Preprint
Article

The Maximal Prime Gaps Supremum and the Firoozbakht's Hypothesis No 30

Altmetrics

Downloads

367

Views

578

Comments

0

This version is not peer-reviewed

Submitted:

29 June 2020

Posted:

30 June 2020

You are already at the latest version

Alerts
Abstract
The maximal prime gaps upper bound problem is one of the major mathematical problems to date. The objective of the current research is to develop a standard which will aid in the understanding of the distribution of prime numbers. This paper presents theoretical results which originated with a researchin the subject of the maximal prime gaps. the document presents the sharpest upper bound for the maximal prime gaps ever developed. The result becomes the Supremum bound on the maximal prime gaps and subsequently culminates with the conclusive proof of the Firoozbakht's Hypothesis No 30. Firoozbakht's Hypothesis implies quite a bold conjecture concerning the maximal prime gaps. In fact it imposes one of the strongest maximal prime gaps bounds ever conjectured. Its truth implies the truth of a greater number of known prime gaps conjectures, simultaneously, the Firoozbakht's Hypothesis disproves a known heuristic argument of Granville and Maier. This paper is dedicated to a fellow mathematician, the late Farideh Firoozbakht.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated