Preprint
Article

Detection of Fraud Transactions Using Recurrent Neural Network during COVID-19

Altmetrics

Downloads

842

Views

1089

Comments

0

This version is not peer-reviewed

Submitted:

29 June 2020

Posted:

30 June 2020

You are already at the latest version

Alerts
Abstract
Online transactions are becoming more popular in present situation where the globe is facing an unknown disease COVID-19. Now authorities of Countries requested peoples to use cashless transaction as far as possible. Practically it is not always possible to use it in all transactions. Since number of such cashless transactions have been increasing during lockdown period due to COVID-19, fraudulent transactions are also increasing in a rapid way. Fraud can be analysed by viewing a series of customer transactions data that was done in his/her previous transactions. Normally banks or other transaction authorities warned their customers about the transaction If any deviation is noticed by them from available patterns. These authorities think that it is possibly of fraudulent transaction. For detection of fraud during COVID-19, banks and credit card companies are applying various methods such as data mining , decision tree, rule based mining, neural network, fuzzy clustering approach and machine learning methods. These approaches is try to find out normal usage pattern of customers based on their past activities. The objective of this paper is to find out such fraud transactions during such unmanageable situation.Digital payment schemes are often threatened by fraudulent activities. Detecting fraud transaction in during money transfer may save customers from financial loss. Mobile based money transactions are focused in this paper for fraud detection. A Deep Learning (DL) framework is suggested in this paper that monitors and detects fraudulent activities. Implementing and applying recurrent neural network on PaySim generated synthetic financial dataset, deceptive transactions are identified. The proposed method is capable to detect deceptive transactions with an accuracy of 99.87%, F1-Score of 0.99 and MSE of 0.01.
Keywords: 
Subject: Business, Economics and Management  -   Finance
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated