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Abstract: For some decades, the scientific community has been looking for alternatives to the use of 

fossil fuels that allow the planet's sustainable and environmentally friendly development. To do 

this, attempts have been made to mimic some processes that occur in nature, among which the 

photosystem-II stands out, which allows water splitting operating with different steps to generate 

oxygen and hydrogen. This research presents promising results using synthetic catalysts, which try 

to simulate some natural processes, and which are based on Au@ZnO-graphene compounds. These 

catalysts were prepared by incorporating different amounts of gold nanoparticles (1 wt.%, 3 wt.%, 

5 wt.%, 10 wt.%) and graphene (1 wt.%) on the surface of synthesized zinc oxide nanowires (ZnO 

NWs), and zinc oxide nanoparticles (ZnO NPs), along with a commercial form (commercial ZnO) 

for comparison purposes. The highest amount of hydrogen (1,127 µmol/hg) was reported by ZnO 

NWs with a gold and graphene loadings of 10 wt.% and 1 wt.%, respectively, under irradiation at 

400 nm. Quantities of 759 µmol / hg and 709 µmol / hg were obtained with catalysts based on ZnO 

NPs and commercial ZnO, respectively. The photocatalytic activity of all composites increased with 

respect to the bare semiconductors, being 2.5 times higher in ZnO NWs, 8.8 times for ZnO NPs and 

7.5 times for commercial ZnO. The high photocatalytic activity of the catalysts is attributed, mainly, 

to the synergism between the different amount of gold and graphene incorporated, and the surface 

area of the composites.  
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1. Introduction 

If you were asking to identify one of the many challenges that our world is facing right now, 

you would probably say climate change, energy production or sustainability. Most of these problems 

are directly related to the continuous growth of world population and the use of fossil fuels as our 

primary energy source [1]. 

In the case of finding a clean and renewable energy source, multiple candidates have been 

proposed over the years. One of them is hydrogen. Some of the properties that make hydrogen a 

good candidate to replace fossil fuels are its abundance, high energy yield, storage capability, and 

environmental compatibility [2]. Hydrogen is the most abundant element in the universe and can be 

found in water and biomass. If compared to hydrocarbons, hydrogen could produce 2.75 times more 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2020                   doi:10.20944/preprints202007.0185.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Biomimetics 2020, 5, 39; doi:10.3390/biomimetics5030039

mailto:machina1@uagm.edu
https://doi.org/10.20944/preprints202007.0185.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomimetics5030039


 2 of 15 

 

energy, could be stored as solid, liquid or gas, and if it is combined with oxygen, no harmful and 

toxic gases such as nitrogen oxides (NOx) or sulfur oxides (SOx) are release to the atmosphere [2]. 

Unfortunately, the vast majority of hydrogen that is produced in the world, comes from a 

process known as natural gas reforming [3]. As the name says, this process uses natural gas, methane 

(CH4), as the source to obtain hydrogen. This process releases carbon dioxide (CO2) to atmosphere, 

increasing the amount of this greenhouse gas and exacerbating global warming [3].  

Photosynthesis offers an excellent model for designing an artificial solar energy conversion 

system for clean fuel generation. In nature, electrons are provided to the reaction center of the 

photosystem-II in four consecutive proton coupled electron transfer steps, and ultimately appear as 

reduced carbon derived products that form the basis of biological activity. Inspired by natural 

principles, for decades there has been a continuous effort to design artificial photosynthetic 

assemblies based on the use of solar energy to generate oxygen and hydrogen by water splitting [4-

6]. Over the years, multiple candidates such as titanium dioxide (TiO2), zinc oxide (ZnO), tungsten 

trioxide (WO3), cadmium sulfide (CdS), among others, have been used to produce hydrogen via 

water splitting [7,8]. From all these photocatalysts, TiO2 has been extensively studied over the years 

mainly due to its chemical stability, abundance, non-toxicity and high hydrogen yield [7].  

As titanium oxide, ZnO has also demonstrated to be chemically stable, easy to produce, non-

toxic, abundant and environmentally friendly [9,10] although, unlike titanium dioxide, ZnO has been 

widely used for the degradation of organic pollutants and energy storage [9,11,12]. Some authors 

[13,14] consider that ZnO shows some disadvantages for the production of hydrogen by water 

splitting, especially the recombination of photogenerated electron-hole pairs, fast backward reaction, 

and the inability to use visible light. To try to solve these limitations different approaches have been 

implemented over the years. One of them has been the incorporation of noble metal to the surface of 

the catalysts [13,14]. Among noble metals, gold has gained much attention since the 80’s because of 

its wide range of applications, including electronics, photodynamic therapy, delivery of therapeutic 

agents, sensors, probes, diagnostics and catalysis [15,16]. Multiples pathways to incorporate gold 

nanoparticles (Au NPs) can be found in the literature. Methods such as coprecipitation [17], chemical 

reduction [18], photoreduction [19], and hydrothermal approach [20] have been successfully 

implemented over the years. All these synthesis procedures take into account parameters such as the 

preparation procedure, gold loading (percentage of gold weight on the material), particle size, 

dispersion (percentage of support surface covered by gold), and shape of the particles. 

Recently, another approach that has drawn a lot of attention is the use of graphene as a cocatalyst 

for the production of hydrogen via water splitting. Graphene has unique properties such as high 

thermal conductivity, excellent mobility of charge carriers, large surface area, and good mechanical 

stability [21]. As a cocatalyst, graphene has significant advantages, including: i) provides a support 

for anchoring well-dispersed metallic or oxide nanoparticles; ii) works as a highly conductive matrix 

for enabling good contact throughout the matrix; iii) induces an easy electron transfer from the 

conduction band of the semiconductor to graphene because of the large energy level offset formed at 

the interface, leading to an efficient charge separation; iv) acts as an efficient cocatalyst for H2 

evolution because of its large specific surface area and superior electron mobility [22].  

There are several approaches reported on the literature to prepare graphene-ZnO composites. 

For example, Tien and group [23] used a microwave-assisted solvothermal process, whereas Ong and 

group [24] reported the preparation of the composites using a chemical deposition-calcination 

approach.  

There is very limited information in the literature on the production of hydrogen via water 

splitting by combining graphene and ZnO. Haldorai and Shim [25] reported the production of 

hydrogen via water splitting by employing a supercritical fluid mediated synthesis. They reported 

that the composites exhibited enhanced photocatalytic activity because the ZnO particles on the 

graphene sheets captured light energy and acted as electron mediators.  

To our knowledge, no results have been reported on the incorporation of graphene and gold 

nanoparticles on the surface of ZnO for the production of hydrogen by water splitting. The 

information found in the literature is very limited and focuses on the degradation of dyes and 
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nitrobenzene under visible and UV light. For example, Zeng et al. [26] and Wang et al. [27] reported 

high photocatalytic activity for the degradation of Rhodamine B and Methylene Blue, respectively. 

They found that the combination of gold and graphene on the surface of ZnO allows the system to 

use visible and UV light, and more importantly, greatly improves the degradation percentage 

compared to pure ZnO and Au-ZnO. On the other hand, Roy et al. [28] reported on the efficient 

reduction of nitrobenzene under UV and visible light, in which the catalyst reduced 97.8% of the 

original compound.  

Due to the lack of information on the production of hydrogen by water splitting using Au@ZnO-

Graphene composites, the objectives of this research focused mainly on: i) synthesizing ZnO with 

different morphologies (nanoparticles and nanowires); ii) incorporate different amounts of gold 

nanoparticles (1 wt.%, 3 wt.%, 5 wt.% and 10 wt.%) and graphene (1 wt.%) to the surface of the as-

synthesized catalysts and to its commercial form; and iii) characterize the photocatalytic activity of 

the compounds by studying the production of hydrogen by water splitting under UV-vis radiation. 

Au@ZnO-Graphene based catalysts were characterized by using HR-TEM, UV-vis spectroscopy, BET 

surface area, XRD, XPS, Raman spectroscopy, and GC-TCD. 

2. Materials and Methods 

2.1. Reagents 

All reagents were used as received and all the solutions were prepared using deionized water 

(Milli-Q water, 18.2 MΩcm-1 at 25 oC).  Zn(CH3COO)2 • 2H2O (98+%, ACS Reagent), HAuCl4•3H2O 

(ACS Reagent, 49.0+% Au basis), Ethanol (95%) and NaBH4 (+99.9%) were provided by Sigma 

Aldrich. NaOH (98+%) and ZnO (99.99%) were acquired from Alfa Aesar. Graphene (99%) was 

provided by Cheap-Tubes. For photocatalytic experiments, Na2S (99.9+%) and Na2SO3 (98+%) were 

obtained from Sigma Aldrich, and used as sacrificial reagents. 

 

2.2. Synthesis of Nanomaterials 

ZnO nanowires (ZnO NWs) were obtained according the method described elsewhere [29]. Zinc 

oxide nanoparticles (ZnO NPs) were synthesized following the method used by Nejati et al. [30]. The 

deposition of Au NPs and graphene on the surface of ZnO NWs, ZnO NPs and the commercial ZnO 

(commercial ZnO) is based on the method described by Naldoni et al. [31], later modified by Wang 

et al. [11]. In a typical synthesis, 200 mg of the product (ZnO NWs, ZnO NPs and commercial ZnO) 

containing the gold nanoparticles was dispersed in a solution containing 10 mL of ethanol and 40 mL 

of deionized water, and the mixture was vigorously stirred for 30 minutes. Subsequently, 2 mg of 

graphene was added, and the suspension was kept under stirring for 1 hour. After that, the product 

was collected and centrifuged 3 times with deionized water and dried overnight to 60 oC. Finally, the 

product was collected, sealed and stored at room temperature. The different Au@ZnO-graphene 

composites were identified as x%Au@ZnO-graphene. The numbers (x%) correspond to the weight 

percentage of Au NPs in the sample. In all cases, the amount of graphene was 1 wt.%. 

 

2.3. Characterization of the Catalysts  

The catalysts were characterized by High Resolution Transmission Electron Microscopy 

(HRTEM), using a JEOL 3000F. XPS measurements were performed on an ESCALAB 220i-XL 

spectrometer, using the non-monochromated Mg Kα (1253.6 eV) radiation of a twin-anode, operating 

at 20 mA and 12 kV in the constant analyzer energy mode, with a PE of 40 eV. Brunauer Emmett 

Teller (BET) specific areas were measured using a Micromeritics ASAP 2020, according to N2 

adsorption isotherms at 77 K. Raman (DXR Thermo Raman Microscope, employing a 532 nm laser 

source at 5 mW power and a nominal resolution of 5 cm-1, and X-ray diffraction (Bruker D8 Discover 

X-ray Diffractometer, operating at 40 kV and 40 mA in the range of 30-75o at 1o min-1 were also used. 

UV-vis spectroscopy (Shimadzu UV-2401PC) was used as a complementary technique to determine 

the absorption edge of the catalysts. 
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2.4. Photocatalytic experiments 

The production of hydrogen via water splitting was measured by adding 50 mg of the 

x%Au@ZnO-graphene catalyst into 100 mL of deionized water and transferring this suspension to a 

250 mL quartz reactor. Then, solutions of 0.02 M Na2SO3 and 0.4 M Na2S were added as sacrificial 

reagents. After that, the solution was thermostatized at 20°C and purged for 30 minutes with nitrogen 

(N2). Finally, the reaction mixture was irradiated with UV-vis light for 2 hours using different filters 

to select the appropriate wavelength (280 nm, 320 nm, 400 nm, and 500 nm). The produced hydrogen 

was quantified by gas chromatography (GC), using a thermal conductivity detector (GC-TCD, 

Perkin-Elmer Clarus 600) [32].  

3. Results and Discussion 

3.1. Characterization of catalysts 

The characterization of the different ZnO supports and Au@ZnO based catalysts is shown in our 

previous research [32]. On these catalysts, 1 wt.% graphene was incorporated. Figure 1 shows the 

HRTEM images and the Selected Area Electron Diffraction (SAED) patterns of the 

10%Au@commercial ZnO-graphene (Figure 1A), 10%Au@ZnO NPs-graphene (Figure 1B), and 

10%Au@ZnO NWs-graphene (Figure 1C) composites. The 10%Au@commercial ZnO-graphene 

composite consists of non-homogenous particles with different sizes (lengths and diameters greater 

than 50 nm) and shapes.  Homogeneous spherical gold nanoparticles, with diameters of less than ca. 

10 nm, are distributed on the surface of the catalyst. Graphene sheets of different sizes are also 

distributed unevenly through the sample. According to Wang et al. [11], it is believed that close and 

homogeneous contact between Au, support and graphene favors the transfer of photogenerated 

electrons between them, thus improving charge separation and photocatalytic efficiency. As in the 

case of the commercial catalyst, the 10%ZnO NPs-graphene catalyst showed non-homogeneous 

particles of different sizes and shapes, with lengths and diameters greater than 50 nm. The non-

homogeneous gold nanoparticles are unevenly distributed throughout the sample, presenting a 

spherical morphology with diameters of less than 10 nm. Graphene is also unevenly distributed 

throughout the sample and serves as a support for ZnO particles and gold nanoparticles. In the case 

of the 10%Au@ZnO NWs-graphene catalyst, the incorporation of graphene and gold considerably 

modified the pristine material. The catalyst consists of non-homogeneous wires, with an estimated 

length greater than 300 nm, and diameters above 50 nm. Gold nanoparticles, with spherical 

morphology and diameters of less than 10 nm, are distributed throughout the sample. Graphene also 

appears to be unevenly distributed in the sample, but has intimate contact with the gold nanoparticles 

and the support. SAED patterns of synthesized gold-graphene-based composites are characteristic of 

monocrystalline materials. 
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Figure 1. HRTEM images of 10%Au@commercial ZnO-graphene (A), 10%Au@ZnO NPs-

graphene (B), and 10%Au@ZnO NWs-graphene (C). The red and yellow arrows indicate 

the presence of graphene and gold, respectively, and the insets correspond to the SAED 

patterns.  

 

Table 1 shows the BET surface area results of the different Au@ZnO-graphene composites. The 

incorporation of the different amounts of Au NPs (1 wt.%, 3 wt.%, 5 wt.%, and 10 wt.%), along with 

graphene (1 wt.%), increased the surface area of all the catalysts when compared to the unmodified 

supports [32]. This enhancement suggests an intimate contact between the incorporated materials 

and the support [31]. Graphene, as explained above, has a very high surface area (~ 2,000 m2g-1), which 

can contribute to increasing the surface area of composites. However, since the amount of graphene, 

when compared to gold was minimum, the enhancement of the surface areas of the catalysts should 

be primarily attributed to the Au NPs. The highest surface area of the commercial support was 

measured to be 65 m2g-1, and was obtained with the 10%Au@ commercial ZnO-graphene. This 

represents an increase of 47 m2g-1 if compared to the unmodified commercial ZnO support. The 

highest surface area of the Au@ZnO NPs-graphene composites was 117 m2g-1, and was measured in 

the 10%Au@ZnO NPs-graphene catalyst, showing a difference of 50 m2g-1 if compared to the result 

obtained with the unmodified ZnO NPs. For the Au@ZnO NWs-graphene composites, the highest 

surface area was 247 m2g-1, obtained by the 10% Au@ZnO NWs-graphene catalyst. This represents a 

difference of 80 m2g-1 if compared to the surface area of the unmodified ZnO NWs (167 m2g-1).  

The XRD patterns of the different composites with a gold loading of 10 wt.% are shown in Figure 

2. The characteristic peaks of wurtzite crystalline phase (ca. 32o (100), 34.8o (002), 36o (101), 47.5o (102), 

56.2o (110), 62.8o (103), 66o (200), 67.5o (112), 68.8o (201)) were observed in all the catalysts [12]. In all 

cases, reflections at 38.2o and 44.4o were observed, which have been associated with Au (111) and 

(200), respectively [16], indicating that Au3+ has been reduced to Au0, with the usual fcc structure. Au 

NPs show other characteristic peaks of lower intensity at 64.7o (220) and 77.8o (311), which could not 

be identified in the catalysts. Applying the Scherrer formula [33], an estimate of the mean size of the 

gold nanoparticles could be made, providing a value of ca. 15 nm in all cases. This value is very close 
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to that determined by HR-TEM (<20 nm). Graphene, on the other hand, has characteristic peaks at ca. 

24.5o and 44.2o [20]. These peaks were not identified in any of the composites. The amount of graphene 

incorporated to the Au@ZnO-Graphene composites was very low when compared to the amount of 

the support and gold loading, and it is possible that the signal emitted by graphene was very weak 

and not able to be detected by the instrument.  

 

Table 1. BET surface area of the Au@ZnO-graphene composites.  

 Commercial ZnO 

(m2g-1) 

ZnO NPs 

(m2g-1) 

ZnO NWs 

(m2g-1) 

Unmodified 18 67 167 

1%Au-Graphene* 48 96 201 

3%Au-Graphene* 51 103 212 

5%Au-Graphene* 56 109 223 

10%Au-Graphene* 65 117 247 

* The amount of graphene in all the catalysts was 1 wt.% 

 

The Au@ZnO-graphene composites containing gold loadings of 5 wt.% and 10 wt.% were 

characterized by Raman spectroscopy (see Figure 3). Graphene has two characteristics peaks at ca. 

1350 cm-1 and 1595 cm-1, known as D and G bands, respectively [10]. The D-band (1350 cm-1) has been 

related to the defects and structural disorder in graphene sheets, whereas the G-band (1595 cm-1) has 

been ascribed to the stretching of the sp2 hybridized carbon-carbon bonds [10]. These two bands were 

observed in all the gold-graphene composites, including those with gold loadings of 1 wt.% and 3 

wt.%. The ratio of the intensity between the D and G band is a measure of the degree of disorder in 

graphene [34]. The narrow strong band at ca. 437 cm-1 (E2 modes) is present in all the composites and 

it has been ascribed to motion of Zn in the wurtzite phase [12]. No gold bands were found for any of 

the composites. 

Au@ZnO-graphene composites, with gold loadings of 5 wt.% and 10 wt.%, were also 

characterized by UV-vis spectroscopy (Figure 4). All the catalysts presented a similar absorption 

range between 325 nm and 400 nm, showing a maximum at ca. 370 nm. Interestingly, despite the 

introduction of graphene and gold, all the composites have almost the same absorption edge as the 

unmodified catalysts, indicating that there is a consistent band gap of nanocrystalline ZnO within the 

Au@ZnO-graphene composites. This suggests that no carbon species was incorporated into the lattice 

of ZnO because impurity level would shift the absorption edge to higher wavelength [35]. No gold 

peaks (~520 – 580 nm) were detected for any of the gold loadings incorporated. This might be 

attributed to the high dispersity of the Au NPs through the samples. 
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Figure 2. XRD diffraction patterns for 10% Au@commercial ZnO-graphene (a); 

10%Au@ZnO NPs-graphene (b); and 10%Au@ZnO NWs-graphene (c). 

 
 

Figure 3. Raman spectra of 5%Au@commercial ZnO-graphene (a); 10%Au@commercial 

ZnO-graphene (b); 5%Au@ZnO NPs-graphene (c); 10%Au@ZnO NPs-graphene (d); 

5%Au@ZnO NWs-graphene (e); and 10%Au@ZnO NWs-graphene (f).  
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Figure 4. UV-vis spectra of different composites: 5%Au@commercial ZnO-graphene (a); 

10%Au@commercial ZnO-graphene (b); 5%Au@ZnO NPs-graphene (c); 10%Au@ZnO NPs-

graphene (d); 5%Au@ZnO NWs-graphene (e); and 10%Au@ZnO NWs-graphene (f). 

 

The catalysts were also characterized by XPS. Figure 5 shows the most relevant spectra of 

10%Au@ZnO NWs-graphene and 10%Au@ZnO NPs-graphene. In both systems (Figures 5a and 5e), 

the O1s shows a main peak at ca. 530.2 eV, which has been assigned to O2− ions in the Zn–O bonds, 

and a shoulder around 531.5 eV, assigned to O2− ions in the oxygen deficient regions, respectively 

[32]. As observed, the contribution of this secondary peak is clearly greater in ZnO NWs than in ZnO 

NPs. As it will be shown later, the highest reactivity is observed in catalysts based on ZnO NWs, so 

this behavior could be justified thanks to the existence of crystalline defects, as already described in 

previous works [32]. In fact, surface defects in crystalline ZnO affect its electrical properties, 

increasing electrical conductivity, which undoubtedly could have positive effects on photocatalysis 

with these materials. In both catalysts, the Zn2p3/2 spectra show a single component that has been 

unambiguously assigned to Zn2+ in ZnO (see Figures 5b and 5f). The presence of metallic gold (Au0) 

was evidenced by the presence of a doublet in the emission peak at ca. 84 eV (4f7/2) and 87.7 eV (4f5/2) 

(Figures 5c and 5g) [36]. No components were observed that could show the presence of Au3+, coming 

from the precursor (HAuCl4 • 3H2O), which evidenced the complete reduction of gold. Figures 5d 

and 5h show the transition corresponding to C1s. The main peak observed at ca. 284.6 eV is assigned 

to the carbon backbone of aliphatic/aromatic (sp3/sp2) carbons, while the component indicated by an 

arrow, around 286 eV can be attributed to carbon in C–O and C–O–C groups [37,38], and to 

contamination by adsorption of oxidized species (CO, CO2). 

 

3.3. Photocatalytic hydrogen production via water splitting 

Figure 6 shows the photocatalytic hydrogen production via water splitting of the different 

catalysts under irradiation at 280 nm (Figure 6a), 320 nm (Figure 6b), 400 nm (Figure 6c), and 500 nm 

(Figure 6d). The maximum hydrogen production of the unmodified ZnO catalysts was 442 μmol/hg 

and was obtained with ZnO NWs by irradiation at 280 nm. This high hydrogen production from ZnO 

NWs was not expected, especially when compared to the maximum hydrogen production of ZnO 

NPs (86 μmol/hg) and the commercial ZnO (94 μmol/hg). According to a study by Zhang et al. [12], 

one-dimensional nanostructures, such as nanowires, can enhance the photocatalytic activity due to 

their large surface-to-volume ratio as compared to other morphologies. Furthermore, ZnO is 
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considered a promising material for solar cells due to the fast electron transport, with reduced 

recombination loss, and its ease of crystallization [12].  

 

 

Figure 5. XPS spectra of Zn 2p3/2, O 1s, Au 4f and C1s taken from as-grown Au@ZnO NWs-

graphene (a - d), and Au@ZnO NPs-graphene (e - h). 

Under irradiation at 320 nm, the hydrogen production of ZnO NWs (365 μmol/hg) decreased 

when compared to that obtained at 280 nm, but then increased again (427 μmol/hg) at 400 nm. This 

was not expected either since the wide band gap energy of ZnO (3.37 eV for wurtzite) does not favor 

the production of hydrogen under visible light. Different studies [39,40,12] have found that surface 

defects and oxygen vacancies in photocatalysts can play a significant role in their photocatalytic 

activity. Crystalline defects in ZnO nanowires exist primordially due to oxygen vacancies. Even 

more, these studies have found that nanoparticles with crystalline defects can exhibit visible light 

activity even without doping them with transition metals.  

Both ZnO NPs and the commercial ZnO obtained similar results in all the wavelengths that were 

evaluated. At 500 nm, the hydrogen production of the unmodified catalysts was almost zero, with 

exception of ZnO NWs that obtained a high value of 350 μmol/hg, showing high catalytic activity.  

Incorporation of gold and graphene greatly increased hydrogen production in both the UV and 

visible regions of all the composites. The presence of cocatalysts such as Au and graphene improves 

the charge separation and suppresses the recombination of excited photogenerated carriers, resulting 

in a better evolution of H2 [22]. Different studies [41-43] have demonstrated that when 

semiconductors, such as ZnO, are doped with noble metal or metal ions, they exhibit a negative shift 

in the Fermi level that implies a greater degree of electron accumulation in Au-loaded. Thus, such a 

shift in the Fermi level improves the composite system and enhances the efficiency of the interfacial 

charge-transfer process. These improvements are in turn associated with a considerable enhancement 

of the electric near-field [41]. This activity relates strongly to the size and shape-dependent surface 

charge oscillation known as Surface Plasmon Resonance (SPR) in the presence of light irradiation 

[22]. Furthermore, the incorporation of graphene on semiconductors creates the p-n junction, which 

also improves the separation of photogenerated charges [22,44]. The photogenerated holes that were 

created are then scavenged by the sacrificial agent (S2-/SO32-), and the electrons are excited to the 

conduction band. Electrons transferred from the conduction band of the semiconductor are injected 

into the graphene because graphene has a slightly lower redox potential than the semiconductor 

conduction band [22,44]. Graphene has a high charge carrier transfer and mobility as a result of its π- 

conjugated structure, and hence Au nanoparticles dispersed on the graphene can also accept electrons 

and act as active sites to react with adsorbed H+ ions for H2 evolution [22,44].  

According to other authors [10,45], some conduction electrons can be transferred directly to the 

Au NPs deposited on the surface of the semiconductor by ohmic interconnection or to carbon atoms 

on the graphene, and the electrons then react with the adsorbed H+ ions to form H2. Thus, the 

synergetic effect between both cocatalysts, plasmonic Au nanoparticles and graphene, can effectively 
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suppress photogenerated charge recombination, enlarge the active adsorption sites and reaction 

space, and consequently enhance the photocatalytic activity for H2 evolution [10,45]. In this regard, 

Wang et al. [45] reported that Au@TiO2-graphene composites had significantly increased the visible 

light absorption and enhanced the photocatalytic H2 production activity compared to the Au@TiO2. 

Luo et al. [10] found that by combining graphene and gold nanoparticles on TiO2-P25, the hydrogen 

production via water splitting increased nine times more than bare TiO2-P25.  

In this research, the highest hydrogen production of the Au@commercial ZnO-graphene 

catalysts was 709 µmol/hg and was obtained by 10%Au@ZnO commercial-Graphene under 

irradiation at 400 nm. This enhancement represents a difference of 615 µmol/hg when compared to 

the highest amount obtained by the unmodified commercial ZnO catalyst (94 µmol/hg), and the fact 

that the maximum production of the commercial catalyst was obtained at 400 nm (visible light) is an 

indication that the Au NPs are allowing the use of visible light [14,26,10]. On the other hand, 

appropriate visible light irradiation can induce the SPR effect on the gold nanoparticles and greatly 

enhance the electron capture capacity [10]. Both reasons affect the generation and separation of 

charges in photocatalysis, which results in the improvement of photocatalytic properties. The highest 

amount of hydrogen obtained with 1%Au@commercial ZnO-graphene, 3%Au@commercial ZnO-

graphene and 5%Au@commercial ZnO-graphene catalysts was 405 µmol/hg, 529 µmol/hg and 589 

µmol/hg respectively, under irradiation at 400 nm.  

In the case of Au@ZnO NPs-graphene catalysts, the highest hydrogen production measured was 

759 µmol/hg, representing a difference of 673 µmol/hg when compared to the maximum hydrogen 

production of the unmodified ZnO NPs catalyst (86 µmol/hg), and was obtained with the 

10%Au@ZnO NPs-graphene catalyst at 400 nm. The highest hydrogen production for 1%Au@ZnO 

NPs-graphene, 3%Au@ZnO NPs-graphene and 5%Au@ZnO NPs-graphene catalysts was 537 

µmol/hg, 622 µmol/hg and 728 µmol/hg, respectively. These results confirm once again that the 

presence of Au NPs allows the use of visible light to produce hydrogen. 

Au@ZnO NWs-graphene catalysts showed the highest hydrogen production (1,127 µmol/hg) 

with a gold loading of 10 wt.% at 400 nm, representing a difference of 685 µmol/hg when compared 

to the unmodified ZnO NWs catalyst (442 µmol/hg). The highest amount of hydrogen produced at 

400 nm with the 1%Au@ZnO NWs-graphene, 3%Au@ZnO NWs-graphene and 5%Au@ZnO NWs-

graphene catalysts was 701 µmol/hg, 828 µmol/hg and 944 µmol/hg, respectively. 

Under irradiation at 500 nm (Figure 6d), the maximum hydrogen production of the 

Au@commercial ZnO-graphene, Au@ZnO NPs-Graphene and Au@ZnO NWs-Graphene catalysts 

was 628 µmol/hg, 735 µmol/hg and 1,079 µmol/hg, respectively, with a gold loading of 10 wt.%. These 

high hydrogen productions under low energy irradiation is an indication of the high photocatalytic 

activity of the composites, especially considering the high band-gap energy (3.37 eV) of ZnO. At 

wavelengths above 400 nm, the water splitting depends mainly on the Au NPs, due to lack of energy 

to promote electrons from the valence band to the conduction band of ZnO. 

In all cases, the highest amounts of hydrogen reported in this investigation were obtained with 

the catalysts with the highest surface area (65 m2g-1 for 10%Au@ commercial ZnO-graphene; 117 m2g-

1 for 10%Au@ZnO NPs-graphene; 247 m2g-1 for 10%Au@ZnO NWs-graphene). Materials with high 

surface areas can be attained either by fabricating small particles or clusters where the surface-to-

volume ratio of each particle is high, or by creating materials where the void surface area (pores) is 

high compared to the amount of bulk support material [46]. Multiple studies have demonstrated that 

the synthesis of high surface area catalysts lead to an increment in the hydrogen production due to 

the availability of more sites for the interaction of the water molecule with the catalyst [45]. In our 

research, this increase in surface area is primarily achieved by incorporating Au NPs and graphene 

on the surface of semiconductors. 

In the case of Au/graphene-TiO2, over the years different possible mechanisms have been 

proposed for the production of hydrogen by water splitting. One of the most widely accepted is that 

when compounds are irradiated with UV light, a direct photoexcitation of TiO2 with photons with 

energy larger than the bandgap (λ < 380 nm) leads to the generation of electrons in the conduction 

band, and electron holes in the valence band of the semiconductor [47]. The electron in the conduction 
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band will move to the Au NPs, acting as electron buffers and catalytic sites for hydrogen generation 

[48]. When irradiate with visible light (λ > 500 nm) photoexcitation of Au NPs occurs and electrons 

from the Au NPs are injected into the TiO2 conduction band leading to the generation of holes in the 

Au NPs and electrons in the TiO2 conduction band [47,48]. Then, the water molecule gains the 

electrons in the conduction band and hydrogen is produced. Evidence of the proposed mechanism is 

the fact that the photocatalytic response for hydrogen generation is consistent with the absorption of 

the Au surface plasmon band. The incorporation of graphene creates a p-n junction, which improves 

the separation of photogenerated charges, and the electrons are excited to the conduction band [22]. 

The electrons transferred from the conduction band of TiO2 are injected into the reduced graphene in 

a graphene/TiO2 system because the graphene/graphene redox potential is slightly lower than the CB 

of TiO2 [22]. In addition, some conduction electrons of TiO2 likely transfer directly to the Au NPs 

deposited on the surface of the semiconductor by ohmic interconnection or to carbon atoms on the 

graphene sheets, and the electrons then react with the adsorbed H+ ions to form H2 [22, 21]. This 

creates a synergistic effect between both cocatalysts, and they can effectively suppress 

photogenerated charge recombination, enlarge the active adsorption sites, and consequently enhance 

the photocatalytic activity [22, 21,11]. 

Figure 6. Photocatalytic hydrogen production of the different Au@ZnO-graphene catalysts 

under irradiation at 280 nm (a), 320 nm (b), 400 nm (c) and 500 nm (d). 

 

Table 2 shows the highest amounts of hydrogen obtained with Au@ZnO-graphene catalysts 

under the evaluated parameters. As already mentioned, and to the best of our knowledge, no results 

have been reported so far on hydrogen production by water splitting using Au@ZnO-graphene 
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catalysts. Therefore, the results of this research, are the first reported on the production of H2 using 

catalysts based on ZnO and graphene-gold. The materials studied in this research will have to be 

contrasted by other researchers to establish a much deeper knowledge that allows us to know the 

complex mechanism of hydrogen production with ternary compounds based on ZnO.  

 

Table 2. Highest amounts of hydrogen production via water splitting obtained with Au@ZnO-

Graphene catalysts under UV-vis light.  

Author 

H2 

production         

(µmol) 

Source (nm) 
Irradiation  

time (h) 

ZnO 

Crystal 

structure

* 

Reaction  

Mixture 

Au 

(wt.%) 

Graphene 

(wt.%) 

This work 

ZnO 

commerci

al 

709 200> l > 400 2 W 

Water: 0.5M 

Na2S, 0.03M 

Na2SO3 

10 1 

This work 

ZnO NPs 
759 200> l >400 2 W 

Water: 0.5M 

Na2S, 0.03M 

Na2SO3 

10 1 

This work 

ZnO NWs 
1127 200 > l > 700 2 W 

Water: 0.5M 

Na2S, 0.03M 

Na2SO3 

10 1 

*W = Wurtzite 

 

4. Conclusions 

Graphene and different amounts of gold nanoparticles were incorporated on the surface of 

synthesized ZnO supports (ZnO NWs, ZnO NPs catalysts), and on the commercial form (commercial 

ZnO). These catalysts were fully characterized by different techniques, and their photocatalytic 

activity was determined by measuring the hydrogen produced by water splitting under UV-vis 

irradiation. 

The highest amount of the unmodified ZnO support was 442 μmol/hg and was obtained by the 

ZnO NWs catalyst under irradiation at 280 nm. This unexpectedly high hydrogen production may 

be attributed to the morphology (nanowires) and possible defects in the crystalline structure.  The 

maximum hydrogen production for the ZnO NPs and commercial ZnO catalysts was 94 μmol/hg and 

86 μmol/hg, respectively, at 280 nm. 

The maximum hydrogen production obtained with the commercial ZnO composites containing 

gold and graphene was 709 µmol/hg at 400 nm, and was obtained with a gold loading of 10 wt%. The 

enhancement in the hydrogen production was 7.5 times higher than that reported by the commercial 

ZnO.  

The higher hydrogen production for the Au@ZnO NPs-graphene catalysts was 759 µmol/hg at 

400 nm, and was obtained with 10%Au@ZnO NPs-graphene. The enhancement in the hydrogen 

production was 8.8 times higher than that reported by the ZnO NPs catalyst.  

In the case of the Au@ZnO NWs-graphene composites, the higher hydrogen production (1,127 

µmol/hg) was obtained with for the 10%Au@ZnO NWs-graphene under irradiation at 400 nm.  

The catalysts did not show a reduction in the surface area nor in the hydrogen production with 

the increment in gold loadings and incorporation of graphene. These results suggest that the best 

graphene and gold loading for the Au@ZnO-graphene catalysts could be higher than 1 and 10 wt.%, 

respectively. 

 

Author Contributions: Conceptualization, A.M., F.M.; methodology, A.M., F.M.; formal analysis, A.M., F.M.; 

investigation, A.M., J.A.; K.F. L.S.; E.R., C.M.; resources, F.M., C.M., F.P., M.C., J.D.; writing—original draft 

preparation, A.M.; writing—review and editing, A.M.,F.M.; supervision, A.M., F.M.; project administration, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2020                   doi:10.20944/preprints202007.0185.v1

Peer-reviewed version available at Biomimetics 2020, 5, 39; doi:10.3390/biomimetics5030039

https://doi.org/10.20944/preprints202007.0185.v1
https://doi.org/10.3390/biomimetics5030039


 13 of 15 

 

F.M.; funding acquisition, F.M., C.M., M.C., J.D., F.P. All authors have read and agreed to the published version 

of the manuscript.  

Funding: Financial support provided by the US DoE, through the Massie Chair project at University of Turabo, 

US Department of Defense, under contract W911NF-14-1-0046, and from the Ministerio de Economía y 

Competitividad (MINECO) of Spain, through the grant ENE2014-57977-C2-1-R, are gratefully acknowledged. 

Acknowledgments: Technical assistance of I. Poveda from “Servicio Interdepartamental de Investigacion, SIdI” 

at UAM, is gratefully acknowledged. The facilities provided by the National Center for Electron Microscopy at 

Complutense University of Madrid (Spain) and the Materials Characterization Center at University of Puerto 

Rico are gratefully acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Nicoletti G, Arcuri N, Bruno R. A technical and environmental comparison between hydrogen and some 

fossil fuels. Energy Convers Manage 2015; 89, 205 – 13. https://doi.org/10.1016/j.enconman.2014.09.057  

2. Sherif SA, Barbir F, Veziroglu TN. Towards a Hydrogen Economy. Electr J 2005; 18:6, 62 – 76. 

https://doi.org/10.1016/j.tej.2005.06.003  

3. Balat M. Potential importance of hydrogen as a future solution to environmental  and transportation 

problems. Int J Hydrogen Energy 2008; 33, 4013 – 29. https://doi.org/10.1016/j.ijhydene.2008.05.047  

4. Valdés A ,́ Qu Z-W, Kroes G-J, Rossmeisl J, Nørskov JK. Oxidation and photo-oxidation of water on TiO2 

surface. J Phys Chem C 2008;112:9872e9. https://doi.org/10.1021/jp711929d  

5. Schley N, Blakemore JD, Subbaiyan NK, Incarvito CD, D’Souza F, Crabtree RH, Brudvig GW. 

Distinguishing Homogeneous from Heterogeneous Catalysis in Electrode-Driven Water Oxidation with 

Molecular Iridium Complexes. J Am Chem Soc 2011; 133, 10473 – 81. https://doi.org/10.1021/ja2004522  

6. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC. Visible- light activation of TiO2 

photocatalysts: Advances in theory and experiments. J Photochem Photobiol C 2015; 25, 1 – 29. 

https://doi.org/10.1016/j.jphotochemrev.2015.08.003  

7. Adleman JR, Boyd DA, Goodwin DG, Psaltis D. Heterogeneous Catalysis Mediated by Plasmon Heating. 

Nano Lett 2012; 9, 4417 – 23. https://doi.org/10.1021/nl902711n  

8. Banerjee S, Pillai SC, Falaras P, O’Shea KE, Byrne JA, Dionysiou DD. New Insights into the Mechanism of 

Visible Light Photocatalysis. J Phys Chem Lett 2014; 5, 2543 – 54. https://doi.org/10.1021/jz501030x  

9. Mezni A, Mlayah A, Serin V, Smiri LS. Synthesis of hybrid Au-ZnO nanoparticles using a one pot polyol 

process. Mater Chem Phys 2014; 147, 496 – 03. https://doi.org/10.1016/j.matchemphys.2014.05.022  

10. Luo J, Li D, Yang Y, Liu H, Chen J, Wang H. Preparation of Au/reduced graphene oxide/hydrogenated 

TiO2 nanotube arrays ternary composites for visible-light driven photoelectrochemical water splitting. J 

Alloy Compd 2016; 661, 380 – 88.  https://doi.org/10.1016/j.jallcom.2015.11.211  

11. Wang G, Ling Y, Wang H, Lu X, Li Y. Chemically modified nanostructures for photoelectrochemical water 

splitting. J Photochem Photobiol C 2014; 19, 35 – 51. https://doi.org/10.1016/j.jphotochemrev.2013.10.006  

12. Zhang Y, Ram MK, Stefanako EK, Goswami DY. Synthesis, Characterization, and Application of ZnO 

Nanowires. J Nanomater 2012; 624520, 22. http://dx.doi.org/10.1155/2012/624520  

13. Kumar PS, Raj MR, Anandan S, Zhou M, Ashokkumar M. Visible light assisted photocatalytic degradation 

of acid red 88 using Au-ZnO nanophotocatalysts. Water Sci Technol 2009; 60, 1589 – 96.  

https://doi.org/10.2166/wst.2009.496  

14. Han Z, Wei L, Zhang Z, Zhang X, Pan H, Chen J. Visible-Light Photocatalytic Application of Hierarchical 

Au-ZnO Flower-Rod Heterostructures via Surface Plasmon Resonance. Plasmonics 2013; 8, 1193 – 02. 

https://doi.org/10.1007/s11468-013-9531-0  

15. Primo A, Corma A, García H. Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem 

Phys 2011; 13, 886 – 10. https://doi.org/10.1039/C0CP00917B  

16. Ortega-Méndez JA, López CR, Pulido E, González O, Doña JM, Fernández D, Macías M. Production of 

hydrogen by water photo-splitting over commercial and synthesized Au/TiO2 catalysts. Appl Catal B 

Environ 2014; 147, 439 – 52. https://doi.org/10.1016/j.apcatb.2013.09.029  

17. Donkova B, Vasileva P, Nihtianova D, Velichkova N, Stefano P, Mehandjiev D. Synthesis, characterization, 

and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation. J Mater Sci 2011; 46, 7134 

– 43. https://doi.org/10.1007/s10853-011-5503-y  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2020                   doi:10.20944/preprints202007.0185.v1

Peer-reviewed version available at Biomimetics 2020, 5, 39; doi:10.3390/biomimetics5030039

https://doi.org/10.1016/j.enconman.2014.09.057
https://doi.org/10.1016/j.tej.2005.06.003
https://doi.org/10.1016/j.ijhydene.2008.05.047
https://doi.org/10.1021/jp711929d
https://doi.org/10.1021/ja2004522
https://doi.org/10.1016/j.jphotochemrev.2015.08.003
https://doi.org/10.1021/nl902711n
https://doi.org/10.1021/jz501030x
https://doi.org/10.1016/j.matchemphys.2014.05.022
https://doi.org/10.1016/j.jallcom.2015.11.211
https://doi.org/10.1016/j.jphotochemrev.2013.10.006
http://dx.doi.org/10.1155/2012/624520
https://doi.org/10.2166/wst.2009.496
https://doi.org/10.1007/s11468-013-9531-0
https://doi.org/10.1039/C0CP00917B
https://doi.org/10.1016/j.apcatb.2013.09.029
https://doi.org/10.1007/s10853-011-5503-y
https://doi.org/10.20944/preprints202007.0185.v1
https://doi.org/10.3390/biomimetics5030039


 14 of 15 

 

18. Yu H, Ming H, Gong J, Li H, Huang H, Pan K, Liu Y, Kang Z, Wei J, Wang D. Facile synthesis of Au/ZnO 

nanoparticles and their enhanced photocatalytic  activity for hydroxylation of benzene. Bull Mater Sci 

2013; 36, 367 – 72. https://doi.org/10.1007/s12034-013-0491-y  

19. Bagabas A, Alshammari A, Aboud M, Kosslick H. Room – temperature synthesis of zinc oxide 

nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res Lett 

2013; 8, 519 – 26. https://doi.org/10.1186/1556-276X-8-516  

20. Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, Ding G. TiO2-graphene nanocomposites for 

photocatalytic hydrogen production from splitting water. Int J Hydrogen Energy 2012; 37, 2224 – 34. 

https://doi.org/10.1016/j.ijhydene.2011.11.004  

21. Haldori Y, Rengaraj A, Kwak CH, Huh YS, Han YK. Fabrication of nano TiO2@graphene composite: 

Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants. 

Synthetic Met 2014; 198, 10 – 18. https://doi.org/10.1016/j.synthmet.2014.09.034  

22. Singh GP, Shrestha KM, Nepal A, Klabunde KJ, Sorensen CM. Graphene supported plasmonic 

photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnol 2014; 25, 5701 – 12. 

https://doi.org/10.1088/0957-4484/25/26/265701  

23. Tien HN, Luan VH, Hoa L, Khoa NT, Hahn SH, Chung JS, Shi EW, Hur SH. One-pot synthesis of a reduced 

graphene oxide–zinc oxide sphere composite and its use as a visible light photocatalyst. Chem Eng J 2013; 

229, 126 – 33. https://doi.org/10.1016/j.cej.2013.05.110  

24. Ong WJ, Voon SY, Tan LL, Goh BT, Yong ST, Chai SP. Enhanced Daylight-Induced Photocatalytic Activity 

of Solvent Exfoliated Graphene (SEG)/ZnO Hybrid Nanocomposites toward Degradation of Reactive Black 

5. Ind Eng Chem Res 2014; 53, 17333 – 44. https://doi.org/10.1021/ie5027088  

25. Haldorai Y, Shim JJ. Supercritical fluid mediated synthesis of highly exfoliated graphene/ZnO composite 

for photocatalytic hydrogen production. Mat Lett 2014; 133, 24 – 27. 

https://doi.org/10.1016/j.matlet.2014.06.150  

26. Zeng D, Gong P, Chen Y, Wang C, Peng DL. Preparation of multi-branched Au-ZnO hybrid nanocrystals 

on graphene for enhanced photocatalytic performance. Mater Lett 2015; 161, 379 –83. 

https://doi.org/10.1016/j.matlet.2015.08.153  

27. Wang P, Wu D, Ao Y, Wang C, Hou J. ZnO nanorod arrays co-loaded with Au nanoparticles and reduced 

graphene oxide: Synthesis, characterization and photocatalytic application. Colloids Sur A 2016; 492, 71 – 

78. https://doi.org/10.1016/j.colsurfa.2015.12.006  

28. Roy P, Periasamy AP, Liana CT, Chang HT. Synthesis of Graphene – ZnO – AuNanocomposites for 

Efficient Photocatalytic Reduction of Nitrobenzene. Environ Sci Technol 2013; 47, 6688 – 95. 

https://doi.org/10.1021/es400422k  

29. Lin C, Li Y. Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater Chem 

Phys 2009; 113, 334 – 37. https://doi.org/10.1016/j.matchemphys.2008.07.070 

30. Nejati K, Rezvani Z, Pakizevan R. Synthesis of ZnO Nanoparticles and Investigation of the Ionic Template 

Effect on Their Size and Shape. Int Nano Lett 2011; 1, 75 – 81. https://doi.org/10.1155/2013/785064  

31. Naldoni A, D’Arienzo M, Altomare M, Marelli M, R Scotti, Morazzoni F, Selli E, Del Santo V. Pt and 

Au/TiO2 photocatalysts for metanol reforming role of metal nanoparticles in tuning charge trapping 

properties and photoefficiency. Appl Catal B 2013; 130, 239 – 48. https://doi.org/10.1016/j.apcatb.2012.11.006  

32. Machín A, Cotto C, Duconge J, Arango JC, Morant C, Pinilla S, Soto-Vázquez L, Resto E, Márquez F. 

Hydrogen production via water splitting using different Au@ZnO catalysts under UV–vis irradiation. 

Journal of Photochemistry and Photobiology A: Chemistry 353 (2018) 385–394. 

https://doi.org/10.1016/j.jphotochem.2017.11.050  

33. Suryanarayana C, Norton MG. X-ray Diffraction. Plenum Press, New York, 1998. 

34. Wen Y, Ding H, Shan Y. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene 

nanocomposite. Nanoscale 2011; 3, 4411 – 17. https://doi.org/10.1039/C1NR10604J  

35. Dang H, Dong X, Dong Y, Huang J. Facile and green synthesis of titanate nanotube/graphene 

nanocomposites for photocatalytic H2 generation from water. Int J Hydrogen Energy 2013; 38, 9178 – 85. 

https://doi.org/10.1016/j.ijhydene.2013.05.061  

36. Briggs, D., and Seah, M. (Eds.), Practical Surface Analysis. Wiley, New York, 1994. 

37. Liu H, Xu Q, Yan C, Qiao Y. Corrosion behavior of a positive graphite electrode in vanadium redox flow 

battery, Electrochimica Acta, 56 (2011) 8783. https://doi.org/10.1016/j.electacta.2011.07.083  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2020                   doi:10.20944/preprints202007.0185.v1

Peer-reviewed version available at Biomimetics 2020, 5, 39; doi:10.3390/biomimetics5030039

https://doi.org/10.1007/s12034-013-0491-y
https://doi.org/10.1186/1556-276X-8-516
https://doi.org/10.1016/j.ijhydene.2011.11.004
https://doi.org/10.1016/j.synthmet.2014.09.034
https://doi.org/10.1088/0957-4484/25/26/265701
https://doi.org/10.1016/j.cej.2013.05.110
https://doi.org/10.1021/ie5027088
https://doi.org/10.1016/j.matlet.2014.06.150
https://doi.org/10.1016/j.matlet.2015.08.153
https://doi.org/10.1016/j.colsurfa.2015.12.006
https://doi.org/10.1021/es400422k
https://doi.org/10.1016/j.matchemphys.2008.07.070
https://doi.org/10.1155/2013/785064
https://doi.org/10.1016/j.apcatb.2012.11.006
https://doi.org/10.1016/j.jphotochem.2017.11.050
https://doi.org/10.1039/C1NR10604J
https://doi.org/10.1016/j.ijhydene.2013.05.061
https://doi.org/10.1016/j.electacta.2011.07.083
https://doi.org/10.20944/preprints202007.0185.v1
https://doi.org/10.3390/biomimetics5030039


 15 of 15 

 

38. Desimoni E, Casella GI, Monroe A, Salvi AM. XPS determination of oxygen‐containing functional groups 

on carbon‐fibre surfaces and the cleaning of these surfaces, Surf. Interface Anal. 15 (1990) 627. 

https://doi.org/10.1002/sia.740151011  

39. Baruah S, Dutta J. Effect of seeded substrates on hydrothermally grown ZnO nanorods. J Sol-Gel Sci Techn 

2009; 50, 456 – 64. https://doi.org/10.1007/s10971-009-1917-2  

40. Baruah S, Abbas M, Myint M, Bora T, Dutta J. Enhanced visible light photocatalysis through fast 

crystallization of zinc oxide nanorods. Beilstein J Nanotechnol 2010; 1, 14-20. 

https://doi.org/10.3762/bjnano.1.3  

41. Choi WY, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlation 

between photoreactivity and charge carrier recombination dynamics. J Phys Chem 1994; 98, 13669-79. 

https://doi.org/10.1021/j100102a038  

42. Slamet S, Kusrini E, Salim-Afrozil A, Ibadurrohman M. Photocatalytic hydrogen production from glycerol-

water over metal loaded and non-metal doped titanium dioxide. Int J Technol 2015; 4, 520-32. 

https://doi.org/10.14716/ijtech.v6i4.2176  

43. Bora T, Zoepfl D, Dutta J. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold 

Nanoparticle Decorated Zinc Oxide Nanorods. Sci Rep 2016; 6: 26913, 1-10. 

https://doi.org/10.1038/srep26913  

44. Li L, Yu L, Lin Z, Yang G.  Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven 

Efficient Water-Splitting Photocatalysts. ACS Appl Mater Interfaces 2016; 8, 8536-45. 

https://doi.org/10.1021/acsami.6b00966  

45. Wang Y, Yu J, Wei X, Li Q. Microwave – assisted hydrothermal synthesis of graphene based Au-TiO2 

photocatalysts for efficient visible – light hydrogen production. J Mater Chem A 2014; 2, 3847-38. 

https://doi.org/10.1039/C3TA14908K  

46. Kolodziejczak A, Jesionowski T. Zinc oxide – From synthesis to application: A review. Mater 2014; 7, 2833-

81. https://doi.org/10.3390/ma7042833  

47. Dosado AG, Chen W-T, Chan A, Sun-Waterhouse D, Waterhouse G.I.N. Novel Au/TiO2 photocatalysts for 

hydrogen production in alcohol–water mixtures based on hydrogen titanate nanotube precursors, Journal 

of Catalysis 330 (2015) 238–254. 

48. Gomes Silva C, Juárez R, Marino T, Molinari R, García H. Influence of Excitation Wavelength (UV or Visible 

Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of 

Hydrogen or Oxygen from Water. J. Am. Chem. Soc. 2011, 133, 3, 595–602. https://doi.org/10.1021/ja1086358  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2020                   doi:10.20944/preprints202007.0185.v1

Peer-reviewed version available at Biomimetics 2020, 5, 39; doi:10.3390/biomimetics5030039

https://doi.org/10.1002/sia.740151011
https://doi.org/10.1007/s10971-009-1917-2
https://doi.org/10.3762/bjnano.1.3
https://doi.org/10.1021/j100102a038
https://doi.org/10.14716/ijtech.v6i4.2176
https://doi.org/10.1038/srep26913
https://doi.org/10.1021/acsami.6b00966
https://doi.org/10.1039/C3TA14908K
https://doi.org/10.3390/ma7042833
https://doi.org/10.1021/ja1086358
https://doi.org/10.20944/preprints202007.0185.v1
https://doi.org/10.3390/biomimetics5030039

