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Among the best-known capillarity phenomena is a capillary rise, the understanding of which is
essential in fluidics. Some capillary flows rise monotonically whereas others oscillate, but until now
no criteria have been formulated for this scenario. In this paper, the Levine’s capillary rise modelling
is computed numerically, then the critical radius of the capillary tube is formulated by using the
dimensional method and data fitting for identification of exponent index. The phase space diagram
of capillary velocity versus height is obtained for the first time and shows that the phase transition
from oscillating to monotonic rising happens when the phase trajectory decreases exponentially to
somewhere other than the ”attractor.” Two general Maple codes of the problem are provided as an
essential part of this paper.
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INTRODUCTION

As shown in Fig. 1, capillary rise is among the best-
known and most vivid illustrations of capillarity. Un-
derstanding the laws of capillarity is important in many
industries [1–20].
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FIG. 1: The dynamics of capillary rise, where ρ is density, µ is
the viscosity, σ is the liquid-air surface tension σ = γLV , θ is
the wetting angle of the liquid, h is the height of the capillary
rise, a is the capillary radius, and g is the acceleration of
gravity.

The physical dynamics can be briefly described as fol-
lows: Due to the effect of the surface tension, the capil-
lary liquid obtains initial acceleration (the initial accel-
eration must never be zero), and begins to rise at a rel-
atively uniform velocity, while the surface tension plays
a dominant role in the ascending phase; however, as the
capillary rises, wall frictions and gravity begin to work in
an attempt to prevent the rise of the capillaries, and their
joint action succeeds in decelerating the capillaries to a
point, until the capillaries are finally stopped. Surface
tension and wall resistance, as well as gravity to achieve
unity of opposites, and the capillary dynamics process
are attributed to calm.

The popular equation for capillary-rise dynamics is ob-

tained as
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which assumes a Poiseuille flow profile throughout the
capillary. However, although this equation is used widely
in the literature, it has a singularity at t = 0, and more
criticism of this equation can be found in [7, 11, 15, 19,
20].

To remove the singularity, some scholars have reformu-
lated the problem [7, 18]. A singularity-free equation of
capillary-rise dynamics has been obtained by Szekely, et
al. [7] as follows:
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Regarding the above Szekely’s equation, Sun [19] pro-
posed the capillary height as h(t) = H[1 − f(t)e−βt],
where H = 2σ cos θ

ρga . By Galerkin’s method, he formulat-
ed a monotonic capillary height
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as well as the capillary velocity
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However, Sun’s approximate solution can not include
capillary oscillation. In joint work with Zhong and Liao
[20], we used homotopy analysis to attack the problem
again and succeeded in finding both monotonic and os-
cillating solutions. The work by Zhong et al. [20] was the
first attempt at simulating the entire process of capillary
dynamics.
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After we have obtained the approximate analytical so-
lution in [20], it is found that the solution is not practical
due to its complicated structures. The reformulation will
not be an easy task if changing capillary dynamics mod-
elings. From an application point of view, it is highly
demanded to have a simple and easy way of solving any
capillary dynamics. Therefore, we will use commercial
software to attack the problem. To make the programme
coding as simple as possible, we use Maple to materialize
the goal, because we found the Maple can provide us not
only with the simplest programme but also having high
accuracy.

Regarding the physics of capillary dynamics, there is a
phenomena: monotonic rising and oscillation. However,
there is no consensus on the criterion of the phase tran-
sition from oscillation to monotonic rising. It is still a
open problem. This is the focus of our study.

In this paper, after introduction, in Section 2 we will
convert Levine’s nonlinear dynamics equation into state
equations and provide a general Maple code for the prob-
lem. In Section 3 we apply the Maple code to study the
influence of physical parameters on the capillary dynam-
ics and confirm that the tube radius is a dominating pa-
rameter. In Section 4 we study the oscillation-monotonic
phase transition problem by using stability analysis and
propose a critical tube radius by dimensional analysis and
data fitting. In Section 5 to find a depth mathematical
criteria on the oscillation-monotonic phase transition, we
study the phase state diagram. Finally with discussions
and conclusion.

LEVINE’S CAPILLARY DYNAMICS MODEL
AND MAPLE CODE OF NUMERICAL

SOLUTION

According Stange et al. [12], one of the most detailed
capillary theory up to now is proposed by Levine et al.
[8]. In this paper, we will use Levine’s model rather than
Szekely’s as we have used before. Levine’s nonlinear dy-
namics equation is given as follows
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(2)
with initial height and velocity boundary conditions of
h(0) = 0, ḣ(0) = 0.

For a comparative study, throughout the entire numer-
ical investigation we use the data for diethyl ether in glass
as given in Table I.

TABLE I: The diethyl ether in glass with arbitrary radius

µ [ kg
ms

] σ [ kg
s2

] θ g [m
s2

] ρ [ kg
m3 ]

2.2 · 10−4 1.67 · 10−2 260 9.81 710

Equation (2) is strongly nonlinear, therefore its solu-
tion cannot be obtained analytically and so must be com-
puted numerically. The state equations of Eq. (2) are
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and the initial conditions become h(0) = 0, y(0) = 0.
Although no analytical solution can be found, a nu-

merical solution can be obtained. All the numerical sim-
ulations reported herein were done using the state equa-
tions Eq.3 and 4. To visualize and quantify the capillary
dynamics process more precisely, we carry out compre-
hensive numerical investigations by Maple [21].

For easy use of results presented in this paper, the
Maple code of computing the state equation with initial
condition h(0) = y(0) = 0 is provided below:

for i from 1 to 5 do:
µ := 2.2

10000 ;
σ := 1.67

100 ;
θ := 2π 26

360 ;
g := 9.81;
ρ := 710;
a := 0.0001i;
eq1:= diff(h(t), t) = y(t);
eq2:=diff(y(t),t)= 1

h+ 37
36a

( 2σ
ρa cos θ − 7

6y
2 −

µ
ρ ( 8h

a2 + 2
a )y − gh)

h0:=0;
y0:=0;
answer:=dsolve([eq1,eq2,h(0)=h0,y(0)=y0],
numeric,output=listprocedure);
h[i]:=rhs(answer[2]);
y[i]:=rhs(answer[3]);
print(i);
od:
plot([seq(h[i](t), i = 1 .. 5)], t = 0 .. 0.35,
legend = [”i=1”, ”i=2”, ”i=3”, ”i=4”,
”i=5”], axes = boxed)

The code is general and can be used for other mathe-
matical model by slightly modification. For comparison
studies in the Section 3, we have also written a Maple
code for Szekely’s equation in Eq. 1, the Maple code is
provided in the appendix. In the same way, Maple code
of Stange’s equation [12] can be easily done so we will
not provide here.

NUMERICAL CASE STUDIES

Figure 2 compares the Jurin height H = 2σ
ρga cos θ and

Sun’s solution [19], showing that the latter is simply an
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average of the real solution and does not capture the
oscillatory behavior.

FIG. 2: Capillary height h(t) profile for radius a = 0.5 [mm]
and comparisons.

Figure 3 shows that the profile of the capillary height
h(t) changes dramatically with the tube radius a. The
phase transition from oscillating to monotonic rising hap-
pens at a ≈ 0.1 mm, and the calculation indicates that
to prevent oscillation, a thinner tube should be used.

FIG. 3: Capillary height h(t) profile for different tube radius
a = 0.5/i[mm], where i = 1, 2, 3, 4 and i = 5. The capillary
is oscillating at a > 0.1[mm] and monotonic at a < 0.1[mm].

The surface tension σ is the source of the force that lifts
the capillary, leading to the question of what happens if
the value of σ changes. Figure 4 shows that the capillary
rise is strongly affected by the surface tension: the greater
the surface tension, the higher the capillary rise.

If we only change the intake angle, Fig. 5 shows that
the capillary height is affected slightly: the larger the
angle, the smaller the capillary rise.

Similarly, Fig. 6 shows that the capillary height is af-
fected slightly by changing the viscosity µ.

The density plays a role in resisting capillary rise. Fig-
ure 7 shows that the capillary rise is strongly affected

FIG. 4: Capillary height h(t) profile for different surface ten-
sor σ = 1.67 × 10−2/i, where i = 1, 2.

FIG. 5: Capillary height h(t) profile for different angle θ =
260/i, where i = 1, 2.

by the density: the greater the density, the lower the
capillary rise.

The acceleration due to gravity is another factor that
plays a role in resisting capillary rise, and Fig. 8 shows
that the capillary rise is strongly affected by the acceler-
ation due to gravity.

Figure 9 shows what the capillary rise would be on the
Moon, there the acceleration due to gravity is 1.62 m/s2,
much less than that on Earth.

From the capillary-rise profiles for five different tube
radii in Fig. 10, it is clear that the capillary rise would be
much higher and with no oscillation; the rising is mono-
tonic.

In the absence of gravity, Fig. 11 shows that the cap-
illary rise would be even greater than that on the Moon.

In Fig. 12, comparison with Stange’s experiments and
modelling.
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FIG. 6: Capillary height h(t) profile for different viscosity
µ = 2.2 × 10−4/i, where i = 1, 2, 3, 4 and i = 5.

FIG. 7: Capillary height h(t) profile for different density ρ =
710/i,where i = 1, 2, 3, 4 and i = 5.

PHASE TRANSITION BETWEEN OSCILLATING
AND MONOTONIC RISING

Regarding the phase transition between oscillating and
monotonic rising, there is no consensus on the critical
tube radius. Assume oscillating solution h(t) = H+y(t),
and omit the 2nd order terms such as yÿ, (ẏ)2 and yẏ,
we have an equation for y(t): ÿ + Bẏ + Cy = 0, where
B = 8µ

ρa
H

H+ 7
6a

, C = g
H+ 7

6a
and H = 2σ

ρag cos θ. The

solution is y(t) = e−
1
2Bt(c1 sinhαt + c2 coshαt), where

α = 1
2

√
B2 − 4C and c1, c2 are the constant of integra-

tion. Clearly, if B2−4C < 0, the capillary rise oscillation
and monotonic otherwise, hence B2−4C = 0 gives a lin-
ear approximation gives the critical tube radius as

aLinear ≈ (32
σµ2

ρg2
cos θ)1/3.

For the capillary with the data listed in Table I, the
critical radius is predicted as a ≈ 0.07 mm, which un-
fortunately contradicts the numerically predicted critical

FIG. 8: Capillary height h(t) profile for different gravity g =
g/i,where i = 1, 2, 3, 4 and i = 5.

FIG. 9: Capillary height h(t) profile: on moon with gravity
g = 1.62[m/s2]

value of a ≈ 0.2 mm as shown in Fig. 3.

Therefore, the criterion for the phase transition from
oscillating to monotonic rising remains unresolved. For
the time being, from Buckingham’s Π theorem based on
a = f(σ, µ, ρ, g, θ). However, because σ, µ, ρ, and g
are physical constants, only two dimensionless param-
eters can be produced, leading to a critical radius of

a = f(σµ
2

ρg2 ) cos θ. Data fitting allows us to propose the
phase-transition criterion as

acr ≈
1

2

(
σµ2

ρg2

)0.26

cos θ. (5)

This approximation reveals that the critical radius of cap-
illary tube is decreasing with the liquid density and grav-
ity, and increasing with liquid surface tension and viscos-
ity otherwise.
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FIG. 10: Capillary height h(t) profile: on moon with gravity
g = 1.62[m/s2], numerical results for different radius a =
0.1i[mm]

FIG. 11: Capillary height h(t) profile: zero gravity; numerical
results for different radius a = 0.1i[mm]

DYNAMICS PHASE DIAGRAM

Finally, we consider the phase diagram of capillary rise
in Fig. 13. When the tube radius exceeds the critical ra-
dius (i.e., a > acr), because the capillary is damped by
factors such as viscosity and gravity, the capillary rise
loses energy during each oscillation cycle. As the am-
plitudes of the velocity and position decrease, the phase
diagram spirals inwards. In classical mechanics, this is
described as an ”attractor” and shows that the system
is trapped in a potential well from which it cannot es-
cape. However, for monotonic rising with a < acr, the
phase trajectory decreases exponentially to somewhere
other than the attractor.

FIG. 12: Capillary height h(t) profile comparison with Stange
[12] in the case of no gravity. The minor misalignment after
3 seconds is because that Stange used different mathematical
equation.

FIG. 13: Phase-space profile for different tube radius a =
0.1i[mm], where i = 1, 2, 3, 4 and i = 5. The phase space dia-
gram spirals inwards to a point ”attractor” when tube radius
a > 0.1[mm] and open with monotonic region at a < 0.1[mm].
The capillary oscillation has attractor, while monotonic rise
has no attractor.

CONCLUSION

The present results highlight how and when capillary
dynamics are either oscillation or monotonic rise. This
study has confirmed that the capillary height rising is
strongly influenced by the tube radius, which is a dom-
inate parameter. The critical radius is proposed by di-
mensional analysis and data fitting. The phase diagram
of the capillary dynamics reveals that oscillation and
monotonic rise have different attractors.
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Appendix

The Maple code for the Szekely’s capillary dynamics
equation:

(h+
7

6
a)
d2h

dt2
+

1

2
(
dh

dt
)2 +

8µ

ρa2
h
dh

dt
+ gh =

2σ

ρa
cos θ

with initial height and velocity boundary conditions of
h(0) = 0, ḣ(0) = 0.

for i from 1 to 5 do:
µ := 2.2

10000 ;
σ := 1.67

100 ;
θ := 2π 26

360 ;
g := 9.81;
ρ := 710;
a := 0.0001i;
eq1:= diff(h(t), t) = y(t);
eq2:=diff(y(t),t)= 1

h+ 7
6a

( 2σ
ρa cos θ − 1

2y
2 −

µ
ρ
8h
a2 y − gh)

h0:=0;
y0:=0;
answer:=dsolve([eq1,eq2,h(0)=h0,y(0)=y0],
numeric,output=listprocedure);
h[i]:=rhs(answer[2]);
y[i]:=rhs(answer[3]);
print(i);
od:
plot([seq(h[i](t), i = 1 .. 5)], t = 0 .. 0.35,
legend = [”i=1”, ”i=2”, ”i=3”, ”i=4”,
”i=5”], axes = boxed)
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