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Abstract: The rapid development of China's economy has led to a rapid increase in energy
production and use. Among them, the excessive consumption of coal in fossil energy
consumption is the leading cause of air pollution in China. This paper incorporates
renewable energy innovation, fossil energy consumption and air pollution into a unified
analysis framework, and uses spatial measurement models to investigate the spatial effects
of renewable energy green innovation and fossil energy consumption on air pollution in
China, and decomposes the total impact into direct and indirect effects. influences. The
empirical results show that China's air pollution, renewable energy green innovation and
fossil energy consumption are extremely uneven in geographical space, generally showing
the characteristics of high in the east and low in the west, and showing a strong spatial
aggregation phenomenon. Fossil energy consumption will lead to increased air pollution,
and the replacement of fossil fuels with clean and renewable energy is an important means
of controlling pollution emissions. The direct and indirect effects of renewable energy green
innovation on air pollution are significantly negative, indicating that renewable energy
green innovation not only suppresses local air pollution, but also suppresses air pollution in
neighboring areas. The consumption of fossil energy will significantly increase the local air
pollution, and the impact on the SO2 and Dust&Smoke pollution in the adjacent area is not
very obvious. It is recommended to strengthen investment in renewable energy green
innovation, reduce the proportion of traditional fossil energy consumption, and pay
attention to the spatial connection and spillover of renewable energy green innovation.

Key words: renewable energy; energy consumption; air pollution; spatial dubin model
; spatial analysis

1. introduction

In the 21st century, with the rapid economic development, China's energy consumption
has increased rapidly year by year. Because of the large increase in energy consumption, the
problem of air pollution has become more serious. According to a report by the International
Energy Agency (2016), up to 99% of SO2 and NOx emissions and up to 85% of PM2.5 emissions
are attributed to energy production and use[1],it is as shown in Fig].

502, NOx, Dust&Smoke in China's air pollutants mainly come from the burning of fossil

fuels, because coal is the most important energy source in China's fossil energy consumption.
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The important reason for China's air pollution is the burning of coal as a fuel[2].Because coal
combustion will produce a lot of SO2, NOx, Dust&Smoke, which will increase the
concentration of air pollutants, and studies have shown that the increase in the concentration
of air pollutants will significantly reduce the health of residents [3],Both short-term and long-
term income elasticity show that sulfur oxide emissions have a significant positive impact on
health expenditure [4].And previous studies have found that air pollution has a strong spatial
spillover effect, and air pollution in geographically close cities or regions has strong mutual
effects [5][6][7][8].

Therefore, to reduce air pollution, it is necessary to reduce the proportion of coal
consumption in fossil energy consumption, so as to reduce the SO2, NOx, Dust&Smoke
emissions during energy consumption. At this stage, to reduce the proportion of coal
consumption, replacing fossil fuel combustion with clean renewable energy is generally
considered to be the best solution[9],therefore, the proportion of renewable energy
consumption must be increased to replace part of the fossil energy consumption. But the
problem is that the price, stability, and technological maturity of renewable energy at this
stage are worse than fossil energy. Obviously, this has hindered the consumption of
renewable energy. Therefore, to increase the consumption of renewable energy on the
consumer side To account for the proportion, we must increase renewable energy innovation
research and development, so that the price, stability, technological maturity of renewable
energy and fossil energy are comparable. Only in this way will the proportion of renewable
energy consumption be increased, and the proportion of coal consumption will be reduced
accordingly.

However, existing research focuses on the impact of energy consumption and economic
and social factors on air pollutant emissions. Few studies have focused on the impact of
renewable energy green innovation and fossil energy consumption on air pollution. It also
ignores the spatial effects of air pollution, renewable energy green innovation, and fossil
energy consumption.

In order to fill this gap, this paper fully considers the spatial effect and uses a spatial
econometric model to investigate the spatiotemporal evolution characteristics, spatial
correlations, and spatial aggregation effects of air pollution in my country. And pay attention
to the impact of renewable energy green innovation, fossil energy consumption on air

pollution emissions.

The rest of the study is organized as follows: Section 2 is a literature review of relevant
studies and the contributions made by this study. Section 3 introduces the variables, models,
data sources and methods of this study. Section 4 is the results and discussion of space
exploration analysis. Section 5 is the empirical results of the space panel model. Conclusions
and policy recommendations are provided in Section 6.
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Fig. 1. Selected primary air pollutants and their sources, 2015. Source: International Energy Agency

(2016): 26.

2. Literature review

In recent years, with the rapid increase of energy consumption in China, the problem of
air pollution caused by energy consumption has also intensified, which has led many scholars
to pay attention to the problem of air pollution. Brunt, H et al (2016) found that air pollution,
poverty and health issues are inseparable. If the local air pollution problems and solutions are
considered in the context of broader health determinants, greater health benefits can be
achieved (Reduce health risks and inequality) [10]. Dong K. et al (2019) found that respirable
suspended particles (PM10) are a typical component of particulate matter, which can lead to
increased morbidity and mortality of respiratory and cardiovascular diseases[11]. The
findings of Signoretta et al (2019) show that the perception of major air pollution problems
and worse mental wellbeing go hand in hand only in partial and established environmental
States[12].Gu, H et al (2019) nested household registration data of the 2014 China Floating
Population Dynamics Survey with urban feature data and pollution data, and found that an
increase in air pollution concentration significantly reduced residents” health. Men and urban
residents are more sensitive to air pollution and are more adversely affected[13].

In these studies, scholars have paid more attention to the direct factors of air pollution.
Wang, X.-C. et al (2019) found that energy production and consumption caused air pollution,
with 75% of global greenhouse gas emissions, 66 % Of NOx emissions and most PM
emissions come from the energy sector[14].Yuan, ]. et al (2017) found that due to the large-
scale utilization of high-carbon carbide energy, a large amount of critical air pollutants
(CAPs) and greenhouse gases (GHG) were emitted, resulting in increasing global climate

change and local air pollution problems[15].Zhang, S. et al (2015) found that the cement
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industry is China's second largest energy-consuming industry and a major emitter of carbon
dioxide and air pollutants. The cement industry accounts for 7% of China's total energy
consumption and 15% of CO %, 21% of PM, 4% of SO, 10% of NOx[16].

However, few scholars are currently concerned about the indirect factors of air pollution,
especially the impact of renewable energy on air pollution. Boudri, ]. et al (2002) studied the
potential of using renewable energy in China and India and their cost-effectiveness in
reducing air pollution in Asia, and found that increasing the use of renewable energy can
reduce sulfur dioxide by 17-35% in China Emissions control costs can be reduced by more
than two thirds in India[17].Zhu, Y (2019) found that technological innovations in renewable
energy are conducive to reducing the concentration of nitrogen oxides (NOx) and respirable
suspended particles (PM10)[18]. Xie, Y. et al (2018) concluded from scenario analysis that
renewable energy has been more effective than taxis in reducing carbon dioxide and air
pollutant emissions[19].The results of Alvarez et al (2017) confirmed the positive impact of
the energy innovation process on air pollution, and pointed out that renewable energy
contributes to improving air quality [20].

Although the above studies occasionally involve the temporal and spatial distribution of
pollution, few studies have studied the spatial correlation and spatial spillover effects of air
pollution, green innovation in renewable energy, and fossil energy consumption. Space
models are rarely used to study the impact of renewable energy green innovation and fossil
energy consumption on air pollution. Only a limited number of studies have involved this
aspect. For example, Xie Q et al (2019) found that PM2.5 pollutants have strong spatial
overflow characteristics [21].Zhao, D et al (2018) discussed the temporal trends and spatial
differences of air pollution in five hot spots in china, as well as the impact of macro-
influencing factors on four pollutants, and found that particulate matter exceeded standard in
national-wide[22].Zeng, et al (2019) found that provincial-level renewable energy policies
have a positive impact on the reduction of SO2 and PM2.5. A province’s energy policy will
affect pollutant emissions from neighboring provinces[23]. Li, L et al (2019) found that
atmospheric pollution emissions have a significant agglomeration effect. The spatial
aggregation pattern of atmospheric pollution emissions is similar to that of fossil energy
consumption. The proportion of clean energy consumption and the allocation of energy labor
factors have suppressed atmospheric pollution emissions[24].

In recent years, renewable energy technologies represented by solar power generation
and photovoltaic power generation have been applied on a large scale. Does renewable
energy green innovation really improve air pollution? To what extent has air pollution been
improved? What is the relationship between renewable energy green innovation, fossil

energy consumption, and air pollution? Very few scholars have done research. Based on the
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previous research results, this article finds that there is room for the following: the traditional
non-spatial econometric model needs to be expanded into a spatial econometric model for
research. Spatial aggregation and spatial correlation effects of renewable energy green
innovation, fossil energy consumption, and air pollution, and the effects of the former two on
the latter.

Therefore, the contribution of this study will be in the following aspects: First, the use of
non-spatial and spatial measurement models to study the impact of renewable energy green
innovation and fossil energy consumption on air pollution. Second, fully consider renewable
energy green innovation, the spatial correlation of fossil energy consumption and space
spillover effects, and quantify their impact on air pollution. Third, use visual methods to
show the characteristics of the spatiotemporal evolution of renewable energy green
innovation, fossil energy consumption, and air pollution. Fourth, expand the STIRPAT model
to quantitatively study the impact of renewable energy green innovation, fossil energy
consumption, environmental regulations, industrial structure, population, GDP and other

factors on air pollution.

RETI ¥ RE

B\

FE + pollution

Fig2 the framework of the research

2.  methodology
2.1 wvariables and data

3.1.1 explained variable:

(1) Air pollution: The most representative of air pollution is the amount of air pollutants. In
previous studies, the concentration of PM2.5 was generally used as a proxy variable to
measure the degree of air pollution, but PM2.5 cannot be used for a comprehensive
evaluation on air pollution. Therefore, the main pollutant indicators for measuring air

pollution in this paper are SO2, NOX, Dust&Smoke. And considering that each pollutant has
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its own limitations, this article specifically reduces the dimensions of these indicators to find a
comprehensive pollution amount, so as to make the objective and comprehensive evaluation
of air pollution to the greatest extent possible. .

This paper draws on the method of Liu et al (2015) for index dimensionality reduction.
First, the factor analysis method is used to uniformly reduce the three environmental output
indicators. After the barlett sphere test, the statistic value is 56.077, the significance
probability is 0.000, and the KMO value is 0.748. Therefore, the original hypothesis of
irrelevance between indicators is rejected, and the indicator is suitable for factor analysis. At
the same time, the corresponding weight of each indicator is calculated by the variance
contribution rate of the factor score matrix and the common factor. The weights of the
indicators for sulfur dioxide, nitrogen oxides, and smoke (dust) are 24%, 49%, and 27%,
respectively. Combined with the weights of the three types of pollution indicators,

comprehensive pollution can be calculated[25].The formula is as follows:

n
Chy = z Wie * Xip
i=1

Among them: w;, is the weight of each pollutant, X;, is the pollutant component.

3.1.2Explanatory variables:

3.1.2.1 Main explanatory variables

(1) Renewable energy green innovation (RETI): In this paper, the renewable energy patent
is selected as a proxy variable for green innovation. Refer to Zhu, Y et al (2019) to select the
IPC code shown in the following table[26].Patents have an impact on the corresponding
technology from the date of application, so previous studies mostly counted the number of
patents based on the patent application date. This article refers to the practice of Wang ban-
ban et al (2019) and uses the application date of each patent Count the number of renewable

green patents [27].

Tablel renewable energy IPC code

Energy IPC codes
Wind FO3D
Solar F03G6; F24]2; F26B3/28; H01L27/142; H011L.31/042-058
Marine E02B9/08; F03B13/10-26; F03G7/05
Biomass C10L5/42-44; F02B43/08
Storage H01M10/06-18;, HO1M10/24-32;, HO1M10/34; H01M10/36-40

Hypothesis1l-1 Renewable energy green innovation will reduce comprehensive air pollutant
emissions.

Hypothesis1-2 Renewable energy green innovation will reduce SO2 emissions.
Hypothesis1-3 Renewable energy green innovation will reduce NOx emissions.

Hypothesis1-4 Renewable energy green innovation will reduce Dust&Smoke emissions.
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(2) Fossil Energy Consumption (FEC): China’s rapid development has led to a large
amount of energy consumption, especially a significant increase in the consumption of fossil
fuels. The main cause of pollution is the consumption of fossil fuels, while coal consumption
accounts for more than 50% of China’s fossil energy consumption [28], Therefore, coal
consumption and pollutant emissions are closely related, so this paper selects coal
consumption to represent fossil energy consumption.

Hypothesis2-1 Fossil energy consumption (FEC) will increase integrated air pollutant
emissions.

Hypothesis2-2 Fossil energy consumption (FEC) will increase SO2 emissions.
Hypothesis2-3 Fossil energy consumption (FEC) will increase NOx emissions.
Hypothesis2-4 Fossil energy consumption (FEC) will increase Dust&Smoke emissions.

3.1.2.2 Control variable

(1) Environmental regulation (ER) , There are many ways to measure the intensity of
environmental regulation. Considering China's environmental pollution control policy, this
article refers to the practice of Zhu Y et al (2019), and selects the number of environmental
punishment cases as a proxy variable for the intensity of environmental regulation [29]. To a
certain extent, environmental regulations will suppress pollutant emissions from micro-main
bodies.

(2) Industrial Structure (IS): The proportion of the secondary industry is selected as the
proxy variable. Hao et al (2016) empirical research shows that the correlation coefficient of the
secondary industry's discharge of pollutants is positive[30].Therefore, this article assumes that
there is a positive correlation between industrial structure and air pollution.

(3) GDP: Because there is a gap between the nominal GDP and the actual GDP of each
province and municipality, this article uses the GDP of each province and municipality as the
benchmark in 2000 to calculate the GDP deflator of each province and municipality, thus
calculating the constant price GDP of each province and municipality .

(4) Population (POP). There is a direct link between population size and pollutant
emissions. The increase in population will significantly increase energy consumption and
pollutant emissions.

3.1.3 Variable descriptive statistics

Table 2 Description of variables in models

Variables Explanation units
CPy Comprehensive pollution of i province in t year 104 ton
S02; SO2 emission of i province in t year 104 ton
NOX;, NOx emission of i province in t year 104 ton
DS Dust and smoke emission of i province in t year 104 ton
RETI; Number of renewable energy patents Item
FEC; Fossil energy consumption 104 ton
IS¢ The proportion of secondary industry %
ER; environmental regulation %

GDPy province gross domestic product 108yuan


https://doi.org/10.20944/preprints202007.0167.v1
https://doi.org/10.3390/su12166397

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2020 d0i:10.20944/preprints202007.0167.v1

POP; Province people 104 people

3.1.4 data resources

Air pollutant emission data and environmental regulation data come from China
Environment Yearbook, energy consumption data come from China Energy Statistical
Yearbook, GDP and population data come from China Statistical Yearbook, and patent data

come from Smart Bud patent database. (Https://www.zhihuiya.com/).

2.2 spatial autocorrelation test

2.2.1global correlation index

Here, the global spatial correlation is calculated according to the global Moran index:

_ _ 1 1
Ty S wij =D (xj=%) B Sfwij (i By %) (%)= Sy i)

2yn yn oo 1 1 2
0% Biz1 Lz Wij SR (B ) D X wij

Moran's 19tobal — L

Among them: x;. x; denote spatial regional units i and j, respectively, and i#j. w;;
represents the spatial weight matrix; X represents the average of provinces and
municipalities.c? means variance: (x; — %)(x; — X) means the similarity of spatial units i

and j; n means quantity.

2.2.2 local correlation index

However, the global correlation index cannot measure the local correlation, so the local

Moran index needs to be quoted:

[local — n(x;=%) Xj=q Wij(xj—%) 2

Z?:l(xi_f)z

Moran's

(1)H-H: area units with high observations are surrounded by high-value areas.
(2)H-L: area units with high observations are surrounded by low-value areas

(3)L-L: area units with low observations are surrounded by low-value areas

(4)L-H: area units with low observations are surrounded by high-value areas

Whether it is global spatial autocorrelation and local spatial autocorrelation, the
establishment of spatial weight matrix is very important. In this paper, the spatial adjacency
weight matrix is selected.

The spatial adjacency weight matrix is a spatial weight matrix that reflects the spatial
adjacency relationship. It can be set as that there is a significant mutual influence relationship
between the areas that are adjacent to each other, and the interaction between the areas that
are not adjacent is not significant. The spatial adjacency weight matrix can reflect the spatial
role relationship of the development indicators between provinces and municipalities.

Therefore, the spatial adjacency weight matrix of provinces and municipalities is introduced

to make the spatial relationship of development indicators concrete.
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w4 =

{1, if province i and j is adjacent
ij

0,if province i and j is not adjacent

2.3 spatial econometric model

Based on the above regression model, we set a general provincial pollutant emission
regression model:
The IPAT model is used to explore the complex social dynamics mechanisms generated by
environmental problems. The original IPAT model was proposed by the famous American
demographer Ehrlich & Holdren in 1971. The model believes that environmental pressure is
the product of population, affluence, and technology[31].When Dietz et al[32][33][34] are
estimating the environmental impact of population, wealth and technology, the IPAT model
is expressed in a random form, and a stochastic impacts by regression on population,
affluence and technology (STIRPAT model) is proposed. The specific expression of the
STIRPAT model is.:
Iy = aPRAG Tie, (3)
Where a is a constant term, b, ¢, and d are exponential terms of P, A, and T, respectively, and
e is an error term.
Take the logarithm of the left and right sides of the equation:
Inl;; = Ina + binP;; + clnA;; + dinT; + lne;, (4)
Applied to this article, you can get the following formula:
InY;; = Ay + L, InRETI;; + A,InPOP;; + A3InGDP;, + e, (5)

However, the general regression model does not take into account the spatial influence
between variables. The spatial economic model incorporates the spatial influence on the basis
of the ordinary regression model[35].The spatial lag model (SLM) can be expressed as:

y=pWy+XB+¢ (6)

Where y is the vector of the dependent variable; X represents a matrix of explanatory
variables; W is the spatial weight matrix; Wy is the vector of the spatial lag dependent
variable; p is the spatial regression coefficient, reflecting the spatial correlation of the
dependent variable; 8 is a parameter vector, reflecting the influence of explanatory variables
on the dependent variable; € is a vector of disturbance terms.

By distinguishing the spatial correlation error € and the spatial independent error p, the

spatial error model (SEM) can be expressed as [36]:

y=Xf+¢
{ e=AMWe+u 7

Where A is the spatial autocorrelation coefficient on the error term, which reflects the
influence of the residual in the nearby area on the residual;  is the interference term of a

vector. The values of other variables and parameters are the same as the SLM formula. In
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addition, in order to estimate the spatial spillover effect of pollutants in provinces and
municipalities, this study examines the direct and indirect effects of explanatory variables.

Due to the mutual influence of air pollution, innovation factors and energy factors
between regions. Therefore, when measuring their impact from a spatial perspective, the
spatial measurement model is generally used. In order not to lose the generality, this article
uses the spatial dubin model (SDM), which is the spatial lag model (SLM) and the spatial
error model (The general form of SEM), the expression is.:

Yie = O Xjoa Wijyie + ¢ + X3 + Xy Wijxie0 + 1y + A + & (8)

Among them, y;, is the explanatory variable, x;, is the explanatory variable, c is the
constant term, & is the spatial autoregressive coefficient,  and 6 are the coefficients to be
estimated, ¢ is the residual term. x;;f is the influence of regional independent variable on
dependent variable, §3¥7_; W;;y; is a space lag item, represents the dependent variable
composed of the observation values of the explanatory variables of each spatial unit(i=1,...
» n)attimet(t=1,...,T). & isan independent and identically distributed random error term;
u; and A, represent the spatial and temporal effects, respectively. This paper constructs a
spatial variable W-dependent variable to characterize the spatial spillover effects of pollutant
emissions, renewable energy green innovation, and fossil energy consumption. W is
expressed as a spatial weight, which is used to calculate the degree of correlation and mutual

influence between various spatial elements.

2.4 Direct and indirect spatial influence

In the spatial econometric model, the independent variables usually have an indirect
effect on the dependent variables in the surrounding non-local areas (spatial spillovers). We
estimated the direct, indirect, and total spatial effects based on the estimated spatial
regression coefficients[37] [38].Further quantify the spatial spillover effects of renewable
energy green innovation, energy consumption and other socio-economic indicators on air
pollution. Determine the direct and indirect spatial effects according to the determined spatial
correlation coefficient g, as shown in the formula below:

Y, = (X8 +WX0 + ¢+ 1a,)T — pW)™1 (9)

Where X represents the explanatory variable, 7, represents the constant vector, ais the
parameter of the intercept term.

The matrix of the partial derivative differential equation of the explained variable to the Kth

independent variable is:

oy, oy,
[ 6y ay ] _ 6)'(ik ] aX'nk _
i " Xucd gy, oy, |

X Py
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ﬁk W129k s Wlngk
U —pwy™ (Wb B WanBi|(10)
Wn10 Wpab B

In the above formula (10), the average value of the sum of the values of the matrix
elements on the right is defined as the direct effect, and the average value of the sum of all the
row and column elements of the non-diagonal elements is the indirect effect, reflecting the

influence of other regional independent variables on the regional dependent variable.

3. Exploratory Spatial Analysis Results and discussion

3.1 Spatio-temporal distribution characteristics of pollutant emissions, RETI, fossil energy
consumption

In order to visualize the spatial and temporal distribution characteristics, we used Arcgis
to display the comprehensive pollution emissions, SO2, NOx, Dust&Smoke, renewable
energy green innovation, fossil energy consumption and other variables in 26 provinces and 4
municipalities in China in 2011 and 2017 Spatiotemporal distribution characteristics.

N N
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(k) M
Fig3. Spatial distribution of China’s pollution, renewable energy innovations and fossil energy
consumption

From Fig 3 (a) and (b), we can find that the overall distribution of air pollutant emissions
in China is high in the east and low in the west, and high in the north and low in the south.
The peaks of comprehensive pollutant emissions are located in Inner Mongolia, Shanxi,
Hebei, Shandong, Liaoning in the northeast, Henan in the middle, and Guangdong in the
south. Although the overall comprehensive pollutant discharge in the whole country showed
a large decline over time, the peak of comprehensive pollutant discharge in northeastern
provinces is still much higher than that in southwestern provinces. This finding is consistent
with Zhao et al (2018) [39].

Fig3 (c) and (d), (e) and (f), (g) and (h) show the spatial distribution of SO2, NOx, Dust &
Smoke respectively, from which we can see that their geographical distribution is akin. Peak
emissions are distributed in Shandong, Hebei, Inner Mongolia, Liaoning, Jiangsu, and
Guangdong in the southeast.

From Fig 3 (i) and (j), we can find that Liaoning, Beijing, Shandong, Jiangsu, Shanghai,
Zhejiang, and Guangdong in the eastern and southern coastal areas of China have advantages
in renewable energy green innovation far beyond the central and western provinces. And this
advantage has gradually expanded with the evolution of time. Although the central and
western provinces have also made great progress in renewable energy technology year by
year, it is far less than the southeast coastal area. It is clear that the southeast coastal area has
formed a green innovation highland.

From Fig 3 (k) and (1), we can find that the provinces with the most fossil fuel
consumption in my country in 2011 are the northeastern provinces Inner Mongolia, Hebei,
Shanxi, Shandong, Jiangsu, Henan in the middle, and Guangdong in the south. But with the
evolution of time, the central area of fossil fuel combustion gradually moved northward. And
it can be found that the peak areas of fossil fuel combustion and the peak areas of pollutant

emissions are highly coincident.
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3.2 Global spatial correlation analysis

As shown in Table 3, it is the global Moran index of pollutant emissions, renewable
energy green innovation, and fossil energy consumption in 26 provinces and 4 municipalities
in China. It can be seen from them that they all have a very significant spatial correlation.
However, with the evolution of time, the spatial correlation of environmental pollution has
gradually weakened, and its significance has also decreased. It may be that the pollution
control measures of the provincial government are working. On the one hand, the discharge
of pollutants is reduced, and on the other hand, the spatial diffusion of pollutants between
provinces is controlled. However, the overall correlation and significance of renewable

energy green innovation and fossil energy consumption among provinces are still very high.

Table3 The Moran’s I statistics of China’s pollution ,reti and fossil energy consumption

d0i:10.20944/preprints202007.0167.v1

2011 2012 2013 2014 2015 2016 2017

cp 0.3386*** 0.3285*** 0.3153*** 0.2501** 0.2719** 0.2425** 0.1980**
3.337109 3.242872 3.125831 2.34488 2.527662 2.538885 2.119734

so02 0.2397** 0.2288** 0.1641* 0.2152** 0.2253** 0.1460* 0.1242
2.454958 2.360465 1.63636 2.234856 2.330737 1.666974 1.424221
d&s  0.3589*** 0.3351*** 0.3131*** 0.3863*** 0.4104*** 0.3136*** 0.2230**
3.645495 3.374994 3.194374 3.860736 4.095359 3.341564 2.354572
Nox  0.3444** 0.2565** 0.3265*** 0.3248*** 0.3327%** 0.2351** 0.2467**
3.379879 2.390973 3.222591 3.208654 3.277173 2.440664 2.572206
Reti  0.3100*** 0.3170%** 0.3243*** 0.2979*** 0.3426*** 0.3258*** 0.3090%***
3.302344 3.622955 3.61426 3.326746 3.390146 3.578343 3.445492
Fes 0.3655*** 0.3496*** 0.3679*** 0.3564*** 0.3486*** 0.3277*** 0.3278***
3.598077 3.468931 3.621565 3.533754 3.467786 3.272563 3.288949

Notes: z-statistics in parenthesis. ¥, **, and *** indicate that p values is less than 0.1, 0.05, and

0.01 levels, respectively.

3.3 Local spatial correlation analysis (Local Indicators of Spatial Association (LISA) analysis results
)

Although we have calculated the global Moran index for air pollution, renewable energy
green innovation and fossil energy consumption, it cannot detect the local spatial correlation,
so we drew Moran's I scatter plots for 2011 and 2017, as shown in Fig 4 .

According to Fig 4 (a) and (b), in 2011, the total air pollutant emissions in the first and
third quadrants were 20 sample points (66.7%), and this number was 19 (63.3%) in 2017. Fig
4(c) and (d) show that in 2011, 14 sample points (46.7%) of SO2 emissions were located in the
first and third quadrants, while in 2017 this Fig dropped to 12 sample points (40%). Fig 4 (e)
and (f) show that the NOx data is 18 sample points (60%) in 2011, and 19 (63.3%) in
2017 .Dust&Smoke's data is 24 in 2011 (80%) and 20 in 2017 (66.7%). As for green innovation in
renewable energy, the sample points in the first and third quadrants remained at 22 (73.3%)

in 2011 and 2017. The fossil energy consumption data in 2011 was 19 (63.3%), and in 2017 the
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Fig 4. The Moran’s I plot of pollution, renewable energy innovation and fossil energy consumption
In addition, the corresponding LISA (Local Indicator of Spatial Autocorrelation) maps of

26 provinces and 4 municipalities in China also provide visual evidence of spatial clustering
of air pollutants, green innovation in renewable energy, and fossil energy consumption (see
Fig 5). Fig 5 (a) and (b), (c) and (d), (e) and (f), (g) and (h) show that in 2011, Shandong, Hebei,
Shanxi and Henan in the northeastern provinces, are in the HH accumulation mode of
pollutant emission. However, this kind of pollution aggregation phenomenon has been
significantly alleviated by 2017, and the provinces in H-H aggregation mode in 2017 have

significantly reduced.
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Through Figs 5 (i) and (j), we find that the spatial aggregation of renewable energy green
innovation is very significant. Xinjiang, Gansu, Sichuan, and Shaanxi are in L-L clusters,
forming a green innovation depression for renewable energy. This innovation depression
gradually increased from 2011 to 2017. In contrast, the innovation highland in the H-H model
expanded from Jiangsu and Anhui in 2011 to Jiangsu, Anhui, Zhejiang, and Shandong
provinces in 2017. However, we can find that renewable energy green innovation has not
fully flowed, and several economically developed provinces in the east have invested a lot of
money in renewable energy green innovation. However, the innovation achievements have
largely served the province’s micro-subjects, without fully exerting the spillover effect.
Huang et al (2012) found that the national science and technology plan is the main aspect of
China's renewable energy green innovation, and the research and development funds for
renewable energy green innovation are mainly from the country's three major science and
technology plans. Most national projects are funded by universities or research institutions.
Undertaken. The motivation and opportunity for the private sector to fully participate in re-
technology innovation seem insufficient[40].

From Fig 5 (k) and (1), it can be found that Hebei, Shanxi, Henan, Shandong, and Anhui
are in the HH accumulation mode of fossil energy consumption, and this highland of fossil
energy consumption gradually moves northward. The center is located in Shanxi, Shandong
and Hebei. Fossil energy consumption has a strong spatial correlation, probably because the
energy consumption model and the economic development model are closely related. Li Li et
al (2019) believe that because a region’s economic policies are often easily imitated and
tracked by surrounding regions; this demonstration The effect produces a spatial spillover
effect. If the economic development model brings better returns and economic benefits, the
surrounding areas will learn and imitate41. And Lin et al (2019) found that with the increase
of coal-based energy consumption structure, RETI's effect on suppressing CO2 emissions

weakened [42].

(b)
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(k) )

Fig 5 LISA map of comprehensive pollution, renewable energy technology innovation, fossil energy
consumption

Based on the above analysis, we can find that China's air pollution, renewable energy
green innovation and fossil energy consumption are extremely uneven in geographical space.
In general, it shows the characteristics of high in the east and low in the west, and shows a
strong spatial aggregation phenomenon. Therefore, spatial factors cannot be ignored in
analyzing the role of renewable energy green innovation and fossil energy consumption in air

pollution in China. Next, we will use spatial measurement models to analyze.

5. Spatial Panel Estimate Results and discussion

5.1 Analysis of non-spatial panel model results

First, in order to compare with the spatial panel model, we first use the non-spatial panel
model to analyze, the results are shown in Table 4. Renewable energy green innovation,
environmental regulation and comprehensive air pollution, NOx, SO2, Dust&Smoke show a
significant negative correlation, which is significant at the 1% level, thus confirming
Hypothesis1-1,1-2,1-3,1-4 This is consistent with the findings of Alvarez et al[43].On the other
hand, fossil energy consumption is positively correlated with SO2, Dust & Smoke, and is
significant at the 10% level. This finding supports Hypothesis 2-2, 2-4. However, fossil energy
consumption has a negative correlation with comprehensive pollutant emissions and NOx
emissions, which may be related to the progress of clean coal combustion technology and the
increase of coal combustion exhaust emission standards. Mingchen Xu et al (2019) verified
through experiments that adopting fuel-rich/lean technology can further reduce NOx
emissions [44].But do they still exist spatially? We need to further verify through the spatial

Dubin model.

Table 4 Estimation results of non-spatial panel models with spatial fixed effects

Incp Innox Inso2 Inds
Inreti -0.1625*** -0.1056** -0.2224** -0.2993***
(0.0447) (0.0415) (0.0684) (0.0726)
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Infec
Inpop
Inis
Iner

Ingdp

(Ingdp)2

_cons

N
R-sq

-0.0370
(0.0829)
1.6969
(1.1027)
1.2855%*
(0.1733)
-0.1247%%
(0.0218)
2.0521*
(0.7251)
-0.1370%*
(0.0375)
-14.0485
(8.6659)
210
0.745

-0.1030
(0.0769)
0.7971
(1.0229)
1.2633%*
(0.1608)
-0.0948**
(0.0203)
0.5965
(0.6726)
-0.0630%
(0.0348)
0.6090
(8.0388)
210
0.769

0.2434*
(0.1270)
2.6985
(1.6881)
1.6842%
(0.2653)
-0.1893%**
(0.0334)
4.0354**
(1.1100)
-0.2577%%
(0.0574)
-31.6856*
(13.2663)
210
0.728

0.2355*
(0.1347)
4.6511*
(1.7911)
0.8334**
(0.2815)
-0.1253%%
(0.0355)
2.8432%*
(1.1777)
-0.1601*
(0.0609)
-46.1835*
(14.0754)
210
0.334

5.2 Spatial Dubin model

Note: Standard errors in parentheses." p<0.10 ** p<0.05 *** p<0.001

We construct a spatial Dubin model and use the spatial adjacency matrix for regression.

The results are shown in Table 5, where the Wald and LR test results are both significant at

the 1% level, indicating that the spatial Durbin model cannot be replaced by SEM and SLM.

Judging from the results of the SDM model, there is a negative correlation between renewable

energy green innovation and emissions of comprehensive pollutants, NOx, and SO2, which

supports Hypothesis 1-1, 1-2, 1-3. The fossil energy consumption is negatively correlated with

the emissions of comprehensive pollutants, NOx, SO2, Dust&Smoke, especially the negative

correlation between SO2 and Dust&Smoke emissions at 1% level, which confirms our

Hypothesisl-1, 1-2, 1-3, 1-4. The coefficients of INGDP and (InGDP)2 under different air

pollutants are positive and negative, respectively, but they do not pass the significance level

test, so they do not support EKC hypothesis. Under 4 explanatory variables (composite

pollution, NOx, SO2, dust&smoke), the coefficients of ¢ are 0.6408 (t=0.0564, p=0.000), 0.5248
(t=0.0680, p=0.000), 0.6043 (t=0.0592, p =0.000), 0.6320 (t=0.0543, p=0.000), which shows that

there is a significant provincial space spillover effect of air pollution in China. In addition, we

use partial differential methods to study the direct, indirect and total impact of renewable

energy green innovation and fossil energy consumption on air pollution in China (see table

6).

Table 5 results of spatial Durbin model

Incp Innox Inso2 Inds
Main
Inreti -0.0258 -0.0439 -0.0401 0.0130
(0.0263) (0.0288) (0.0431) (0.0421)
Infec 0.0313 0.0050 0.49827%** 0.4350***
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Inpop
Inis
Iner

Ingdp

(Ingdp)2

_cons

Wx
Inreti

Infec
Inpop
Inis
Iner
Ingdp
(Ingdp)2
Q

LR-lag
LR-error
wald-lag

wald-error

(0.0569)
06722+
(0.1882)
0.3281**
(0.1296)
-0.0537%%
(0.0125)
0.9549**
(0.4424)
-0.0471%
(0.0223)
-6.4776*
(3.4906)

-0.1090*
(0.0480)
0.0988
(0.0937)
-0.6155*
(0.2660)
0.3541*
(0.2053)
-0.0106
(0.0236)
0.6716
(0.6865)
-0.0360
(0.0349)
0.6408***
(0.0564)
28.83%*
44 43+
32.84%+
30.29%+

(0.0655)

0.6427++
(0.1882)
0.2756*
(0.1416)

-0.0490%*
(0.0138)
0.2234
(0.4684)
-0.0030
(0.0238)
-4.2013
(3.6056)

-0.0371
(0.0507)
0.1038
(0.1012)
-0.5392*
(0.2676)
0.8603***
(0.2408)
-0.0084
(0.0253)
1.0241
(0.7194)
-0.0617*
(0.0367)
0.5248*+*
(0.0680)
38444+
56.55%+*
4243+
34.94%+

(0.0754)
0.3229**
(0.1587)
0.5179**
(0.1696)
-0.0673*
(0.0215)
0.7882
(0.5982)
-0.0375
(0.0307)
-14.0928*
(4.6683)

-0.0795
(0.0752)
-0.3217*
(0.1188)
-0.0940
(0.2454)
0.2420
(0.2822)
-0.0578
(0.0404)
2.3489*
(0.9698)
-0.1337%
(0.0495)
0.6043***
(0.0592)
35.60%*
39.14%+
60.52%+
34.23%+

(0.0750)
0.7107**
(0.2092)
0.3524*
(0.1905)
-0.0088
(0.0202)
0.3224
(0.6165)
-0.0369
(0.0320)
-2.6661
(4.7041)

-0.3228%*
(0.0761)
-0.2858*
(0.1247)
-0.7550%
(0.2959)
0.0286
(0.2666)
-0.0923*
(0.0368)
0.4698
(0.9943)
0.0164
(0.0500)
0.6320%**
(0.0543)
52,37+
34720
59.05***
28.62%*

Note: Standard errors in parentheses."™ p<0.10 ** p<0.05 ** p<0.001"cppg,so2pg, noxpg,dspg

5.3 Direct action, indirect action and total action

are emissions unit currency

Space spillover effects include direct and indirect effects. Table 6 shows the direct,

indirect and total effects of renewable energy green innovation and fossil energy

consumption on comprehensive pollutants, SO2, NOx, Dust&Smoke emissions. The direct

and indirect effects of renewable energy green innovation on integrated air pollution, NOx,

SO2, Dust&Smoke are negative. This result supports Hypothesis 1-1, 1-2, 1-3, 1-4. Among

them, the indirect impact coefficients of reti on comprehensive air pollution and Dust&Smoke

are: -0.3079 (t value is 0.1130, p value is 0.000), -0.7686 (t value is 0.1664, p value is 0.05),

which shows the green innovation of renewable energy Not only does it suppress local air

pollution, it also suppresses air pollution in neighboring provinces.
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The direct impact of fossil energy consumption on comprehensive air pollution, NOx,
502, Dust & Smoke is positive, because at this stage coal is the main body of China's current
energy consumption, accounting for 64.0% of China's total energy consumption in 2015, coal
is China's economic growth Foundation[45]. When fossil energy consumption increases, NOx,
502, Dust & Smoke emissions will increase accordingly, this finding is consistent with Zhu et
al (2017) [46]. Dong &Liang et al (2014) [47].However, the indirect impact of fossil energy
consumption only on comprehensive pollution and NOx is positive, indicating that fossil
energy consumption will significantly increase local air pollution, while the impact on SO2
and dust&smoke pollution in nearby areas is not very obvious. This may be due to the
coordinated management of coal combustion waste gas emissions by government
departments in different regions, which makes the diffusion effect of coal combustion
emissions of SO2 and dust&smoke on the adjacent areas weaker.

In terms of social and economic factors, the direct and indirect effects of industrial
structure on air pollution emissions are positive, which is the same as the findings of Zheng Y
et al (2020). According to his research results, reducing the proportion of secondary industry
output in GDP can significantly reduce NOx pollution and S02 pollution, and the industrial
structure can change the impact of economic development on atmospheric pollution [48].The
increase in population size also has a positive correlation with air pollution, which is
consistent with the empirical results of Li and K et al (2019). Their empirical results show that
both population size and urbanization rate have a significant positive effect on air pollution.
However, this effect is spatially heterogeneous. The impact of population size on air pollution
in the eastern region is much smaller than that in the central and western regions
[49].Environmental regulations have a negative impact on the emission of pollutants in

various provinces, especially the control effects of NOx and SO2 are more significant.

Table 6 Estimate results of direct effects, indirect effects and total effects

Incp Innox Inso2 Inds
LR_Direct

Inreti -0.0531* -0.0520% -0.0586 -0.0560
(0.0300) (0.0309) (0.0467) (0.0461)
Infec 0.0582 0.0208 0.4919*** 0.4301***
(0.0590) (0.0641) (0.0746) (0.0798)
Inpop 0.6462*** 0.6270*** 0.3592** 0.6614***
(0.1811) (0.1755) (0.1488) (0.2000)

Inis 0.4631** 0.4437* 0.6371*** 0.4137*
(0.1351) (0.1397) (0.1832) (0.2013)

Iner -0.0645* -0.0550*** -0.0885*** -0.0315
(0.0141) (0.0143) (0.0237) (0.0226)

Ingdp 1.2637** 0.4199 1.3969** 0.4875

(0.4962) (0.4936) (0.6635) (0.6954)
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(Ingdp)2 -0.0637** -0.0146 -0.0719** -0.0400
(0.0258) (0.0258) (0.0347) (0.0368)
LR _Indirect
Inreti -0.3079** -0.1075 -0.2227 -0.7686***
(0.1130) (0.0928) (0.1611) (0.1664)
Infec 0.3183 0.2151 -0.0372 -0.0201
(0.2389) (0.1857) (0.2544) (0.3043)
Inpop -0.5079 -0.4269 0.2040 -0.7953
(0.5199) (0.3953) (0.4495) (0.5858)
Inis 1.4485** 1.9555%** 1.2891** 0.6552
(0.4614) (0.3751) (0.6277) (0.6728)
Iner -0.1183** -0.0697 -0.2332** -0.2490**
(0.0568) (0.0468) (0.0904) (0.0918)
Ingdp 3.3012% 2.2426 6.6331** 1.6962
(1.7082) (1.3902) (2.2782) (2.5653)
(Ingdp)2 -0.1697** -0.1236* -0.3671** -0.0176
(0.0859) (0.0700) (0.1154) (0.1295)
LR_Total
Inreti -0.3610** -0.1595 -0.2813 -0.8246%**
(0.1292) (0.1057) (0.1817) (0.1880)
Infec 0.3765 0.2359 0.4548 0.4101
(0.2665) (0.2070) (0.2818) (0.3460)
Inpop 0.1383 0.2001 0.5632 -0.1340
(0.5753) (0.4238) (0.4806) (0.6411)
Inis 1.9115%** 2.3992%** 1.9262** 1.0688
(0.5200) (0.4223) (0.7281) (0.7721)
Iner -0.1828** -0.1247** -0.3217** -0.2806**
(0.0657) (0.0545) (0.1046) (0.1059)
Ingdp 4.5650%* 2.6625 8.0300** 2.1837
(2.0213) (1.6614) (2.6918) (2.9974)
(Ingdp)2 -0.2334** -0.1382 -0.4390** -0.0575
(0.1024) (0.0846) (0.1373) (0.1526)

6. Conclusion and policy implication

Note: Standard errors in parentheses."™ p<0.10

* p<0.05 ** p<0.001"

The air pollution problem in China is complex and comprehensive, and involves many

factors. The distribution of air pollution is spatially related, and air pollution also has a strong

spatial spillover effect. Renewable energy green innovation and fossil energy consumption

have a profound impact on air pollution in space. The discussion mainly reached the

following conclusions:

(1) The spatial distribution of China's air pollution is high in the east and low in the west,

high in the north and low in the south. The peak emissions of NOx, SO2, Dust & Smoke are

distributed in the northeastern provinces of Shandong, Hebei, Inner Mongolia, Liaoning,

Jiangsu and Guangdong in the south. In addition, China's air pollution has a strong spatial

concentration effect, and Shandong, Hebei, Shanxi, and Henan are in the H-H highland

where pollution is emitted.
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(2) Renewable energy green innovation and fossil energy consumption also have a strong
spatial relationship, and this relationship has been strengthened year by year. Renewable
energy green innovation highlands and depressions are becoming more and more prominent.
Xinjiang, Gansu, Sichuan, and Shaanxi are in the L-L cluster of renewable energy green
innovation, which constitutes a depression for renewable energy green innovation. This
innovation depression gradually increased from 2011 to 2017. On the contrary, the innovation
highland in the H-H aggregation mode of renewable energy green innovation expanded from
Jiangsu and Anhui in 2011 to Jiangsu, Anhui, Zhejiang and Shandong in 2017. Fossil energy
consumption also shows a high degree of aggregation. Hebei, Shanxi, Henan, Shandong, and
Anhui are in the HH accumulation mode of high fossil energy consumption, and this
highland of fossil energy consumption gradually moves northward. By 2017, the center of the
HH accumulation mode Located in Shanxi, Shandong and Hebei.

(3) Renewable energy green innovation and environmental regulations have a significant
inhibitory effect on air pollution (SO2, NOx, Dust & Smoke). The consumption of fossil
energy, the increase in the proportion of secondary industries in the industrial structure, and
the increase in the size of the population will all lead to increased air pollution.

Based on the above analysis, the following suggestions are made to mitigate air pollution:

(1) According to the spatial overflow characteristics of pollutant discharge, it is
recommended to establish a mechanism for regional cooperative governance, especially in
areas with high pollution concentration. Neighboring provinces should work together to
control pollution, and establish environmental governance exchanges and cooperation
between regions. When formulating environmental policies, strengthen coordination and
communication between regions, and fully consider the environmental impact of air
pollution in one province on surrounding provinces.

(2) Itis recommended to strengthen the space diffusion of renewable energy green
innovation, to allow scientific and technological innovation factors to fully flow, so that
renewable energy green innovation in one province can fully serve the surrounding
provinces. The government should encourage the flow of regional innovation factors to allow
the full flow of technological innovation, and the state should build a platform for provinces
with backward innovation to easily introduce advanced energy technologies. Renewable
energy green innovation is widely used, will make renewable energy technology more
applied, thereby increasing the proportion of renewable energy consumption, to achieve the
purpose of effectively reducing air pollutant emissions. Increase investment in research and
development of renewable energy technologies, the development of renewable energy green
innovation in one province will reduce pollutant emissions from neighboring provinces.

(3) Reducing the consumption of fossil energy in one province can effectively reduce air
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pollution in neighboring provinces, and replacing traditional fossil energy with more
renewable energy can effectively reduce air pollution. For the regions with high coal fossil
energy consumption and high energy consumption intensity in the northwest, the
government should rationally control the proportion of industries with high energy
consumption and high pollution while appropriately upgrading the industrial structure,
appropriately increase environmental regulations, and promote the introduction of advanced

energy production technologies.
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