Preprint
Article

Influence of Chiral Compounds on the Oxygen Evolution Reaction (OER) in the Water Splitting Process

Altmetrics

Downloads

202

Views

275

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

02 July 2020

Posted:

03 July 2020

You are already at the latest version

Alerts
Abstract
Results are presented concerning the influence on the water splitting process of enantiopure tartaric acid present in bulk solution. Stainless steel and electrodeposited nickel are used as working electrode (WE) surface. The latter is obtained by electrodeposition on the two poles of a magnet. The influence and role played by the chiral compound in solution has been assessed by comparing the current values, in cyclic voltammetry (CV) experiments, recorded in the potential range at which oxygen evolution reaction (OER) occurs. In the case of tartaric acid and nickel WE a spin polarization of about 4 % is found. The use of the chiral environment (bulk solution) and ferromagnetic chiral Ni electrode allows for observing the OER at a more favourable potential: about 50 mV (i.e. a cathodic, less positive, shift of the potential at which the oxygen evolution is observed).
Keywords: 
Subject: Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated