comparative Study of Mixture Model and Eulerian Model Used in Hydrocyclone with the Help of CFD Simulation

Altmetrics

Downloads

409

Views

231

Comments

0

This version is not peer-reviewed

Submitted:

30 June 2020

Posted:

30 June 2020

You are already at the latest version

Alerts
Abstract
Due to the accuracy of numerical calculation of fluid flow inside a hydrocyclone can be obtained using Computational Fluid Dynamics (CFD), highly modified super computers are used to simulate the fluid flow and track particle motion inside a hydrocyclone. This paper deals with the numerical study using three multiphase models viz. Volume of fluid, Mixture and Eulerian model. The dimensions of the hydrocyclone taken into consideration for numerical analysis is same as considered by Rajamani. Validation of axial and tangential velocities at different strategically decided axial stations, RMS axial and tangential velocity profiles of the hydrocyclone is done using Reynolds Stress Model (RSM). The hydrocyclone model has been designed in Creo 3.0 using the same dimensions which later was imported to CFD for meshing. Fine hexagonal mesh numbering up to 5 lacs were constructed to obtain optimum results. Fluid flow was allowed to be developed in ANSYS FLUENT 16.2. Entire simulation took 96 hours to generate results and track particle movements inside the hydrocyclone. The particle tracking has been done using three multiphase model. The first being the volume of fluid was used for validation purposes and the comparison of the Mixture and Eulerian model are the basic focus of this research work. Conclusive results indicate that usage of different multiphase model does not result in variation in particle motion. The slight variation in grade efficiency values are hardly noticeable. The Mixture model and Eulerian model predict lower separation efficiency as compared with Volume of fluid multiphase model.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated