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Abstract: An optimal scheduling strategy for cooling, heating and power (CCHP)
joint-power-supply system is proposed to improve energy utilization and minimize costs in this
paper. Firstly, the mathematical model of CCHP system is established. Particle swarm optimization
(PSO) is used to optimize the regularization coefficient C and the kernel parameter A which can
affect the prediction accuracy of KELM(PSO-KELM). Then PV generation and load prediction
model are established by PSO-KELM. In order to jump out of local optimal solution, Cauchy
variation is introduced in SFLA local update, and adaptive mutation operation is carried out on
SFLA individuals. The predictions of PV generation and load power by PSO-KELM are imported
into the objective function, and the microgrid dispatching model is solved by the improved SFLA
algorithm. Compared with the traditional GA-KELM and KELM, PSO-KELM has faster
convergence and prediction accuracy. Compared with the power supply division, the operation
cost of the power grid is reduced by the proposed optimization dispatching strategy of CCHP
micro-grid.

Keywords: cooling, heating and power (CCHP) microgrid; kernel learning machine (KELM);
particle swarm optimization (PSO); shuffled frog leaping algorithm (SFLA).

1. Introduction

Compared with the traditional power supply, cooling, heating and power (CCHP) microgrid
ensures that the energy of the microgrid can be used at multiple levels, the energy utilization
efficiency is improved, and the economic benefit is better [1-2]. It is very necessary to study the
prediction of distributed new energy generation and load power in the system before studying the
economic optimization operation of the combined cold, heat and power supply microgrid [3]. It is
necessary to study the prediction of distributed new energy generation and load power in the
system before studying the economic optimization operation of the CCHP microgrid [4]. An
effective and more accurate prediction model is established, and then a scheduling model is
constructed with a variety of data conditions including predicted power, etc., to determine the
model optimization scheme and finally solve the optimization problem [5]. When distributed
generation is connected to large power grid, such problems as large power fluctuation, high cost and
difficulty in control can be solved by cold, hot and power supply, which is a powerful supplement to
large power grid system. At present, the research on cold, heat and power supply has attracted the
attention of many scholars. In [6], a matrix modeling method for the CCHP system structure is
proposed, in which multi-energy supply is regarded as the input of system, and cooling, heating,
electric load as the output of the system, and particle swarm optimization algorithm is applied to
promote optimal operation of CCHP. In [7], least squares-two-stage recursive least squares (TSRLS)
algorithm is used to forecast the cooling, heating, and electrical loads, then the loads is designed to
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be the input of cooling, heating, and power systems (CCHP). A novel optimal operational strategy
depending on an integrated performance criterion (IPC) is proposed in[8], in which the whole
operating space of the CCHP system can be divided into several regions by one to three border
surfaces determined by energy requirements and the integrated performance criterion, then the
comprehensive operational performance can be improved. An online optimal operation approach
for CCHP microgrids based on model predictive control with feedback correction to compensate for
prediction error is proposed in [9], and the proposed method have better matching between demand
and supply. In [10] a day-ahead co-operation strategy is proposed with the objective function to
minimize daily operation cost of the CCHP system, the day-ahead collaborative control of cold, hot
and electric system can be realized. In [11], combined cooling, heating and power (CCHP), an
optimal joint-dispatch scheme of energy and reserve is proposed and the proposed scheme can
provide more reserve capability.

Accurate new energy output and multi-type load forecasting is of great significance for
establishing a reasonable scheduling model. Due to the uncertainty brought by wind-solar power
generation and other new energy sources, the micro-grid system is greatly affected by
meteorological conditions and other external factors, so it is difficult to predict the new energy
generation and load power of the cold-heat and power co-supply micro-grid [12-13]. The research of
new energy generation and load forecasting is a topic of concern to researchers. In [14], a novel
probabilistic load forecasting method to leverage existing point load forecasts by modeling the
conditional forecast residual which improves the accuracy of load forecasting. In [15], the deviation
caused by time-series methods which used to forecast the daily load is forecasted considering the
impact of relative factors, the prediction accuracy of proposed method is improved compared with
that of traditional SVM. In [16], a fuzzy-weight grouping of the different short-term load and
generation forecast results is proposed to forecast short-term load and generation, and the accuracy
is improved. In [17], the total load data is divided into sub-data, and each type of load is predicted
separately and combined according to its weight. A long short-term memory-based deep-learning
forecasting framework with appliance consumption sequences is proposed to forecast the residential
load, and the forecast accuracy have been verified to be improved. In [18], the variables that affect
the load forecasting results are analyzed. Calendar variables, delayed actual demand observations,
and the history and forecast temperature in the target power system are taken as the input of the
forecast, and the output is the load demand. A multiscale reliable wind power forecasting method is
proposed in [19], which implemented by building a many-to-many (M2M) mapping network and
using a stack denoising automatic encoder.

Although some research achievements have been achieved in the dispatching of CCHP
microgrid, the research on the dispatching of photovoltaic generation and load demand has not been
taken into account, which have an important impact on CCHP system. On the one hand, the power
prediction of microgrid is studied, and photovoltaic power generation and load power are taken as
the prediction research objects. On the other hand, after predicting the cooling, heating, power and
wind-solar power generation, the day-ahead economic optimization model is established. This
paper is organized as follows. The research status of cooling, heating and power system is studied in
Section L. In section II, the mathematical model of CCHP microgrids is established. In section III, a
kernel extreme learning machine-based particle swarm optimization is proposed, and the proposed
algorithm is applied to forecast the photovoltaic generation and load power. In section IV, the
scheduling model with the minimum operating cost of CCHP system is established, and the
improved shuffled frog hop algorithm is used to optimize the scheduling. In section V, comparative
simulation is established to verify the effectiveness of the proposed method. Section VI is a
summary.

2 Mathematical model of CCHP

2.1 CCHP microgrid power supply structure
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A variety of power generation, cooling and heating equipments are included in the CCHP
microgrid. The energy supply structure of CCHP microgrid is shown as Figure 1.
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Figure 1. Schematic diagram of CCHP microgrid power supply structure

As can be seen from Figure 1, the energy of the entire micro grid can be divided into four parts,
including multi-energy supply (source), energy conversion and transmission (transmission), energy
storage unit (storage) and terminal energy load (load). Multi-energy supply is a description of
microgrid multi-distributed energy output, which generally consists of sustainable power,
intermittent power, regional cogeneration of heat and power and primary energy. Energy
conversion transmission is an abstraction of various energy conversion characteristics of CCHP
microgrid system. According to different forms of energy, there are three types of functional
networks: power transmission heat transmission and gas pipe. Energy storage unit is an effective
storage and release of energy for load regulation response, which can effectively improve energy
utilization efficiency. The terminal energy load is divided into four categories: cooling, heating,
electricity and gas. Refrigerator, energy storage and user side power demand are the main forms of
power load. Heating load includes hot water, steam, space thermal, etc., which is mainly provided
by waste heat recovery unit of micro-turbine, gas boiler and thermal energy storage. Gas load is
mainly used to supply gas consumed by gas boilers and micro-turbines. Various loads are the key to
regulate energy distribution in micro grid.

2.2 Mathematical model of photovoltaic power generation

When there is no wind, the light intensity is 1IKW/m? and the temperature is 25°C, the
relationship among photovoltaic power generation power, light intensity and ambient temperature
can be expressed as follows.

va = fpv Perc G_T[1+ K(T, =T )l (1)
GSTC

Where, fiv is a photovoltaic array output power derating factor that takes into account the
power loss of photovoltaic cells due to structural aging and surface covering. Under standard
measurement environment, Pstc, Gstc and Tstc are PV output peak power (KWp), light intensity
(KW/m?) and temperature (C), respectively. Gr is the actual light intensity of photovoltaic array; k is
the temperature coefficient of photovoltaic cell; T is the actual temperature of photovoltaic cells,
which is jointly determined by environmental temperature and light intensity. The relationship can
be expressed as follows.
30G;
1000 @)

Where, Tur represents the temperature, and Gr is the intensity of light radiation received by
photovoltaic panels. From the above formula, it can be seen that when the light radiation intensity
ranges from 0.4K W/m? to 1k W/m?, the actual output of photovoltaic array is linearly related to the
light radiation intensity, and the photovoltaic output reaches the peak at 1k W/m2. When the light

T =Tair +

c
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intensity is greater than 1k W/m?, the peak value will be maintained. When the light intensity is less
than 0.4k W/m?, the power generation efficiency will decrease. Based on this, the relationship
between photovoltaic cell power generation and light intensity can be obtained.
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Where, Ppv is photovoltaic power, and Pnrtc is the output power of photovoltaic under rated
condition. The rated condition refers to wind speed is 1m/s, and light radiation intensity is 0.8kW
/m?, and temperature is 20°C.

2.3 Mathematical model of wind power generation

Wind Turbine system is a new clean energy which uses wind turbine (WT) to convert wind
energy into electric energy and supply it to users. It is one of the new clean energy with large
application potential and fast development. Wind power generation system generally includes wind
turbines, speed regulating devices, inverters and controllers. The fan output is affected by the
change of wind speed, and the mathematical relationship between them can be expressed as follows.

P - % prRAC, (4)

Where, Put is the generating power of wind turbine; v is the actual wind speed; p, R are the air
density (kg/m3) and fan wheel blade radius (m), respectively; Cp is the wind energy conversion
efficiency considering turbine loss and transmission loss.

The mathematical relationship between the actual output power and wind speed of a
steady-state time-wind unit can be denoted as follows.

0,0<sv<y,

3

3
V' =V
P—=2v,Sv<y
3 3 1 Vin r
Pwt = Vi —Vin (5)

P.,v, Sv<vy,
0,v>v,,

Where, Pr and vr are rated power and rated power of the fan respectively, while v, vi» and vou
represent the actual wind speed of the fan, the input wind speed and the output wind speed
respectively. The wind speed affects the fan's power can be written as follows.

V= Vref (Hi)“ (6)

ref

Where Hrf and vrs are the height and wind speed of the measurement point respectively; H is
the height of fan hub; a is ground roughness factor.

2.4 Model of pumped storage power station

Pumped Storage (PS), also known as pumped storage hydropower station, is essentially a
device for storing and reusing water energy. Pumped storage power generation system is a complex
control system of water, machine and electricity. It is consisted of pressure water diversion system,
inverter type unit, governor and generator motor, among which reversible type unit has water
pump and turbine.

When the water pump of an energy storage power station is operated under the pumping
energy storage condition, the relationship between the converted power on the turbine and the
storage capacity and energy storage can be expressed as follows.
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T 2,15
Pps,ch = (%)Mlnl Dl h (7)

E()=E(t-1)+P, 7, - At

Where, Ppsc is the accumulative power; M1, n1 and D: are unit shaft, unit speed and runner
diameter of pump turbine respectively. & is the turbine head. E(t) represents the reservoir energy
storage after time period t; n« refers to the pumped-storage power station pumping efficiency; Af is
pumping time interval.

When the turbine of a storage power station operates under the condition of discharging water,
the mathematical relationship between the power converted on the shaft and the reservoir energy
storage can be written as follows.

E()=E(t-1)+P ()

ps,dis

P = 9-18QD7h**
-At/n,
Where, Pps.dis is the discharge power; Q= v /t represents the flow velocity. h is the head of the

turbine. E(f) represents the upper reservoir energy storage after time period t. 7g is the
pumped-storage power station water efficiency. A t is water power generation time interval.

2.5 The equipment model of the cooling, heating and power supply system

The mathematical model for generation and heating of the micro-gas turbine used in CCHP
system can be calculated as follows.

Pmt :th ’ Hmt Mt
_ Pmt (1_ Mot — nlost) (9)
th -
um

Where, Pum: is the power output of the micro-gas turbine; Qmtis the residual heat of flue gas
discharged simultaneously by the micro-turbine for power generation. Vit represents the
consumption of fossil fuels (mainly natural gas) per unit of time by the micro-turbine. Hu refers to
the low calorific value of natural gas, usually 9.78kwh /m3; nm: and nis: are the micro gas turbine
power generation efficiency and heat loss coefficient, respectively.

The output of an absorption chiller converting the heat input into heating or cooling can be
expressed as follows.

Qcool = COPcooI 'Qin
Qheat = COPheat : Qin

Where, Qwo and Qna are the cooling and heat generation power of waste heat absorption
refrigerator, respectively. COPwo and COPrex are the energy efficiency coefficient of refrigeration and
heat energy efficiency of waste heat absorption refrigerator respectively. Qi is the heat input power

(10)

of waste heat absorption refrigerator.
The cooling power produced by the compression refrigerator and the electric energy consumed
can be expressed as follows.

Q.. =COF, R, (11

Where, Qec is the refrigeration power of compression refrigerator; COPec represents the
refrigeration efficiency coefficient, which is a factor to measure the refrigeration
performance of the compression refrigerator. Pec is the power consumed by the compression

refrigerator.
The relationship among the heating power of gas-fired boiler and its output and the amount of
natural gas can be expressed as follows.

ng =g - ng (12)
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Where, Qg is the heating power of gas-fired boiler; g gas boiler heating energy efficiency
coefficient; Fg is the amount of fuel consumed by a gas-fired boiler.
The dynamic mathematical model of Heat Storage (HS) can be expressed as follows.

En () =Ep (t-1)-(1-8) +(QF -7 Q% / ) - At (13)

Ens(t) represents the heat storage state of the regenerator at time t; Q2 , Qi represent the heat

storage power and the heat release power, respectively. J,, represents the self-release heat rate of

the equipment. 7%, 7% represent heat storage efficiency and heat release efficiency respectively.

3 Load forecasting based on PSO-KELM

The key factors influencing the PV generation and load power were firstly studied to determine
the input and output variables of the prediction model. Then particle swarm optimization is used to

optimize KELM parameters, and optimized models are used to predict photovoltaic output power
and electric load power respectively.

3.1 Influencing factors of PV and load forecasting

Figure. 4 shows the relationship between photovoltaic output power and meteorological
factors.
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(b)The relationship diagram of photovoltaic power generation and temperature
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Figure 2. Relationship between photovoltaic power generation and meteorology

Figure 2(a) shows the variation of PV output power and light intensity curves. It can be seen
from Figure 2(b) that temperature and PV output power have basically similar variation rules. It can
be seen from Figure 2(c) that the PV output curve is basically opposite to the relative humidity curve.
FIG. 2(d) shows that there is no correlation between wind speed and PV output change curve.
Through the above analysis, it can be known that solar radiation intensity, temperature, weather
type and relative humidity affect photovoltaic output power. Daily maximum light radiation
intensity, daily maximum temperature, weather type index, daily maximum humidity, and
historical PV output power containing PV system information are considered as the input and
output variables of the prediction model.

Figure 3 (a) shows the electricity load curve of an area for two consecutive weeks (April 13, 2015
solstice to April 26, 2015). Figure 3(b) shows the load change curve under different day types. Figure
3(c) shows the relationship between average daily load power and average daily temperature in a
region. Figure 3(d) shows the relationship between the average daily load power and humidity in a
region.

195 " =—load

power(kW)

160 u
155 w H
0 50 100 150 200 250 300 350

time(h)

(a)Two-week electrical load graph


https://doi.org/10.20944/preprints202007.0233.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2020 d0i:10.20944/preprints202007.0233.v1

8 of 30

200 —+=workday

=0 -day off
|~®-holidays and feslivals

mlime(h) 15 20

(b)Load change curve under different day types
19 - — - -

=+=load
i\l A =0 ‘temperature

normalized value
o
(5]

0 5 10

20 25 30

(c)The relationship between load and temperature
1

* =+=load

relative humidity

0 5 10

15 20 25 30
time(day)

(d)The relationship between load and relative humidity
Figure 3. Influence factors of load power

It can be seen from Figure 3(a) that the load has a similar change rule within two weeks, which
is reflected by a cycle of 7 days. It can be seen from Figure 3(b) that the load on working days is
slightly higher than that on rest days, but the variation trend is similar, while the load on holidays is
the lowest, which indicates that different types of days have different influences on load power. As
can be seen from Figure 3(c), the average daily load presents an opposite trend to the average daily
temperature and humidity.

Through the above analysis on the influencing factors of load prediction, it can be known that
the main influencing factors of load power include historical load data, environmental temperature,
humidity and day type. Therefore, daily maximum temperature, daily minimum temperature, daily
average temperature, daily type index, daily average humidity and historical load power are taken
as the input variables of the prediction model.

3.2 Prediction model based on PSO-KELM

3.2.1The mathematic model of ELM

A new method of feedforward neural network training - extreme learning machine (ELM) is
proposed by H.G. in 2006[20-22].
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Because only the output weight of hidden layer neurons needs to be calculated, and the hidden
layer parameters are randomly obtained, the learning speed of ELM is thousands of times higher
than that of traditional BP and support vector machine, etc.,, and it has better generalization
performance. The mathematical model of ELM can be shown in Figure 1.

Output neuron

BL

Hidden layer neuron

0 Input neuron
XlT TXn

Figure 4. The structure of ELM

Training set {(x,t)}', cR"xR"™, excitation function g() of hidden node is a nonlinear

function, which can be selected as Hard lim, Sigmoid , and Gaussian . The number of hidden layer

neurons is L.
(1) Hidden layer parameters (a,b;),i=1..., L are randomly selected. a, is the input weight of

the hidden layer neuron, and b; is the threshold value of the hidden layer neuron.
(2) The hidden layer output matrix H =g (a;+ b;+ x;) canbe calculated as follows.

h(x) | |9(a,b,x) L g(a,b,x)
H= M |= M L M (14)

h(x)| [9(a,b,x) L gla.b,x)]
(3) The output weight [ can be represented as follows.

il f
B=H*"T. f=| : T=|: : (15)

T T
ﬁl FE] 2

B i

Where H? is the left pseudo-inverse matrix of the hidden layer output matrix H, and T is the

target output, thatis, T = {t-}w
4 4 ] Jl:]_'
(4) Calculate the output value Oj. Until the training error is less than the predetermined

constant g, these training samples can be approached by ELM.

L
Oj:Zﬂig(ai,bi,xi),|Oj ~T|<&j=1..n (16)
(5) Error calculation.
18 ’
Elen) = HZ(OJ' 'TJ) 17

i=1
Where, (a;. b;) isthe hidden layer node weight and threshold, Tj is the predicted value

of the jth output node, and O j is the actual value of the jth output node.
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In order to further enhance the generalization ability and stability of ELM, the kernel function is
introduced into ELM by comparing the principle of ELM and support vector machine (SVM), and
the KELM algorithm is proposed.

(1)The kernel matrix is defined by Mercer's conditions.

QEl_M =HHT'
{Qm‘ =h(x;)-h(x;) = K(%;,x;) (18)

The random matrix HH™ of ELM is replaced by nuclear matrix Q. Using the kernel, all input
samples are mapped from the N-dimensional input space to the high-dimensional hidden layer
feature space. When the nuclear parameter setting is completed, nuclear matrix Q2 mapping value of
the fixed value. h(x) is the output function of hidden layer node. Kernel K(u,Vv) is usually set as

follows.
K (44,v) = exp[~(u—V* 1 o] (19)

(2)I/C is added to the main diagonal of the unit diagonal matrix HH' so that its characteristic

root is not zero, and then the weight vector " is evaluated.
B =HT(I/C+HH")?T (20)

The output of the KELM model can be expressed as follows.
f(X)=h(x)HT(I/C+HHT)?T
Kxx) (21)
L [(1/C+Qy )T
K(x,xy)

The KELM output weight can be expressed as follows

B=(11C+Qy, )T (22

3.2.2 The mathematic model of PSO

There are n particles in m dimensional space. The position of the ith particle in m-dimensional
space can be expressed as xi(xi,Xi,...xim)[23].The best position experienced by the ith particle is
recorded as pi(piz,piz,...pim). The velocity of each particle is defined as vi(vi1,vi,...vin)[24-25]. The best
place for all particles to pass is written as pg(piL,piz, ... pim)[26].

After the optimal solution is determined, the particle velocity and position can be updated
according to the following equation

Ul (t+1) = v, (0 + 1, (pbestl, -, (1) + 1, (gbestt, — X, (1) (23)
X (t+1) = x5 (1) +vi (t+2) (24)
W= Oy — k(wmax - wmin) / I(max (25)

k
im

v is the velocity of particle i in the kth iteration. X!, is the position of particle i in the kth

iteration. k is the current evolutionary algebra. kmax is the maximum evolutionary algebra, and @ is
the weight of inertia. i= 1,2,3... M,is the population size.c1 and c: are learning factors;. r1 and r2 are
random numbers between [0,1]. pbesty; is the position of the individual extremum point of particle
i. gbesty, is the extremum of the whole population. Each particle's speed is limited to [Vimax+Vmax].
The implementation of particle swarm optimization can be described as follows.
Step 1: Initialize particle swarm:
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Population size N, initial position and velocity vector of each particle, individual extreme value
and global optimal solution, iteration error accuracy &, constant coefficients c1 and c2, maximum
and minimum inertial values ®,, and @,,;,, maximum velocity vm» and maximum number of

iterations Tmax are set.

Step 2: Particalization of the solution of the target problem. The solution of the target problem
to be solved is described by the position vector of the particles, and the fitness function of the
particles in the particle swarm is determined.

Step 3: The individual extremum of each particle and the global extremum of the population are
calculated.

Step 4: Particle velocity and position are updated.

Step 5: Determine whether the following conditions are satisfied. If so, turn to Step 6; otherwise,
turn to Step 2.

The iteration error reaches the set precision.

The iteration number of the algorithm reaches the preset maximum iteration number Tmax.

Step 6: Output the optimal solution. The particle global optimal value and its corresponding
position in the particle swarm are converted into the optimal value and corresponding solution of
the target problem, and the algorithm ends.

The flow chart of PSO-KELM algorithm can be seen in figure 5.

Initialization: In n-dimensional
—> space, the position and velocity of
particles are randomly generated

#—

Evaluation of particles: The fitness
function f(x) for each particle is
calculated

Initial data is entered

Data is normalized
Training and testing
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Parameiers are ) _V\_/hether f (x) is better than
optimized by PSO individual extreme values poest and
Ghest
- v
Optimized KELM for ‘ The position and velocity of the
training and testing particle are updated

Error analysis Stop judging?
according to the v
evaluation index L Cand X are obtained ‘
End

Figure 5. Flow chart of PSO-KELM algorithm
The regularization coefficient C and the nuclear parameter are optimized by PSO, which have
great influence on the accuracy of the prediction model of KELM, then the wind power prediction
model is established by PSO-KELM.
The PSO-KELM algorithm flowchart can be represented as follows.

n

. 1
fitness = —
n ; Yei

yp,i - yt,i ‘ (26)

Where, Yo 18 the original data, Yii is the predicted value, and fitness is the fitness function

which reflecting the error of model prediction.

The regularization coefficient and kernel parameters of KELM are optimized by PSO to avoid
blind training of KELM. In the PSO-KELM prediction model, the output of the KELM learning
sample and the root mean square error of the actual output are used as the fitness function of PSO,
the fitness value of the particle is compared with the optimal fitness, and the parameters C and A of
each KELM are obtained.

The mean relative error is selected as the fitness function of algorithm optimization.

The process of photovoltaic and load forecasting model by PSO-KELM can be expressed as
follows.
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STEP1: The data affecting photovoltaic power generation or load prediction are divided into
training set and test set, and the data are normalized.

STEP2: The kernel function of KELM is determined, and RBF kernel is selected, and
mapping input vector Xi and initial output weight Pint are obtained.

STEP 3 Initialize particle swarm parameters, including population number, particle initial
position int and random initial velocity, individual extremum and total extremum;

STEP 4 Particle swarm optimization. According to the objective function, the fitness of each
particle is calculated at each iteration, and the speed, position, and global optimal value are updated.
The optimal output weight is obtained after iteration.

STEP 5 Calculate the test data output according to the optimal KELM output weight, and the
prediction results are obtained according to the evaluation index.

4 CCHP microgrid scheduling model based on MSFLA
4.1 Problem Description

4.1.10perating cost

The optimal objective function of CCHP is the integrated minimum operation cost.

minf =f +f. +f+f (27)

open

Where, fon is the cost of operation and maintenance, ffe is the cost of fuel consumption, feria is the
cost of power exchange with the grid, and fopen is the cost of opening and closing.

(1) Operation and maintenance cost.

N
fom (t) = z Kom,i : F’| (t) (28)
i=1
Where, K ; and P: represent the maintenance coefficient and output size (kW) of the ith
microsource, respectively.
(2) Fuel cost.
v_1 R®
fre (1) =CpgV =Cyq 2T g (29)

Where, V represents the amount of natural gas consumed (m?), Ci; refers to the price of natural
gas (CNY /m?3), LHV represents the low calorific value of natural gas, 7, and Pi and represent the
output of the ith microsource (kW) and the corresponding generation efficiency, respectively.

(4) Electric power exchange cost.

(- {Cb () Pyig (), Pyig (1) > 0 (30)

C,(t) Py (), P, (1) <O

Where Ci(t) and Cs(t) are the purchase price and sale price (CNY/kW) of the power grid at time
T, respectively. Pgria(t) is the interaction power (kW) with the grid at time ¢. Positive value means the
power purchased from the side of the power grid by the micro grid, while negative value means the
power sold by the micro grid.

(5) Downtime cost.

fo () = 2010 A0, ~1) -C, (31)

Where, o;(t) and o, (t-1) are the switching state of the ith micro-source (micro-turbine or gas
boiler) at the current moment and the previous moment respectively. 1 means turn on, 0 means turn

off; C . represents the start-up cost (CNY) of the ith microsource.

4.1.2 Constraints
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Load balance constraint and operation characteristic constraint of each microsource are the
main constraints considered in microgrid
(1) Electric load balance.

PLnel (t) + Pec (t) = Pmt (t) + Pps (t) + Pgrid (t) (32)

P> P.(®), P,(t), Py, PB,,(t) are net electric load, micro-turbine output, pumped

storage output, electric refrigerator power consumption and power exchange with large power grid
at time ¢, respectively. The net electric load is the difference between the total electric load and the
wind-solar power, thatis, P, (t)=P ({)-R;({)-F, (t).

(2) Cooling load balance.

Qac,cool (t) + Qet (t) = Qc (t) (33)

Where, Q,(t) is the cooling load at time ¢, and Q, ., (t) and Q,(t) are the cooling power of

absorption refrigerator and electric refrigerator at time ¢, respectively.
(3) Thermal load balance.

th (t)nrec + Qac,in (t) + ng (t) + th (t) = Qh (t) (34)

Qu®) s Quin(), and Qy(t) are the flue gas waste heat power generated by the micro gas

turbine machine, the heat consumption power of the absorption refrigerator and the heat generation
power of the gas boiler at time ¢. Q. (t) is the heat storage and release power of the heat storage

device at time t. The heat release is positive and the heat storage is negative. Q,(t) is the thermal
load at time ¢; 7, is the conversion efficiency of waste heat recovery unit.

(4) Equipment output constraint.

I:)min,i < P|(t) < |:)m (35)

ax, i

P

min,i ’

P

i Tepresent the output upper and lower limits of equipment unit i, respectively.

(5) Grid interaction power constraint.

Pmin <P < Pmax (36)

grid — " grid — © grid
Where, Piii and Py refer to the upper and lower limits of the maximum exchange power
between the micro grid system and the large grid, respectively.
(6) Equipment climbing constraints.

{Pim—e(t—l) <R” 37)
Rt-D-R(M) <R™

(7) Initial and final balance constraint of energy storage.

Cycle continuity of optimized operation of microgrid system and time of energy storage unit
(pumped storage, heat storage tank).

When segment coupling is considered, the initial and final energy storage of multi-period
periodic scheduling needs to be consistent.

Eo = Eena (38)

Where, Eo and E.u are energy storage at the beginning and end of cycle scheduling of energy

storage devices, respectively.

4.1.2 Constraint processing method

The inequality constraints of climbing constraints and output upper and lower limits are
combined as follows.
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max(Py,,, P (t-1) = R™") < B (t) <min(P,,, ;. R (t-1) + R") (39)

The equipment output update needs to be satisfied with Equation (40). When the constraint is
not satisfied, the formula is adjusted as follows:

P(t) = {max(Pmin,i P-1)- pido""”), P(t) < max(Pminyi, P(t-1)- Pidown) (40)

MIN(Pyg, R (E~1) + P2), R(t) > Min(P,,, P (t-1) + P*)

Where, P(t) and PR(t—1) represent the output of the ith equipment unit at the current
moment and the previous moment, respectively. P® and P*" represent the maximum increased
power output and maximum decreased power output of equipment unit i in time period t. Micro gas
turbine and gas boiler are mainly considered as equipment with climbing constraints in this paper.

For the equipment without climbing constraint, but constrained by the output upper and lower
limits, the formula is adjusted as follows.

Pmin,i 1 I:’| (t) < I:)min,i
Pi (t) = Pl (t)' Pmin < I:>| (t) < F)max,i (41)
Pmax,i 1 PI (t) < I:’max,i

Considering the new objective function of energy storage constraints, take pumped storage
power station as an example.

min fnew =f +ﬂ|EO - Eendl (42)

After the initial and final balance of the reservoir energy storage state in a pumped storage
station is considered, the above equation can be modified as follows.

T T
min fnew = f +/,l zpd,l 'nd _ng,t /77g (43)
t=1 t=1
Where, P, and P, are the storage discharge power of pumped storage power station in

0.
time period t. 77,and 7, represent the storage discharge efficiency of pumped storage station,

respectively.

4.2 Shuffled Frog Leaping Algorithm

Inspired by Shuffled Frog group Leaping and foraging behavior, a new Shuffled Frog
Algorithm (SFLA) was proposed. SFLA's mathematical model can be described as follows.

Assuming that the problem to be solved is a D dimensional vector, the initial P frogs are
randomly generated within the feasible threshold. The location of the ith frog can be represented as
X, ={Xy1: %21 Xip}, the fitness function value of each individual is calculated and arranged in

descending order according to size, the optimal fitness value of the current population is selected,
and the corresponding individual X, is recorded. Then the population is divided into M

subpopulation groups, each subpopulation contains N individuals, that is, P=MxN, the rules of
division is that the first frog is assigned to the first subgroup, the second is assigned to the second
subgroup... The M frog is assigned to the M subgroup, the M+1 is assigned to the first subgroup, and
so on until all the individuals were divided.

Local search: The individuals with the best and worst adaptive values of each subpopulation
are denoted as x» and xw respectively. At each iteration of the loop, the worst individual is updated in
position. The update policy formula can be expressed as follows.

{Di (t+)=rand()-(x, —X,)

(44)
X, t+1D) =x,(t)+D.(t+1)

d0i:10.20944/preprints202007.0233.v1
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Where, D, €[D,
generated number within the range of [0,1]. X, (t+1) is the updated position of the individual.

min ?

D,.] is the update step size for each jump, and rand() is the randomly

Global search: after a fixed number of local searches are completed, all subpopulations are
remixed into a single population so that the various group information can be communicated
to each other. In descending order of fitness, the subgroups are regrouped, and local searches
continue until the termination condition is met.

4.2.1 Flow of SFLA

The implementation process of SFLA is generally divided into four steps: initialization,
population grouping, local search within cluster group, and cluster group remixing. The specific
process can be described as follows[27].

(1) Relevant parameters to initialize the population are input.

(2) Sorting: According to the characteristics of solving the problem, the fitness value of each frog
in the population was calculated, and all the individuals were sorted according to the fitness value.

(3) Grouping: The population was divided into M subgroups according to the fitness value.
Each subgroup contained N frogs. The optimal individual and the worst individual in each
subgroup were recorded respectively.

(4) Subgroup local search: the worst individual in the subgroup is updated according to
formula (44), and the subgroup and the global optimal individual are also updated.

(5) Judge whether the local search of subgroup reaches the maximum number of iterations, if
not, jump to (4) to continue execution.

(6) Subgroup remixing: all subpopulations are mixed into one population, all individuals are
arranged according to fitness value, and the global optimal individual information is updated.

(7) Whether the global maximum number of evolutionary iterations or convergence accuracy
meets the requirements; if so, exit the algorithm; otherwise, return back to (3).

4.2.2 Improved Shuffled Frog Leaping Algorithm (MSFLA)

(1) Cauchy mutation operator

Cauchy distribution is a kind of functional distribution commonly used in mathematical
statisticc and other fields. Its probability density distribution function can be written as
follows[28-30].

f(x):%,—msxgoo (45)
z(f” +(x=a)’)

Where, when o =0,8=1 is satisfied, it is called the standard cauchy distribution, denoted by
C(0,1).

When the traditional SFLA is iterated for many times, new individuals in the subgroup may fall
into premature convergence. The variation of random Numbers obeying Cauchy distribution will
produce large update step, which is helpful for the population to jump out of local extremum. In this
way, the optimization performance in the larger solution space is better and the global searching
ability of the algorithm is improved. The improved local update strategy can be written as follows.

D, (t+1) =rand()-(x, —x,)-C(0,) (46)
X, (t+1D) =x,(t)+D,(t+1)
(2) Adaptive variation.
The idea of adaptive mutation is introduced into SFLA and can be expressed as follows.
K, =k (T — T (X
T o 20D
Pn = fmax - favg (47)

k2' f(Xi) > favg
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When the fitness value of an individual is better than the average fitness value, a lower
mutation probability is assigned to protect the individual to enter the next iteration. On the contrary,
if the fitness value of an individual is less than the average fitness value, the corresponding mutation
probability is higher, and the individual can be eliminated.

(3) Disturbance operation.

If the diversity of the population is guaranteed, the global search capability is improved, and
the individual updates are followed by another disturbance operation, which can be expressed as
follows.

{r = (max(x;) —min(x;))/ 2 (48)

%O =x,;t)+2-r-rand()-r

Where, r is the disturbance radius; x;is the jth dimension value of the population individual, xi,
is the jth dimension value of the ith individual of the population.

4.3 MSFLA based CCHP microgrid scheduling model

With the day-ahead economic minimization cost of CCHP as the objective function, the
scheduling model was solved by MSFLA. The steps for optimal operation of the micro-grid can be
expressed as follows.

(1) Input data is read and initialized. Micro grid system and output limit to the number in
various kinds of micro power supply, power system load demand, wind power and photovoltaic
power generation forecasting data, each unit of initial state parameters (pumped storage reservoir
storage state, micro gas turbine power generation, thermal energy storage condition, etc.), energy
price information (time-sharing electricity, natural gas price), equipment performance parameter
information, determine the scheduling to the total number of time T, set MSFLA parameters
(child/total group scale, the number of iterations and mutation probability constant) are included.

(2) The population is randomly initialized. According to the output limitation of each
micro-source equipment, micro-turbine, pumped storage, heat storage tank and gas boiler are
selected as decision variables, and the initial population individuals are randomly generated in the
feasible region, and their positions are represented as a group of feasible scheduling plans. The
output of the electric refrigerator, the output of the absorption refrigerator and the heat recovery
power of waste heat can be determined by the balance constraint of the cold and heat power and the
calculation of the decision variables. The interaction power with the grid can be calculated by load
balancing constraints and decision variables. Fuel consumption, gas waste heat power of micro gas
turbine and power consumption of refrigeration equipment can be calculated according to
corresponding mathematical model and energy conversion coefficient.

(3) Individuals of the population are modified by constraints. The individuals in the population
who violate the constraints are adjusted, the decision variables are adjusted back to the feasible
solution space, and the adjusted population is obtained.

Equation (30) is used as the fitness function of algorithm optimization. Fitness values were
calculated for each individual, and then all individuals were ranked in descending order according
to fitness values.

(5) According to the fitness value, the population was divided into M groups, each group
containing N frogs, and the optimal and worst individuals in each subgroup were recorded
respectively.

(6) The worst individual in each subgroup is updated according to Equation (47). According to
formula (44), individuals are subjected to mutation operations. If the fitness value of the individual
after variation is better than that before, the replacement is carried out. Simultaneously the clipboard
is updated (subgroup and globally optimal individual).

(7) Judge whether subgroup search reaches the maximum iteration number of subgroups, if not,
jump to (6) to continue execution.
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(8) All subpopulations are mixed into one population, and all individuals are rearranged
according to fitness value to update the global optimal individual information.

(9) Check whether the global maximum number of evolutionary iterations or convergence
accuracy meets the requirements, and if so, jump to the next step. Otherwise, skip step (5).

(10) Global optimal value and corresponding decision variable value are output, output of each
micro-source equipment is solved, and optimal scheduling scheme is obtained.

5 Simulation

5.1 Photovoltaic power generation forecast

The radial basis function (RBF) is selected, and seto=0.1, C=0.5. The number of PSO population
is set as 25, the initial output weight calculated by KELM is set as the initial position of the particle,
the initial velocity of the particle is randomly selected in [0,1], and the particle dimension is the
output weight dimension. Table 1 shows the evaluation indexes of the predicted results under
different weather conditions including KELM, GA-KELM and PSO-KELM.

Table 1 Models’ prediction and evaluation of different weather conditions

Prediction Sunny Cloudy Runny
algorithm RMSE MAPE RMSE MAPE RMSE MAPE
KELM 0.17631 0.1011 0.60119 0.3328 0.29756 4.2544
GA-KELM 0.16517 0.0535 0.52726 0.1822 0.29564 3.7162
PSO-KELM  0.16376 0.0376 0.48986 0.1649 0.24274 3.714

Figure 6 shows the comparison curve between the predicted value and the real value of
photovoltaic output power under different prediction models in sunny days. In order to show the
photovoltaic power generation prediction results of the three models, the relative error comparison

between the predicted value and the true value is shown in Figure 7.
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Figure 6. Photovoltaic power generation prediction results under different prediction models
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Figure 7. Relative errors of PHOTOVOLTAIC power generation under different prediction models
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It can be seen from Figure 6 that the photovoltaic prediction results of the three models are
generally consistent with the actual values. However, the photovolatic prediction curve of
GA-KELM in sunny days is superior to that of traditional KELM. In the three models, the predicted
value of PSO-KELM is closer to the true value. It can be seen from Figure 7 that the prediction error
of PSO-KELM is less than GA-KELM and KELM.

5.2 Power prediction of electric load

The historical electric load power, the corresponding meteorological information and the day
type, calculated from March to May, 2015, are selected as the training and prediction model. The
electric load power is selected from 0:00 to 23:00, and the time interval is 1Th. According to the above
analysis of affecting factors of load forecasting, load power, the day before the same time the day
before the highest temperature, the lowest average temperature, average temperature, humidity,
type index, two days before the load power at the same time, predict daily maximum temperature,
minimum temperature, average temperature, average humidity and day type index are used as the
prediction model of input; The output variable is the load power at the corresponding time of the
predicted day.

Figure 8 shows the prediction results of KELM, GA-KELM and PSO-KELM on the working-day.
Figure 9 shows the relative error curves of the three prediction models for the load power prediction

results.
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Figure 9. Comparison curve of relative error of load prediction power

As can be seen from Figure 8, PSO-KELM load forecasting results are more accurate than
GA-KELM and KELM, improving the global search capability. The reliability of the proposed
method is verified.

As can be seen from Figure 9, PSO-KELM prediction method has the smallest relative error at
most times of a day, while KELM prediction model has the largest relative error. Therefore,
PSO-KELM is a relatively better prediction model, with smaller relative error and higher accuracy.

Table 2 shows the load forecasting results of the three forecasting models in working days.
PSO-KELM prediction model has a good prediction effect on working day load. Taking into account
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the difference in electrical load demand of different day types, PSO-KELM, GA-KELM and KELM
were also used to predict the load of different day types such as weekends and holidays. Table 3
shows the load forecasting results for different day types.

Table 2 Prediction results of the three prediction models in working days

Prediction MAPE RMSE MAE CC
algorithm

KELM 0.0285 8.2432 6.9744 0.9943
GA-KELM 0.0189 5.3517 44157 0.9974
PSO-KELM 0.0115 3.6756 2.6398 0.9981

Table 3 Prediction performance evaluation of different day types by the three models

Prediction = Weekends May day holiday

algorithm MAPE RMSE  MAE CC MAPE RMSE  MAE CC
KELM 0.021 46258  3.5368  0.9852  0.0819  12.9458 12.1041 0.9479
GA-KELM  0.0197  4.6237 32549  0.9855  0.0632  10.5152 9.2097  0.9588
PSO-KELM 0.0192  4.5407  3.1737  0.9857  0.0506  9.1065  7.2219  0.9631

As can be seen from the table 1, PSO-KELM has the best prediction effect and the highest
accuracy. The reliability of the proposed PSO-KELM algorithm is verified.

As can be seen from Table 3, Among the three prediction models, PSO-KELM has the best
prediction effect for different day types, while KELM has the worst prediction accuracy. At the same
time, it can be seen that different forecasting models have a good effect on the load forecasting of
weekends and rest days, and a relatively poor accuracy on the Load forecasting of May day holidays.
The main reason is that the electrical load on the rest day is similar to that on the working day and
has its periodic change rule. On the one hand, holiday load is affected by various uncertain factors,
such as human activities, and its variation regularity is poor. On the other hand, it is caused by the
lack of data collection for this type in training samples and the insufficient extraction of sample
characteristic values by the prediction model.

5.3 Performance test of MSFLA

In order to verify the performance of the proposed MSFLA, four test functions are selected for
simulation verification.
Table 4 Standard test functions

Names Equation Domain Dimension theoretical
value

Sphere f o . 2 [-100,100] 30 0

i=1 I

o n-1 _
Rastrigin f =10n4+ Z[Xiz —10c0s(27X)] [-5.12,5.12] 30 0
i=1
Griewank [-600,600] 30 0
X; Ccos +1

4000 z 1,_1[ ( )

Schafferf7 U] [-10,10] 30 0

(% +x5,0)" (sin* (500% +x,)"") +1))

i=1

The four test functions are respectively measured by SFLA, PSO and MSFLA. The population

size of the three algorithms and the total number of maximum iterations are set as 100 and 1000.
Other parameters are: the size of SFLA and MSFLA subgroups is N=30, the number of iterations of
the subgroup is 10, the MSFLA variation probability constant is ki =0.01, k2=0.1, the inertia weight of
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PSO is w1=0.9, w2=0.4, and the learning factor is c1 = c2 =2. In order to reduce the random error in the
simulation process and test the performance of the algorithm, the search times of each group of test

functions are set as 20, and the average value of the operation results is taken. The simulation results
are shown in Figure 10 and Table 5.

Table 5 Comparison of simulation results of three algorithms

Name Algorithm Average value Standard deviation
Sphere MSFLA 93.975%-17 3.483e-17
SFLA 7.7265e-11 1.561e-11
PSO 5.1878e-06 1.189e-06
Rastrigin MSFLA 1.189e-09 1.443e-15
SFLA 8.55e-06 2.227e-06
PSO 5.886e-04 2.177e-05
Griewank MSFLA 8.437e-15 1.272e-15
SFLA 8.75e-10 2.387e-10
PSO 0.0197 0.0029
Schafferf7 MSFLA 1.254e-09 1.406e-09
SFLA 7.722e-06 2.9579e-06
PSO 0.259 0.000542
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Figure 10. Optimization curves of the test functions
It can be seen from Figure 10 and Table 4 that the optimization results presented by the three
algorithms are different. MSFLA is superior to SFLA and PSO in terms of average optimal value,
optimal solution and standard deviation, which indicates that improved SFLA has higher
optimization precision and better algorithm stability.

5.4 Comprehensive energy optimization scheduling based on PSO-KELM and MISFLA

In this paper, it is assumed that the rated power of the micro gas turbine (MT) is 100kW, the
power generation efficiency is 0.4, the heat dissipation coefficient is 0.1. The equipment climbing and
descending amount is 80kW, and the start-stop cost is 5 CNY. The total capacity of the pumped
storage power station (PS) reservoir is 350kW. The maximum charge-discharge power is 50kW. The
charge-discharge efficiency is 0.95, and the self-loss rate is 0.0025. Heat storage tank (HS) capacity is
set to 300kW. Maximum heat storage and release power is 50kW. Heat storage efficiency is 0.8, and
heat release efficiency is 0.9. Self-loss rate is set to 0.003. Absorption refrigerator (AC) refrigeration
coefficient is 1.2, and heating coefficient is 0.8. The refrigeration coefficient of electric refrigerator (EC)
is 4.3, and the maximum refrigeration power is 150kW. The maximum heat generation power of
gas-fired boiler (GB) is 300kW, and the heat generation coefficient is 0.95. The climbing and
descending amount of equipment is 100kW, and the start-stop cost is 5 yuan. The number of
optimized cycles is T=24.

The cost coefficient of equipment operation and maintenance is shown in Table 6. The
time-segment energy information prices are shown in Table 7.
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Table 6 Maintenance coefficient of equipment operation
Equipment PS GB MT HS AC EC
Maintenance 0.005 0.04 0.06 0.001 0.008 0.0097
cost(CNY/kWh)
Table 7 Information table on energy prices
Time price of power price of sell price of mnatural
purchase(CNY/kWh) electricity(CNY/kWh) gas(CNY/m?)
Valley period 0.443 0.31 2.05
Flat period 0.66 0.506 2.05
Peak period 1.314 0.92 2.05

Due to the difference in load demand of cold, heat and electricity in summer and winter, there
are different requirements for optimal dispatching of CCHP micro-grid. The typical days in summer
and winter are analysed respectively. The proposed PSO-KELM algorithm is used to predict the
cooling, heating and wind power in the short term. Figure 11 shows the forecast data of cooling,
heating and electric load demand in two typical days in summer and winter, and Figure 12 shows
the predicted power change curves of wind power generation and photovoltaic power generation in

summer and winter.
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Figure 11. Cooling, heating and electricity load demand curve in a typical day in summer and winter


https://doi.org/10.20944/preprints202007.0233.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2020

d0i:10.20944/preprints202007.0233.v1

23 of 30

160

140 1

120 |

100 -

power/KW

(a)Typical solar power generation in summer

100

90 il
80|
70/
60 |

50|

power/KW

40,

30}

20+

0 5

(b)Typical solar power in winter
Figure 12. The predicted power curve of wind-solar power generation in a typical day in summer and winter

5.4.1 Simulation of typical daily optimal scheduling in summer

In summer, the optimized scheduling results of cooling, heating and electricity loads are shown
in Figure 13, Figure 14 and Figure 15, respectively.

150 + =#=net electric load
=@ external network exchange power
,.Q. =& pumped storage power
H =# 'gas turbine power

== air conditioning consumes power

power/KW

-100 . . :
0

Figurel3. Typical summer - equilibrium curve
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Figure 14. Typical diurnal cold equilibrium curve in summer
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Figure 15. Typical daily heat balance curve in summer

It can be seen from the electric load balance dispatching curve in Figure 13 that, in order to
make full use of wind power and photovoltaic power generation, new energy is absorbed to the
maximum extent. Net electric load refers to the difference between the predicted electric load and
the wind output at the corresponding time.

From 23:00 to 7:59 in the valley period, power is purchased from the large grid to drive the air
conditioning refrigerator for refrigeration to meet the cooling load demand. The peer pumped the
energy to store the electricity in the valley period and transfer it to the peak period for utilization. At
the end of the 7th period, the pumped storage power station reaches the maximum energy storage
state.

During peak hours of 8:00-13:59 and 18:00-20:59, the side purchase price of power grid is
relatively high. The pumped storage power station operates with maximum output, and the
remaining power shortage is made up by the micro-turbine. In this period, the power generation
cost of the micro-gas turbine is less than the electricity selling cost of the grid. Therefore, when the
pumped storage energy and the micro-gas turbine jointly generate electricity to meet the system's
electrical load demand, the micro-gas turbine runs at full capacity and sells the remaining electricity
to the external network to earn profits. The pumped storage station discharges at the end of 13:00
and 20:00, and the reservoir energy storage reaches the lower limit.

During the peacetime period from 14:00 to 18:59, the gas-fired generator works at full capacity
to meet the electrical load demand of the system, and the insufficient part purchases electricity from
the grid. At the same time, in this stage, the maximum charging power is used for pumping and
storing electricity to prepare energy storage for discharging in the next peak period.

By means of pumped storage, the surplus or low-price electric energy in the valley period is
converted and stored and released in the peak period. In this way, the load demand is shifted, the
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power supply cost in peak period is reduced, and the overall economy of the micro-grid system is
improved.

Figure 14 and Figure 15 are used to analyse the cold and heat energy balance of the cold-heat
and power supply micro-grid. In summer, the demand for cooling load is strong, while the demand
for heating load is relatively small. In the period of low electricity price, the cooling load of the
system is satisfied by electric refrigeration and air conditioning, and the hot load is satisfied by
micro-gas turbine generating power, without gas boiler output. In peacetime period from 14:00 to
18:59, the cooling capacity of electric refrigeration air conditioning increased. The flue gas waste heat
generated by the micro-turbine in ordinary times is stored by the heat storage device and released
and utilized in the evening peak period to reduce the comprehensive economic cost of the system. At
23:00 in the valley, due to the decrease of cold and hot loads and the influence of off-peak electricity
price, the micro-turbine is in the state of shutdown. The cooling load is satisfied by the refrigeration
air conditioning, and the hot water load is balanced by the heat release of the heat storage device.

Figurel6 shows the change curve of the energy storage state of reservoirs in pumped storage
power stations. The operating costs of the cooling, heating and power co-supply microgrid system
are calculated and compared with the cost of the traditional co-supply microgrid system. The results
are shown in Table 8 and Figure 17.

350
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Figure 16. Change curve of reservoir energy storage state in pumped storage power station

Table 8 Comparison of operating cost between cold, heat and power supply and power supply

Energy method for(CNY)  frua(CNY)  ferid(CNY)  fopen(CNY) total(CNY)
Combined supply of 12147 1359.67 208.91 10 1700.05
cooling

Separate power 72.16 229.18 2522.68 10 2834.02

Cost saving -49.31 -1130.49  2313.77 0 1133.97
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Figure 17. The cost comparison between the joint supply system and the sub - supply system in
summary

It can be seen from Figure 16 that the pumped storage power station has two discharge storage
processes in the whole dispatching cycle: power storage in the time periods of 1:00-7:59 and
15:00-17:59, discharging in the time periods of 8:00-13:59 and 18:00-21:59, and no operation in the rest
periods.

As can be seen from the comparison of cost data in Table 9, compared with the traditional
supply division system, the power purchase cost of CCHP micro-grid is reduced by 91.7%, and the
comprehensive operation cost is reduced by 40%.

As can be seen from Figure 17, the total operating cost of CCHP system was slightly higher than
that of the traditional supply distribution method in the flat-valley period. This is because in the
flat-valley period, in addition to the cold, hot and electric load needs to be met, additional electricity
needs to be purchased for energy storage. In the peak period, the operating cost of the supply mode
is much higher than that of the supply mode. This is because the cost of CCHP generation is less than
the selling price of the power grid, so after the pumped storage power generation and the output of
the micro gas turbine meet the electrical balance of the system, the cost is reduced by selling the
remaining power, and the cost is further reduced by recovering the waste heat discharged by the
micro gas turbine under the full operating condition for refrigeration. In the case of split supply,
electricity is purchased from the grid at a higher price to meet the electricity load and cooling load,
which indicates that CCHP has a high economic benefit in the peak period.

5.4.2 Typical daily optimal scheduling in winter

The dispatching results of electrical load balance and thermal load balance of the CCHP
microgrid on a typical day in winter are shown in Figure 18 and 19.

=+=net electric load

150 @ external network exchange power
=O-'pumped storage power

=5 ‘air conditioning consumes power

€ s .
o H /
B : v, s
2 iz W e J \
00--0-8-0-© R \\._-‘ ,{D -
AN H e.
4 Q & 7 LY
A g S e L2 "
_501‘1:-13-{ \J "0"0". 1
th
-100
0 5 10 15 20

Figure 18. Equilibrium curve of typical winter conditions
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Figure 19. Typical daily heat balance curve in winter

It can be seen from Figure 18 that compared with summer, the demand for heat energy in
winter is strong, and the cooling load demand is negligible. As the core of cogeneration system,
micro gas turbine is the main component of thermal load response. During the period from 00:00 to
7:59, the heat load demand is small, and the waste heat recovery device absorbs the waste heat from
the flue gas generated during the generation process of the micro-gas turbine. When the heat
demand is met, the output of the micro gas turbine is increased considering the characteristics of
translational load of the storage tank, and the excess heat is stored in the storage tank. During the
period from 8:00 to 23:59, with the increase of thermal load demand, the output of the micro gas
turbine is increased and reaches full capacity. In this case, the heat output from the waste heat
recovery unit cannot meet the heat load balance, and the heat release from the storage tank is first
filled. When the waste heat recovery unit and the heat storage tank are not balanced, the heat load of
the system is supplemented by the heating of the gas-fired boiler.

It can be seen from FIG. 19 that the generation of micro-turbine is mainly determined by the
thermal load demand balance. In the valley period, although the power generation cost of the
micro-gas turbine is higher than the power purchase cost, the operation cost of using the micro-gas
turbine to generate power to meet both the heat and power needs is lower than that of the supply
method due to the high thermal load demand. Between 0:00 and 5:00, when the micro-turbine meets
the thermal load demand and there is a surplus, the surplus electricity is used for pumped storage.
During peak hours, the micro gas turbine reaches full capacity. Stimulated by the selling price of the
power grid, the combined output of pumped storage and micro gas turbine not only meets the

electricity demand, but also sells more power generation to the large power grid, thus reducing the
operating cost.
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Figure 20. Change curve of reservoir energy storage state in pumped storage power station
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Figure 20 shows the change process of the reservoir energy storage state on the pumped storage
power station. The comparison results of operating costs between the CCHP microgrid and the
traditional supply distribution grid are shown in Table 9 and Figure 21.

Table 9. Comparison of operating costs of cold, heat and power supply combined with supply in winter

Energy method fon(CNY)  fue(CNY)  ferid(CNY)  fopen(CNY) total(CNY)
Combined supply of 186.59 2336.15 -247 .94 15 2289.8
cooling
Separate power 174.36 1525.69 1821.96 10 3532.01
Cost saving -12.23 -810.46 2069.9 -5 1242.21
250 - Fon Ui
PR
200 ,
: ° 8

-
[4.]
o

cost/CNY
g

()
- o
s,

=8~the cost of installations
@ independent power supply cost

0 5 10 15 20
th

Figure 21. The cost comparison between the joint supply system and the sub-supply system in winter

It can be seen in Table 9, compared with the traditional supply division system, although the
cost of operation and maintenance and fuel consumption have been increased, the integrated
operation cost of the CCHP microgrid in winter has been reduced by 35.2%.

Figure 21 shows the comparison chart of the operating costs of the two modes in different
periods. During the flat-valley period, the micro-turbine can not only meet the demand of heat and
electricity load, but also store the remaining heat and electricity, so the total operation cost is slightly
higher than the traditional distribution method. In the peak period, the operation cost of the system
is greatly reduced by using the self-generated electricity and the discharge of energy storage. In the
distribution mode, electricity is purchased from the grid at a higher price to meet the electrical load
demand, and a single gas-fired boiler consumes gas to provide the thermal response of the system.
Therefore, the operating cost of the supply mode is much higher than that of the joint supply mode.
This shows that the combined heat and power micro grid system can make full use of energy and
make the overall economic benefit value higher.

6 Conclusions

The key factors that influence the PV generation and load power prediction are analyzed to
determine the input and output variables of the corresponding prediction model. KELM parameter
is optimized by PSO algorithm to improve KELM prediction accuracy. PV and load power are
predicted by PSO-KELM, GA-KELM and KELM respectively, which proves that PSO-KELM is
effective and the proposed method has better prediction accuracy. Due to SFLA is easy to fall into
local optimal, Cauchy variation is introduced, and individuals in the population are adaptively
mutated, thus the population diversity is increased. Compared with the traditional SFLA, the
simulation test shows that MSFLA improves the accuracy and convergence speed.

The minimization of the sum of equipment operation and maintenance costs, fuel costs,
downtime costs, and power exchange costs is the objective function for the economic operation of
CCHP microgrid. An improved shuffled frog leaping algorithm is used to optimize the scheduling
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model in the grid-connected operation state. The coordinated output of each micro-power supply
and energy storage device in summer and winter is simulated. The scheduling scheme is analysed,
and it was verified that the CCHP microgrid could obtain better economic benefits, and the
effectiveness and feasibility of the improved shuffled frog leaping algorithm in CCHP scheduling
are also verified.
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