Preprint
Article

Data-driven Analytical Models of COVID-2019 for Epidemic Prediction, Clinical Diagnosis, Policy Effectiveness and Contact Tracing: A Survey

Altmetrics

Downloads

522

Views

608

Comments

0

This version is not peer-reviewed

Submitted:

06 July 2020

Posted:

07 July 2020

You are already at the latest version

Alerts
Abstract
The widely spread CoronaVirus Disease (COVID)- 19 is one of the worst infectious disease outbreaks in history and has become an emergency of primary international concern. As the pandemic evolves, academic communities have been actively involved in various capacities, including accurate epidemic estimation, fast clinical diagnosis, policy effectiveness evaluation and development of contract tracing technologies. There are more than 23,000 academic papers on the COVID-19 outbreak, and this number is doubling every 20 days while the pandemic is still on-going [1]. The literature, however, at its early stage, lacks a comprehensive survey from a data analytics perspective. In this paper, we review the latest models for analyzing COVID19 related data, conduct post-publication model evaluations and cross-model comparisons, and collect data sources from different projects.
Keywords: 
Subject: Medicine and Pharmacology  -   Pulmonary and Respiratory Medicine
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated