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Abstract: An optimal scheduling strategy for cooling, heating and power (CCHP) 

joint-power-supply system is proposed to improve energy utilization and minimize costs in this 

paper. Firstly, the mathematical model of CCHP system is established. Particle swarm optimization 

(PSO) is used to optimize the regularization coefficient C and the kernel parameter λ which can 

affect the prediction accuracy of KELM(PSO-KELM). Then PV generation and load prediction 

model are established by PSO-KELM. In order to jump out of local optimal solution, Cauchy 

variation is introduced in SFLA local update, and adaptive mutation operation is carried out on 

SFLA individuals. The predictions of PV generation and load power by PSO-KELM are imported 

into the objective function, and the microgrid dispatching model is solved by the improved SFLA 

algorithm. Compared with the traditional GA-KELM and KELM, PSO-KELM has faster 

convergence and prediction accuracy. Compared with the power supply division, the operation 

cost of the power grid is reduced by the proposed optimization dispatching strategy of CCHP 

micro-grid. 

Keywords: cooling, heating and power (CCHP) microgrid; kernel learning machine (KELM); 

particle swarm optimization (PSO); shuffled frog leaping algorithm (SFLA). 

 

1. Introduction 

Compared with the traditional power supply, cooling, heating and power (CCHP) microgrid 

ensures that the energy of the microgrid can be used at multiple levels, the energy utilization 

efficiency is improved, and the economic benefit is better [1-2]. It is very necessary to study the 

prediction of distributed new energy generation and load power in the system before studying the 

economic optimization operation of the combined cold, heat and power supply microgrid [3]. It is 

necessary to study the prediction of distributed new energy generation and load power in the 

system before studying the economic optimization operation of the CCHP microgrid [4]. An 

effective and more accurate prediction model is established, and then a scheduling model is 

constructed with a variety of data conditions including predicted power, etc., to determine the 

model optimization scheme and finally solve the optimization problem [5]. When distributed 

generation is connected to large power grid, such problems as large power fluctuation, high cost and 

difficulty in control can be solved by cold, hot and power supply, which is a powerful supplement to 

large power grid system. At present, the research on cold, heat and power supply has attracted the 

attention of many scholars. In [6]，a matrix modeling method for the CCHP system structure is 

proposed, in which multi-energy supply is regarded as the input of system, and cooling, heating, 

electric load as the output of the system, and particle swarm optimization algorithm is applied to 

promote optimal operation of CCHP.  In [7], least squares-two-stage recursive least squares (TSRLS) 

algorithm is used to forecast the cooling, heating, and electrical loads, then the loads is designed to 
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be the input of cooling, heating, and power systems (CCHP). A novel optimal operational strategy 

depending on an integrated performance criterion (IPC) is proposed in[8], in which the whole 

operating space of the CCHP system can be divided into several regions by one to three border 

surfaces determined by energy requirements and the integrated performance criterion, then the 

comprehensive operational performance can be improved. An online optimal operation approach 

for CCHP microgrids based on model predictive control with feedback correction to compensate for 

prediction error is proposed in [9], and the proposed method have better matching between demand 

and supply. In [10] a day-ahead co-operation strategy is proposed with the objective function to 

minimize daily operation cost of the CCHP system, the day-ahead collaborative control of cold, hot 

and electric system can be realized. In [11], combined cooling, heating and power (CCHP), an 

optimal joint-dispatch scheme of energy and reserve is proposed and the proposed scheme can 

provide more reserve capability.  

Accurate new energy output and multi-type load forecasting is of great significance for 

establishing a reasonable scheduling model. Due to the uncertainty brought by wind-solar power 

generation and other new energy sources, the micro-grid system is greatly affected by 

meteorological conditions and other external factors, so it is difficult to predict the new energy 

generation and load power of the cold-heat and power co-supply micro-grid [12-13]. The research of 

new energy generation and load forecasting is a topic of concern to researchers. In [14], a novel 

probabilistic load forecasting method to leverage existing point load forecasts by modeling the 

conditional forecast residual which improves the accuracy of load forecasting. In [15], the deviation 

caused by time-series methods which used to forecast the daily load is forecasted considering the 

impact of relative factors, the prediction accuracy of proposed method is improved compared with 

that of traditional SVM. In [16], a fuzzy-weight grouping of the different short-term load and 

generation forecast results is proposed to forecast short-term load and generation, and the accuracy 

is improved. In [17], the total load data is divided into sub-data, and each type of load is predicted 

separately and combined according to its weight. A long short-term memory-based deep-learning 

forecasting framework with appliance consumption sequences is proposed to forecast the residential 

load, and the forecast accuracy have been verified to be improved. In [18], the variables that affect 

the load forecasting results are analyzed. Calendar variables, delayed actual demand observations, 

and the history and forecast temperature in the target power system are taken as the input of the 

forecast, and the output is the load demand. A multiscale reliable wind power forecasting method is 

proposed in [19], which implemented by building a many-to-many (M2M) mapping network and 

using a stack denoising automatic encoder.  

Although some research achievements have been achieved in the dispatching of CCHP 

microgrid, the research on the dispatching of photovoltaic generation and load demand has not been 

taken into account, which have an important impact on CCHP system. On the one hand, the power 

prediction of microgrid is studied, and photovoltaic power generation and load power are taken as 

the prediction research objects. On the other hand, after predicting the cooling, heating, power and 

wind-solar power generation, the day-ahead economic optimization model is established. This 

paper is organized as follows. The research status of cooling, heating and power system is studied in 

Section I. In section II, the mathematical model of CCHP microgrids is established. In section III, a 

kernel extreme learning machine-based particle swarm optimization is proposed, and the proposed 

algorithm is applied to forecast the photovoltaic generation and load power. In section IV, the 

scheduling model with the minimum operating cost of CCHP system is established, and the 

improved shuffled frog hop algorithm is used to optimize the scheduling. In section V, comparative 

simulation is established to verify the effectiveness of the proposed method. Section VI is a 

summary. 

2 Mathematical model of CCHP 

 2.1 CCHP microgrid power supply structure 
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A variety of power generation, cooling and heating equipments are included in the CCHP 

microgrid. The energy supply structure of CCHP microgrid is shown as Figure 1. 
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Figure 1. Schematic diagram of CCHP microgrid power supply structure 

As can be seen from Figure 1, the energy of the entire micro grid can be divided into four parts, 

including multi-energy supply (source), energy conversion and transmission (transmission), energy 

storage unit (storage) and terminal energy load (load). Multi-energy supply is a description of 

microgrid multi-distributed energy output, which generally consists of sustainable power, 

intermittent power, regional cogeneration of heat and power and primary energy. Energy 

conversion transmission is an abstraction of various energy conversion characteristics of CCHP 

microgrid system. According to different forms of energy, there are three types of functional 

networks: power transmission heat transmission and gas pipe. Energy storage unit is an effective 

storage and release of energy for load regulation response, which can effectively improve energy 

utilization efficiency. The terminal energy load is divided into four categories: cooling, heating, 

electricity and gas. Refrigerator, energy storage and user side power demand are the main forms of 

power load. Heating load includes hot water, steam, space thermal, etc., which is mainly provided 

by waste heat recovery unit of micro-turbine, gas boiler and thermal energy storage. Gas load is 

mainly used to supply gas consumed by gas boilers and micro-turbines. Various loads are the key to 

regulate energy distribution in micro grid. 

2.2 Mathematical model of photovoltaic power generation 

When there is no wind, the light intensity is 1KW/m2 and the temperature is 25℃ , the 

relationship among photovoltaic power generation power, light intensity and ambient temperature 

can be expressed as follows.  

[1 ( )]T

pv pv STC c STC

STC

G
P f P k T T

G
= + −        (1) 

Where, fpv is a photovoltaic array output power derating factor that takes into account the 

power loss of photovoltaic cells due to structural aging and surface covering. Under standard 

measurement environment, PSTC, GSTC and TSTC are PV output peak power (KWp), light intensity 

(KW/m2) and temperature (℃), respectively. GT is the actual light intensity of photovoltaic array; k is 

the temperature coefficient of photovoltaic cell; Tc is the actual temperature of photovoltaic cells, 

which is jointly determined by environmental temperature and light intensity. The relationship can 

be expressed as follows. 

 
30

1000

T

c air

G
T T= +          (2) 

Where, Tair represents the temperature, and GT is the intensity of light radiation received by 

photovoltaic panels. From the above formula, it can be seen that when the light radiation intensity 

ranges from 0.4K W/m2 to 1k W/m2, the actual output of photovoltaic array is linearly related to the 

light radiation intensity, and the photovoltaic output reaches the peak at 1k W/m2. When the light 
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intensity is greater than 1k W/m2, the peak value will be maintained. When the light intensity is less 

than 0.4k W/m2, the power generation efficiency will decrease. Based on this, the relationship 

between photovoltaic cell power generation and light intensity can be obtained. 
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     (3) 

Where, Ppv is photovoltaic power, and PNTC is the output power of photovoltaic under rated 

condition. The rated condition refers to wind speed is 1m/s, and light radiation intensity is 0.8kW 

/m2, and temperature is 20℃.  

2.3 Mathematical model of wind power generation 

Wind Turbine system is a new clean energy which uses wind turbine (WT) to convert wind 

energy into electric energy and supply it to users. It is one of the new clean energy with large 

application potential and fast development. Wind power generation system generally includes wind 

turbines, speed regulating devices, inverters and controllers. The fan output is affected by the 

change of wind speed, and the mathematical relationship between them can be expressed as follows. 

2 31

2
wt pP R v C=          (4) 

Where, Pwt is the generating power of wind turbine; v is the actual wind speed; 𝜌, R are the air 

density (kg/m3) and fan wheel blade radius (m), respectively; Cp is the wind energy conversion 

efficiency considering turbine loss and transmission loss.  

The mathematical relationship between the actual output power and wind speed of a 

steady-state time-wind unit can be denoted as follows. 
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       (5) 

Where, Pr and vr are rated power and rated power of the fan respectively, while v, vin and vout 

represent the actual wind speed of the fan, the input wind speed and the output wind speed 

respectively. The wind speed affects the fan's power can be written as follows. 

( )ref

ref

H
v v

H

=          (6) 

Where Href and vref are the height and wind speed of the measurement point respectively; H is 

the height of fan hub; 𝛼 is ground roughness factor. 

2.4 Model of pumped storage power station 

Pumped Storage (PS), also known as pumped storage hydropower station, is essentially a 

device for storing and reusing water energy. Pumped storage power generation system is a complex 

control system of water, machine and electricity. It is consisted of pressure water diversion system, 

inverter type unit, governor and generator motor, among which reversible type unit has water 

pump and turbine. 

When the water pump of an energy storage power station is operated under the pumping 

energy storage condition, the relationship between the converted power on the turbine and the 

storage capacity and energy storage can be expressed as follows.  
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Where, Pps,ch is the accumulative power; M1, n1 and D1 are unit shaft, unit speed and runner 

diameter of pump turbine respectively. h is the turbine head. E(t) represents the reservoir energy 

storage after time period t; 𝜂𝑑 refers to the pumped-storage power station pumping efficiency; Δt is 

pumping time interval. 

When the turbine of a storage power station operates under the condition of discharging water, 

the mathematical relationship between the power converted on the shaft and the reservoir energy 

storage can be written as follows. 

2 1.5

, 1

,

9.18

( ) ( 1) /

ps dis

ps dis g

P QD h

E t E t P t 

 =


= − + 

       (8) 

Where, Pps,dis is the discharge power; Q= v /t represents the flow velocity. h is the head of the 

turbine. E(t) represents the upper reservoir energy storage after time period t. 𝜂g is the 

pumped-storage power station water efficiency. Δ t is water power generation time interval. 

2.5 The equipment model of the cooling, heating and power supply system 

The mathematical model for generation and heating of the micro-gas turbine used in CCHP 

system can be calculated as follows. 

(1 )

mt mt mt mt

mt mt lost

mt

mt

P V H

P
Q



 



=  

− −
=

         (9) 

Where, Pmt is the power output of the micro-gas turbine; Qmt is the residual heat of flue gas 

discharged simultaneously by the micro-turbine for power generation. Vmt represents the 

consumption of fossil fuels (mainly natural gas) per unit of time by the micro-turbine. Hmt refers to 

the low calorific value of natural gas, usually 9.78kwh /m3; 𝜂𝑚𝑡 and 𝜂𝑙o𝑠𝑡 are the micro gas turbine 

power generation efficiency and heat loss coefficient, respectively. 

The output of an absorption chiller converting the heat input into heating or cooling can be 

expressed as follows. 

cool cool in

heat heat in

Q COP Q

Q COP Q

= 

= 
         (10) 

Where, Qcool and Qheat are the cooling and heat generation power of waste heat absorption 

refrigerator, respectively. COPcool and COPheat are the energy efficiency coefficient of refrigeration and 

heat energy efficiency of waste heat absorption refrigerator respectively. Qin is the heat input power 

of waste heat absorption refrigerator. 

The cooling power produced by the compression refrigerator and the electric energy consumed 

can be expressed as follows. 

ec ec ecQ COP P=          （11） 

Where, Qec is the refrigeration power of compression refrigerator; COPec represents the 

refrigeration efficiency coefficient, which is a factor to measure the refrigeration 

performance of the compression refrigerator. Pec is the power consumed by the compression 

refrigerator. 

The relationship among the heating power of gas-fired boiler and its output and the amount of 

natural gas can be expressed as follows. 

gb gb gbQ F=            (12) 
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Where, Qgb is the heating power of gas-fired boiler; 𝜂gb gas boiler heating energy efficiency 

coefficient; Fgb is the amount of fuel consumed by a gas-fired boiler. 

The dynamic mathematical model of Heat Storage (HS) can be expressed as follows. 

( ) ( 1) (1 ) ( / )ch ch dis dis

hs hs hs hs hs hs hsE t E t Q Q t  = −  − +  −       (13) 

Ehs(t) represents the heat storage state of the regenerator at time t; ch

hsQ ， dis

hsQ  represent the heat 

storage power and the heat release power, respectively. hs  represents the self-release heat rate of 

the equipment. ch

hs ， dis

hs  represent heat storage efficiency and heat release efficiency respectively. 

 3 Load forecasting based on PSO-KELM 

The key factors influencing the PV generation and load power were firstly studied to determine 

the input and output variables of the prediction model. Then particle swarm optimization is used to 

optimize KELM parameters, and optimized models are used to predict photovoltaic output power 

and electric load power respectively. 

3.1 Influencing factors of PV and load forecasting 

Figure. 4 shows the relationship between photovoltaic output power and meteorological 

factors. 

 

 

(a)The relationship diagram of photovoltaic power generation and light intensity  

 

(b)The relationship diagram of photovoltaic power generation and temperature 
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(c) The relationship diagram of photovoltaic power generation and relative humidity 

 
(d) The relationship diagram of photovoltaic power generation and wind speed 

Figure 2. Relationship between photovoltaic power generation and meteorology 

Figure 2(a) shows the variation of PV output power and light intensity curves. It can be seen 

from Figure 2(b) that temperature and PV output power have basically similar variation rules. It can 

be seen from Figure 2(c) that the PV output curve is basically opposite to the relative humidity curve. 

FIG. 2(d) shows that there is no correlation between wind speed and PV output change curve. 

Through the above analysis, it can be known that solar radiation intensity, temperature, weather 

type and relative humidity affect photovoltaic output power. Daily maximum light radiation 

intensity, daily maximum temperature, weather type index, daily maximum humidity, and 

historical PV output power containing PV system information are considered as the input and 

output variables of the prediction model. 

Figure 3 (a) shows the electricity load curve of an area for two consecutive weeks (April 13, 2015 

solstice to April 26, 2015). Figure 3(b) shows the load change curve under different day types. Figure 

3(c) shows the relationship between average daily load power and average daily temperature in a 

region. Figure 3(d) shows the relationship between the average daily load power and humidity in a 

region. 

 

(a)Two-week electrical load graph 
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(b)Load change curve under different day types 

 
(c)The relationship between load and temperature 

 
(d)The relationship between load and relative humidity 

Figure 3. Influence factors of load power 

It can be seen from Figure 3(a) that the load has a similar change rule within two weeks, which 

is reflected by a cycle of 7 days. It can be seen from Figure 3(b) that the load on working days is 

slightly higher than that on rest days, but the variation trend is similar, while the load on holidays is 

the lowest, which indicates that different types of days have different influences on load power. As 

can be seen from Figure 3(c), the average daily load presents an opposite trend to the average daily 

temperature and humidity.  

Through the above analysis on the influencing factors of load prediction, it can be known that 

the main influencing factors of load power include historical load data, environmental temperature, 

humidity and day type. Therefore, daily maximum temperature, daily minimum temperature, daily 

average temperature, daily type index, daily average humidity and historical load power are taken 

as the input variables of the prediction model. 

3.2 Prediction model based on PSO-KELM 

3.2.1The mathematic model of ELM 

A new method of feedforward neural network training - extreme learning machine (ELM) is 

proposed by H.G. in 2006[20-22].  
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Because only the output weight of hidden layer neurons needs to be calculated, and the hidden 

layer parameters are randomly obtained, the learning speed of ELM is thousands of times higher 

than that of traditional BP and support vector machine, etc., and it has better generalization 

performance. The mathematical model of ELM can be shown in Figure 1. 

1 n

1 i L

Output neuron

Hidden layer neuron

Input neuron

X1 xn

ai

bi

β1 βi βL

oj

 

Figure 4. The structure of ELM 

Training set 1{( , )}N n m

i i ix t R R=   , excitation function ( )g   of hidden node is a nonlinear 

function, which can be selected as limHard , Sigmoid , and Gaussian . The number of hidden layer 

neurons is L. 

(1) Hidden layer parameters ( , ), 1,...,Li ia b i = are randomly selected. ia  is the input weight of 

the hidden layer neuron, and  is the threshold value of the hidden layer neuron. 

(2) The hidden layer output matrix  can be calculated as follows. 

1 1 1 1 1

1 1

( ) ( , , ) ( , , )

( ) ( , , ) ( , , )

L L

n n L L n n L

h x g a b x g a b x

H

h x g a b x g a b x


   
   

= =
   
     

L

M M ML

L

    (14) 

(3) The output weight  can be represented as follows.   

 ¦    (15) 

Where  is the left pseudo-inverse matrix of the hidden layer output matrix H, and T is the 

target output, that is, . 

(4) Calculate the output value jO . Until the training error is less than the predetermined 

constant , these training samples can be approached by ELM. 

1

( , , ), , 1,...,
L

j i i i i j j

i

O g a b x O T j n 
=

= −  =     (16) 

(5) Error calculation. 

( )
2

( , )

1

1
i i

n

a b j j

j=

E O -T
n

=        (17) 

Where,  is the hidden layer node weight and threshold, jT  is the predicted value 

of the jth output node, and jO  is the actual value of the jth output node.  
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In order to further enhance the generalization ability and stability of ELM, the kernel function is 

introduced into ELM by comparing the principle of ELM and support vector machine (SVM), and 

the KELM algorithm is proposed. 

(1)The kernel matrix is defined by Mercer's conditions. 

 
, ( ) ( ) ( , )

T

ELM

i j j j i j

HH

h x h x K x x

 =

 =  =

     (18) 

 The random matrix THH  of ELM is replaced by nuclear matrix Ω. Using the kernel, all input 

samples are mapped from the N-dimensional input space to the high-dimensional hidden layer 

feature space. When the nuclear parameter setting is completed, nuclear matrix Ω mapping value of 

the fixed value. h(x) is the output function of hidden layer node. Kernel ( , )K v  is usually set as 

follows. 

2( , ) exp[ ( / )]K v v  = − −      (19) 

(2)I/C is added to the main diagonal of the unit diagonal matrix THH  so that its characteristic 

root is not zero, and then the weight vector    is evaluated. 

1( / )T TH I C HH T  −= +     （20） 

The output of the KELM model can be expressed as follows. 
1

1

1

( ) ( ) ( / )

( , )

        = ( / )

( , )

T T

ELM

N

f x h x H I C HH T

K x x

I C T

K x x

−

−

= +

 
 

+
 
  

L
    （21） 

The KELM output weight can be expressed as follows . 

 1( / )ELMI C T −= +      （22） 

 3.2.2 The mathematic model of PSO 

There are n particles in m dimensional space. The position of the ith particle in m-dimensional 

space can be expressed as xi(xi1,xi2,…xim)[23].The best position experienced by the ith particle is 

recorded as pi(pi2,pi2,…pim). The velocity of each particle is defined as vi(vi1,vi2,…vim)[24-25]. The best 

place for all particles to pass is written as pg(pi1,pi2,…pim)[26]. 

After the optimal solution is determined, the particle velocity and position can be updated 

according to the following equation 

1 1 2 2( 1) ( ) ( (t)) (gbest ( ))k k k k k k

im im im im im imv t v t c r pbest x c r x t+ = + − + −     (23) 

 ( 1) ( ) ( 1)k k k

im im imx t x t v t+ = + +               (24) 

 max max min max( ) /k k   = − −              (25) 
k

imv  is the velocity of particle i in the kth iteration. k

imx  is the position of particle i in the kth 

iteration. k is the current evolutionary algebra. kmax is the maximum evolutionary algebra, and   is 

the weight of inertia. i= 1,2,3... M,is the population size.c1 and c2 are learning factors;. r1 and r2 are 

random numbers between [0,1]. k

impbest  is the position of the individual extremum point of particle 

i. gbestk

im  is the extremum of the whole population. Each particle's speed is limited to [-vmax,+vmax]. 

The implementation of particle swarm optimization can be described as follows. 

Step 1: Initialize particle swarm: 
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Population size N, initial position and velocity vector of each particle, individual extreme value 

and global optimal solution, iteration error accuracy  , constant coefficients c1 and c2, maximum 

and minimum inertial values 
max  and 

min , maximum velocity vmax and maximum number of 

iterations Tmax are set. 

Step 2: Particalization of the solution of the target problem. The solution of the target problem 

to be solved is described by the position vector of the particles, and the fitness function of the 

particles in the particle swarm is determined. 

Step 3: The individual extremum of each particle and the global extremum of the population are 

calculated. 

Step 4: Particle velocity and position are updated. 

Step 5: Determine whether the following conditions are satisfied. If so, turn to Step 6; otherwise, 

turn to Step 2. 

The iteration error reaches the set precision. 

The iteration number of the algorithm reaches the preset maximum iteration number Tmax. 

Step 6: Output the optimal solution. The particle global optimal value and its corresponding 

position in the particle swarm are converted into the optimal value and corresponding solution of 

the target problem, and the algorithm ends. 

The flow chart of PSO-KELM algorithm can be seen in figure 5. 

Start

Initial data is enteredInitial data is entered

Data is normalizedData is normalized

Training and testing 

of samples

Training and testing 

of samples

Parameters are 

optimized by PSO

Parameters are 

optimized by PSO

Optimized KELM for 

training and testing

Optimized KELM for 

training and testing

Error analysis 

according to the 

evaluation index

Error analysis 

according to the 

evaluation index

End

Initialization: In n-dimensional 

space, the position and velocity of 

particles are randomly generated

Initialization: In n-dimensional 

space, the position and velocity of 

particles are randomly generated

Evaluation of particles: The fitness 

function f(x) for each particle is 

calculated

Evaluation of particles: The fitness 

function f(x) for each particle is 

calculated

Update optimality: Determine 

whether f (x) is better than 

individual extreme values pbest and 

Gbest

Update optimality: Determine 

whether f (x) is better than 

individual extreme values pbest and 

Gbest

The position and velocity of the 

particle are updated

The position and velocity of the 

particle are updated

Stop judging?

C and λ are obtainedC and λ are obtained

Y

N

 

Figure 5. Flow chart of PSO-KELM algorithm 

The regularization coefficient C and the nuclear parameter are optimized by PSO, which have 

great influence on the accuracy of the prediction model of KELM, then the wind power prediction 

model is established by PSO-KELM. 

The PSO-KELM algorithm flowchart can be represented as follows. 

, ,

1 ,

1 n
p i t i

i t i

y y
fitness

n y=

−
=        (26) 

Where, ,p iy  is the original data, ,t iy  is the predicted value, and fitness is the fitness function 

which reflecting the error of model prediction. 

The regularization coefficient and kernel parameters of KELM are optimized by PSO to avoid 

blind training of KELM. In the PSO-KELM prediction model, the output of the KELM learning 

sample and the root mean square error of the actual output are used as the fitness function of PSO, 

the fitness value of the particle is compared with the optimal fitness, and the parameters C and λ of 

each KELM are obtained. 

The mean relative error is selected as the fitness function of algorithm optimization. 

The process of photovoltaic and load forecasting model by PSO-KELM can be expressed as 

follows. 
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STEP1: The data affecting photovoltaic power generation or load prediction are divided into 

training set and test set, and the data are normalized. 

STEP2: The kernel function of KELM is determined, and RBF kernel is selected, and 

mapping input vector Xi and initial output weight βint are obtained. 

STEP 3 Initialize particle swarm parameters, including population number, particle initial 

position int and random initial velocity, individual extremum and total extremum; 

STEP 4 Particle swarm optimization. According to the objective function, the fitness of each 

particle is calculated at each iteration, and the speed, position, and global optimal value are updated. 

The optimal output weight is obtained after iteration. 

STEP 5 Calculate the test data output according to the optimal KELM output weight, and the 

prediction results are obtained according to the evaluation index. 

4 CCHP microgrid scheduling model based on MSFLA 

4.1 Problem Description 

4.1.1Operating cost 

The optimal objective function of CCHP is the integrated minimum operation cost. 

min om grid fuel openf f f f f= + + +       (27) 

Where, fom is the cost of operation and maintenance, ffuel is the cost of fuel consumption, fgrid is the 

cost of power exchange with the grid, and fopen is the cost of opening and closing.  

(1) Operation and maintenance cost. 

,

1

( ) ( )
N

om om i i

i

f t K P t
=

=       (28) 

Where, ,om iK  and Pi represent the maintenance coefficient and output size (kW) of the ith 

microsource, respectively. 

(2) Fuel cost. 

1

( )1
( )

N
i

fuel ng ng

i i

P t
f t C V C

LHV =

= =      (29) 

Where, V represents the amount of natural gas consumed (m3), Cng refers to the price of natural 

gas (CNY /m3), LHV represents the low calorific value of natural gas, i and Pit and  represent the 

output of the ith microsource (kW) and the corresponding generation efficiency, respectively. 

(4) Electric power exchange cost. 

( ) ( ), ( ) 0
( )

( ) ( ), ( ) 0

b grid grid

g

s grid grid

C t P t P t
f t

C t P t P t

 
= 

 
    (30) 

Where Cb(t) and Cs(t) are the purchase price and sale price (CNY/kW) of the power grid at time 

T, respectively. Pgrid(t) is the interaction power (kW) with the grid at time t. Positive value means the 

power purchased from the side of the power grid by the micro grid, while negative value means the 

power sold by the micro grid.  

(5) Downtime cost. 

 
,

1

( ) ( ) (1 ( 1))
N

open i i i open

i

f t t t C 
=

=  − −     (31) 

Where, ( )i t  and ( 1)i t − are the switching state of the ith micro-source (micro-turbine or gas 

boiler) at the current moment and the previous moment respectively. 1 means turn on, 0 means turn 

off; ,i openC  represents the start-up cost (CNY) of the ith microsource. 

4.1.2 Constraints 
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Load balance constraint and operation characteristic constraint of each microsource are the 

main constraints considered in microgrid 

(1) Electric load balance. 

( ) ( ) ( ) ( ) ( )Lnet ec mt ps gridP t P t P t P t P t+ = + +      (32) 

( )LnetP t ， ( )ecP t ， ( )mtP t ， ( )psP t ， ( )gridP t  are net electric load, micro-turbine output, pumped 

storage output, electric refrigerator power consumption and power exchange with large power grid 

at time t, respectively. The net electric load is the difference between the total electric load and the 

wind-solar power, that is, ( ) ( ) ( ) ( )Lnet L WT PVP t P t P t P t= − − .  

(2) Cooling load balance. 

 , ( ) ( ) ( )ac cool et cQ t Q t Q t+ =        (33) 

Where, ( )cQ t  is the cooling load at time t, and , ( )ac coolQ t  and ( )etQ t  are the cooling power of 

absorption refrigerator and electric refrigerator at time t, respectively. 

(3) Thermal load balance. 

 ,( ) ( ) ( ) ( ) ( )mt rec ac in gb hs hQ t Q t Q t Q t Q t + + + =     (34) 

( )mtQ t ， , ( )ac inQ t ，and ( )gbQ t  are the flue gas waste heat power generated by the micro gas 

turbine machine , the heat consumption power of the absorption refrigerator and the heat generation 

power of the gas boiler at time t. ( )hsQ t  is the heat storage and release power of the heat storage 

device at time t. The heat release is positive and the heat storage is negative. ( )hQ t  is the thermal 

load at time t; rec  is the conversion efficiency of waste heat recovery unit. 

(4) Equipment output constraint. 

 min, max,( )i i iP P t P       (35) 

min,iP ， max,iP  represent the output upper and lower limits of equipment unit i, respectively. 

(5) Grid interaction power constraint. 

min max

grid grid gridP P P       (36) 

Where, min

gridP  and max

gridP  refer to the upper and lower limits of the maximum exchange power 

between the micro grid system and the large grid, respectively. 

(6) Equipment climbing constraints. 

( ) ( 1)

( 1) ( )

up

i i i

down

i i i

P t P t P

P t P t P

 − − 


− − 
     (37) 

(7) Initial and final balance constraint of energy storage. 

Cycle continuity of optimized operation of microgrid system and time of energy storage unit 

(pumped storage, heat storage tank). 

When segment coupling is considered, the initial and final energy storage of multi-period 

periodic scheduling needs to be consistent. 

 0 endE E=       (38) 

Where, E0 and Eend are energy storage at the beginning and end of cycle scheduling of energy 

storage devices, respectively. 

4.1.2 Constraint processing method 

The inequality constraints of climbing constraints and output upper and lower limits are 

combined as follows.  
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min, max,max( , ( 1) ) ( ) min( , ( 1) )down up

i i i i i i iP P t P P t P P t P− −   − +     (39) 

The equipment output update needs to be satisfied with Equation (40). When the constraint is 

not satisfied, the formula is adjusted as follows: 

min, min,

max, max,

max( , ( 1) ), ( ) max( , ( 1) )
( )

min( , ( 1) ), ( ) min( , ( 1) )

down down

i i i i i i i

i up up

i i i i i i i

P P t P P t P P t P
P t

P P t P P t P P t P

 − −  − −
= 

− +  − +

   (40) 

Where, ( )iP t  and ( 1)iP t −  represent the output of the ith equipment unit at the current 

moment and the previous moment, respectively. up

iP  and down

iP  represent the maximum increased 

power output and maximum decreased power output of equipment unit i in time period t. Micro gas 

turbine and gas boiler are mainly considered as equipment with climbing constraints in this paper. 

For the equipment without climbing constraint, but constrained by the output upper and lower 

limits, the formula is adjusted as follows. 

min, min,

min max,

max, max,

, ( )

( ) ( ), ( )

, ( )

i i i

i i i i

i i i

P P t P

P t P t P P t P

P P t P

 


=  
 

       (41) 

Considering the new objective function of energy storage constraints, take pumped storage 

power station as an example. 

0min new endf f E E= + −         (42) 

After the initial and final balance of the reservoir energy storage state in a pumped storage 

station is considered, the above equation can be modified as follows. 

, ,

1 1

min /
T T

new d t d g t g

t t

f f P P  
= =

= +  −         (43) 

Where, ,d tP  and ,g tP  are  the storage discharge power of pumped storage power station in 

time period t. d and g   represent the storage discharge efficiency of pumped storage station, 

respectively. 

 4.2 Shuffled Frog Leaping Algorithm  

Inspired by Shuffled Frog group Leaping and foraging behavior, a new Shuffled Frog 

Algorithm (SFLA) was proposed. SFLA's mathematical model can be described as follows. 

Assuming that the problem to be solved is a D dimensional vector, the initial P frogs are 

randomly generated within the feasible threshold. The location of the ith frog can be represented as 

1 2{ , ,..., }i i i iDx x x x= , the fitness function value of each individual is calculated and arranged in 

descending order according to size, the optimal fitness value of the current population is selected, 

and the corresponding individual gx  is recorded. Then the population is divided into M 

subpopulation groups, each subpopulation contains N individuals, that is, P=M×N, the rules of 

division is that the first frog is assigned to the first subgroup, the second is assigned to the second 

subgroup... The M frog is assigned to the M subgroup, the M+1 is assigned to the first subgroup, and 

so on until all the individuals were divided. 

Local search: The individuals with the best and worst adaptive values of each subpopulation 

are denoted as xb and xw respectively. At each iteration of the loop, the worst individual is updated in 

position. The update policy formula can be expressed as follows. 

( 1) () ( )

( 1) ( ) ( 1)

i b w

w w i

D t rand x x

x t x t D t

+ =  −


+ = + +
        (44) 
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Where, 
min max[ , ]iD D D  is the update step size for each jump, and rand() is the randomly 

generated number within the range of [0,1]. ( 1)wx t +  is the updated position of the individual.  

Global search: after a fixed number of local searches are completed, all subpopulations are 

remixed into a single population so that the various group information can be communicated 

to each other. In descending order of fitness, the subgroups are regrouped, and local searches 

continue until the termination condition is met. 

4.2.1 Flow of SFLA 

The implementation process of SFLA is generally divided into four steps: initialization, 

population grouping, local search within cluster group, and cluster group remixing. The specific 

process can be described as follows[27]. 

(1) Relevant parameters to initialize the population are input. 

(2) Sorting: According to the characteristics of solving the problem, the fitness value of each frog 

in the population was calculated, and all the individuals were sorted according to the fitness value. 

(3) Grouping: The population was divided into M subgroups according to the fitness value. 

Each subgroup contained N frogs. The optimal individual and the worst individual in each 

subgroup were recorded respectively. 

(4) Subgroup local search: the worst individual in the subgroup is updated according to 

formula (44), and the subgroup and the global optimal individual are also updated. 

(5) Judge whether the local search of subgroup reaches the maximum number of iterations, if 

not, jump to (4) to continue execution. 

(6) Subgroup remixing: all subpopulations are mixed into one population, all individuals are 

arranged according to fitness value, and the global optimal individual information is updated. 

(7) Whether the global maximum number of evolutionary iterations or convergence accuracy 

meets the requirements; if so, exit the algorithm; otherwise, return back to (3). 

4.2.2 Improved Shuffled Frog Leaping Algorithm (MSFLA) 

(1) Cauchy mutation operator 

Cauchy distribution is a kind of functional distribution commonly used in mathematical 

statistics and other fields. Its probability density distribution function can be written as 

follows[28-30]. 

2 2
( ) ,

( ( ) )
f x x

x



  
= −   

+ −
     (45) 

Where, when 0, 1 = =  is satisfied, it is called the standard cauchy distribution, denoted by 

C(0,1). 

When the traditional SFLA is iterated for many times, new individuals in the subgroup may fall 

into premature convergence. The variation of random Numbers obeying Cauchy distribution will 

produce large update step, which is helpful for the population to jump out of local extremum. In this 

way, the optimization performance in the larger solution space is better and the global searching 

ability of the algorithm is improved. The improved local update strategy can be written as follows. 

( 1) () ( ) (0,1)

( 1) ( ) ( 1)

i b w

w w i

D t rand x x C

x t x t D t

+ =  − 


+ = + +
     (46) 

(2) Adaptive variation. 

The idea of adaptive mutation is introduced into SFLA and can be expressed as follows. 

2 1

2

max

2

( ) ( ( ))
, ( )

, ( )

avg i

i avg

avgm

i avg

k k f f x
k f x f

f fp

k f x f

−  −
− 

−= 
 

    (47) 
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When the fitness value of an individual is better than the average fitness value, a lower 

mutation probability is assigned to protect the individual to enter the next iteration. On the contrary, 

if the fitness value of an individual is less than the average fitness value, the corresponding mutation 

probability is higher, and the individual can be eliminated. 

(3) Disturbance operation. 

If the diversity of the population is guaranteed, the global search capability is improved, and 

the individual updates are followed by another disturbance operation, which can be expressed as 

follows. 

 
, ,

(max( ) min( )) / 2

( ) ( ) 2 ()

j j

i j i j

r x x

x t x t r rand r

= −


= +   −
      (48) 

Where, r is the disturbance radius; xj is the jth dimension value of the population individual, xi,j 

is the jth dimension value of the ith individual of the population. 

4.3 MSFLA based CCHP microgrid scheduling model 

With the day-ahead economic minimization cost of CCHP as the objective function, the 

scheduling model was solved by MSFLA. The steps for optimal operation of the micro-grid can be 

expressed as follows. 

(1) Input data is read and initialized. Micro grid system and output limit to the number in 

various kinds of micro power supply, power system load demand, wind power and photovoltaic 

power generation forecasting data, each unit of initial state parameters (pumped storage reservoir 

storage state, micro gas turbine power generation, thermal energy storage condition, etc.), energy 

price information (time-sharing electricity, natural gas price), equipment performance parameter 

information, determine the scheduling to the total number of time T, set MSFLA parameters 

(child/total group scale, the number of iterations and mutation probability constant) are included.  

(2) The population is randomly initialized. According to the output limitation of each 

micro-source equipment, micro-turbine, pumped storage, heat storage tank and gas boiler are 

selected as decision variables, and the initial population individuals are randomly generated in the 

feasible region, and their positions are represented as a group of feasible scheduling plans. The 

output of the electric refrigerator, the output of the absorption refrigerator and the heat recovery 

power of waste heat can be determined by the balance constraint of the cold and heat power and the 

calculation of the decision variables. The interaction power with the grid can be calculated by load 

balancing constraints and decision variables. Fuel consumption, gas waste heat power of micro gas 

turbine and power consumption of refrigeration equipment can be calculated according to 

corresponding mathematical model and energy conversion coefficient. 

(3) Individuals of the population are modified by constraints. The individuals in the population 

who violate the constraints are adjusted, the decision variables are adjusted back to the feasible 

solution space, and the adjusted population is obtained. 

Equation (30) is used as the fitness function of algorithm optimization. Fitness values were 

calculated for each individual, and then all individuals were ranked in descending order according 

to fitness values. 

(5) According to the fitness value, the population was divided into M groups, each group 

containing N frogs, and the optimal and worst individuals in each subgroup were recorded 

respectively. 

(6) The worst individual in each subgroup is updated according to Equation (47). According to 

formula (44), individuals are subjected to mutation operations. If the fitness value of the individual 

after variation is better than that before, the replacement is carried out. Simultaneously the clipboard 

is updated (subgroup and globally optimal individual). 

(7) Judge whether subgroup search reaches the maximum iteration number of subgroups, if not, 

jump to (6) to continue execution. 
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(8) All subpopulations are mixed into one population, and all individuals are rearranged 

according to fitness value to update the global optimal individual information. 

(9) Check whether the global maximum number of evolutionary iterations or convergence 

accuracy meets the requirements, and if so, jump to the next step. Otherwise, skip step (5). 

(10) Global optimal value and corresponding decision variable value are output, output of each 

micro-source equipment is solved, and optimal scheduling scheme is obtained. 

5 Simulation 

 5.1 Photovoltaic power generation forecast 

The radial basis function (RBF) is selected, and setσ=0.1, C=0.5. The number of PSO population 

is set as 25, the initial output weight calculated by KELM is set as the initial position of the particle, 

the initial velocity of the particle is randomly selected in [0,1], and the particle dimension is the 

output weight dimension. Table 1 shows the evaluation indexes of the predicted results under 

different weather conditions including KELM, GA-KELM and PSO-KELM. 

Table 1 Models’ prediction and evaluation of different weather conditions 

Prediction 

algorithm 

Sunny Cloudy Runny 

RMSE MAPE RMSE MAPE RMSE MAPE 

KELM 0.17631 0.1011 0.60119 0.3328 0.29756 4.2544 

GA-KELM 0.16517 0.0535 0.52726 0.1822 0.29564 3.7162 

PSO-KELM 0.16376 0.0376 0.48986 0.1649 0.24274 3.714 

Figure 6 shows the comparison curve between the predicted value and the real value of 

photovoltaic output power under different prediction models in sunny days. In order to show the 

photovoltaic power generation prediction results of the three models, the relative error comparison 

between the predicted value and the true value is shown in Figure 7. 

 

Figure 6. Photovoltaic power generation prediction results under different prediction models 

 

Figure 7. Relative errors of PHOTOVOLTAIC power generation under different prediction models 
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It can be seen from Figure 6 that the photovoltaic prediction results of the three models are 

generally consistent with the actual values. However, the photovolatic prediction curve of 

GA-KELM in sunny days is superior to that of traditional KELM. In the three models, the predicted 

value of PSO-KELM is closer to the true value. It can be seen from Figure 7 that the prediction error 

of PSO-KELM is less than GA-KELM and KELM. 

5.2 Power prediction of electric load 

The historical electric load power, the corresponding meteorological information and the day 

type, calculated from March to May, 2015, are selected as the training and prediction model. The 

electric load power is selected from 0:00 to 23:00, and the time interval is 1h. According to the above 

analysis of affecting factors of load forecasting, load power, the day before the same time the day 

before the highest temperature, the lowest average temperature, average temperature, humidity, 

type index, two days before the load power at the same time, predict daily maximum temperature, 

minimum temperature, average temperature, average humidity and day type index are used as the 

prediction model of input; The output variable is the load power at the corresponding time of the 

predicted day. 

Figure 8 shows the prediction results of KELM, GA-KELM and PSO-KELM on the working-day. 

Figure 9 shows the relative error curves of the three prediction models for the load power prediction 

results. 

 
Figure 8. Comparison curve of load power prediction 

 
Figure 9. Comparison curve of relative error of load prediction power 

As can be seen from Figure 8, PSO-KELM load forecasting results are more accurate than 

GA-KELM and KELM, improving the global search capability. The reliability of the proposed 

method is verified. 

As can be seen from Figure 9, PSO-KELM prediction method has the smallest relative error at 

most times of a day, while KELM prediction model has the largest relative error. Therefore, 

PSO-KELM is a relatively better prediction model, with smaller relative error and higher accuracy. 

Table 2 shows the load forecasting results of the three forecasting models in working days. 

PSO-KELM prediction model has a good prediction effect on working day load. Taking into account 
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the difference in electrical load demand of different day types, PSO-KELM, GA-KELM and KELM 

were also used to predict the load of different day types such as weekends and holidays. Table 3 

shows the load forecasting results for different day types. 

Table 2 Prediction results of the three prediction models in working days 

Prediction 

algorithm 

MAPE RMSE MAE CC 

KELM 0.0285 8.2432 6.9744 0.9943 

GA-KELM 0.0189 5.3517 4.4157 0.9974 

PSO-KELM 0.0115 3.6756 2.6398 0.9981 

 

Table 3 Prediction performance evaluation of different day types by the three models 

Prediction 

algorithm 

Weekends May day holiday 

MAPE RMSE MAE CC MAPE RMSE MAE CC 

KELM 0.021 4.6258 3.5368 0.9852 0.0819 12.9458 12.1041 0.9479 

GA-KELM 0.0197 4.6237 3.2549 0.9855 0.0632 10.5152 9.2097 0.9588 

PSO-KELM 0.0192 4.5407 3.1737 0.9857 0.0506 9.1065 7.2219 0.9631 

As can be seen from the table 1, PSO-KELM has the best prediction effect and the highest 

accuracy. The reliability of the proposed PSO-KELM algorithm is verified.  

As can be seen from Table 3, Among the three prediction models, PSO-KELM has the best 

prediction effect for different day types, while KELM has the worst prediction accuracy. At the same 

time, it can be seen that different forecasting models have a good effect on the load forecasting of 

weekends and rest days, and a relatively poor accuracy on the Load forecasting of May day holidays. 

The main reason is that the electrical load on the rest day is similar to that on the working day and 

has its periodic change rule. On the one hand, holiday load is affected by various uncertain factors, 

such as human activities, and its variation regularity is poor. On the other hand, it is caused by the 

lack of data collection for this type in training samples and the insufficient extraction of sample 

characteristic values by the prediction model. 

5.3 Performance test of MSFLA 

In order to verify the performance of the proposed MSFLA, four test functions are selected for 

simulation verification.  

Table 4 Standard test functions 

Names Equation Domain Dimension theoretical 

value 

Sphere 2

1

n

i

i

f x
=

=  
[-100,100] 30 0 

Rastrigin 1
2

1

10 [ 10cos(2 )]
n

i i

i

f n x x
−

=

= + −  
[-5.12,5.12] 30 0 

Griewank 

1 1

1
cos( ) 1

4000

nn
i

i

i i

x
f x

i= =

= − +   
[-600,600] 30 0 

Schafferf7 1
2 2 2 2 2 2 0.1

1 1

1

(( ) (sin (50( ) ) 1))
n

i i i i

i

f x x x x
−

+ +

=

= + + +

. 

[-10,10] 30 0 

The four test functions are respectively measured by SFLA, PSO and MSFLA. The population 

size of the three algorithms and the total number of maximum iterations are set as 100 and 1000. 

Other parameters are: the size of SFLA and MSFLA subgroups is N=30, the number of iterations of 

the subgroup is 10, the MSFLA variation probability constant is k1 =0.01, k2 =0.1, the inertia weight of 
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PSO is w1 =0.9, w2 =0.4, and the learning factor is c1 = c2 =2. In order to reduce the random error in the 

simulation process and test the performance of the algorithm, the search times of each group of test 

functions are set as 20, and the average value of the operation results is taken. The simulation results 

are shown in Figure 10 and Table 5. 

Table 5 Comparison of simulation results of three algorithms 

Name Algorithm  Average value Standard deviation 

Sphere 

 

MSFLA 93.9759e-17 3.483e-17 

SFLA 7.7265e-11 1.561e-11 

PSO 5.1878e-06 1.189e-06 

Rastrigin 

 

MSFLA 1.189e-09 1.443e-15 

SFLA 8.55e-06 2.227e-06 

PSO 5.886e-04 2.177e-05 

Griewank MSFLA 8.437e-15 1.272e-15 

SFLA 8.75e-10 2.387e-10 

PSO 0.0197 0.0029 

Schafferf7 MSFLA 1.254e-09 1.406e-09 

SFLA 7.722e-06 2.9579e-06 

PSO 0.259 0.000542 

 

(a)Sphere 

 
(b)Rastrgin 
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(c)Griewank 

 
(d)Schafferf7 

Figure 10. Optimization curves of the test functions 

It can be seen from Figure 10 and Table 4 that the optimization results presented by the three 

algorithms are different. MSFLA is superior to SFLA and PSO in terms of average optimal value, 

optimal solution and standard deviation, which indicates that improved SFLA has higher 

optimization precision and better algorithm stability. 

5.4 Comprehensive energy optimization scheduling based on PSO-KELM and MSFLA 

In this paper, it is assumed that the rated power of the micro gas turbine (MT) is 100kW, the 

power generation efficiency is 0.4, the heat dissipation coefficient is 0.1. The equipment climbing and 

descending amount is 80kW, and the start-stop cost is 5 CNY. The total capacity of the pumped 

storage power station (PS) reservoir is 350kW. The maximum charge-discharge power is 50kW. The 

charge-discharge efficiency is 0.95, and the self-loss rate is 0.0025. Heat storage tank (HS) capacity is 

set to 300kW. Maximum heat storage and release power is 50kW. Heat storage efficiency is 0.8, and 

heat release efficiency is 0.9. Self-loss rate is set to 0.003. Absorption refrigerator (AC) refrigeration 

coefficient is 1.2, and heating coefficient is 0.8. The refrigeration coefficient of electric refrigerator (EC) 

is 4.3, and the maximum refrigeration power is 150kW. The maximum heat generation power of 

gas-fired boiler (GB) is 300kW, and the heat generation coefficient is 0.95. The climbing and 

descending amount of equipment is 100kW, and the start-stop cost is 5 yuan. The number of 

optimized cycles is T=24. 

The cost coefficient of equipment operation and maintenance is shown in Table 6. The 

time-segment energy information prices are shown in Table 7. 
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Table 6 Maintenance coefficient of equipment operation 

Equipment PS GB MT HS AC EC 

Maintenance 

cost(CNY/kWh) 

0.005 0.04 0.06 0.001 0.008 0.0097 

Table 7 Information table on energy prices 

Time price of power 

purchase(CNY/kWh) 

price of sell 

electricity(CNY/kWh) 

price of natural 

gas(CNY/m3) 

Valley period 0.443 0.31 2.05 

Flat period 0.66 0.506 2.05 

Peak period 1.314 0.92 2.05 

Due to the difference in load demand of cold, heat and electricity in summer and winter, there 

are different requirements for optimal dispatching of CCHP micro-grid. The typical days in summer 

and winter are analysed respectively. The proposed PSO-KELM algorithm is used to predict the 

cooling, heating and wind power in the short term. Figure 11 shows the forecast data of cooling, 

heating and electric load demand in two typical days in summer and winter, and Figure 12 shows 

the predicted power change curves of wind power generation and photovoltaic power generation in 

summer and winter. 

 
(a)Typical load demand in summer 

 
(b)Typical daily load demand in winter 

Figure 11. Cooling, heating and electricity load demand curve in a typical day in summer and winter 
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(a)Typical solar power generation in summer 

 

 
(b)Typical solar power in winter 

Figure 12. The predicted power curve of wind-solar power generation in a typical day in summer and winter 

5.4.1 Simulation of typical daily optimal scheduling in summer 

In summer, the optimized scheduling results of cooling, heating and electricity loads are shown 

in Figure 13, Figure 14 and Figure 15, respectively. 

 

Figure13. Typical summer - equilibrium curve 
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Figure 14. Typical diurnal cold equilibrium curve in summer 

 

 

Figure 15. Typical daily heat balance curve in summer 

It can be seen from the electric load balance dispatching curve in Figure 13 that, in order to 

make full use of wind power and photovoltaic power generation, new energy is absorbed to the 

maximum extent. Net electric load refers to the difference between the predicted electric load and 

the wind output at the corresponding time. 

From 23:00 to 7:59 in the valley period, power is purchased from the large grid to drive the air 

conditioning refrigerator for refrigeration to meet the cooling load demand. The peer pumped the 

energy to store the electricity in the valley period and transfer it to the peak period for utilization. At 

the end of the 7th period, the pumped storage power station reaches the maximum energy storage 

state. 

During peak hours of 8:00-13:59 and 18:00-20:59, the side purchase price of power grid is 

relatively high. The pumped storage power station operates with maximum output, and the 

remaining power shortage is made up by the micro-turbine. In this period, the power generation 

cost of the micro-gas turbine is less than the electricity selling cost of the grid. Therefore, when the 

pumped storage energy and the micro-gas turbine jointly generate electricity to meet the system's 

electrical load demand, the micro-gas turbine runs at full capacity and sells the remaining electricity 

to the external network to earn profits. The pumped storage station discharges at the end of 13:00 

and 20:00, and the reservoir energy storage reaches the lower limit. 

During the peacetime period from 14:00 to 18:59, the gas-fired generator works at full capacity 

to meet the electrical load demand of the system, and the insufficient part purchases electricity from 

the grid. At the same time, in this stage, the maximum charging power is used for pumping and 

storing electricity to prepare energy storage for discharging in the next peak period. 

By means of pumped storage, the surplus or low-price electric energy in the valley period is 

converted and stored and released in the peak period. In this way, the load demand is shifted, the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2020                   doi:10.20944/preprints202007.0233.v1

https://doi.org/10.20944/preprints202007.0233.v1


 25 of 30 

 

power supply cost in peak period is reduced, and the overall economy of the micro-grid system is 

improved. 

Figure 14 and Figure 15 are used to analyse the cold and heat energy balance of the cold-heat 

and power supply micro-grid. In summer, the demand for cooling load is strong, while the demand 

for heating load is relatively small. In the period of low electricity price, the cooling load of the 

system is satisfied by electric refrigeration and air conditioning, and the hot load is satisfied by 

micro-gas turbine generating power, without gas boiler output. In peacetime period from 14:00 to 

18:59, the cooling capacity of electric refrigeration air conditioning increased. The flue gas waste heat 

generated by the micro-turbine in ordinary times is stored by the heat storage device and released 

and utilized in the evening peak period to reduce the comprehensive economic cost of the system. At 

23:00 in the valley, due to the decrease of cold and hot loads and the influence of off-peak electricity 

price, the micro-turbine is in the state of shutdown. The cooling load is satisfied by the refrigeration 

air conditioning, and the hot water load is balanced by the heat release of the heat storage device. 

Figure16 shows the change curve of the energy storage state of reservoirs in pumped storage 

power stations. The operating costs of the cooling, heating and power co-supply microgrid system 

are calculated and compared with the cost of the traditional co-supply microgrid system. The results 

are shown in Table 8 and Figure 17. 

 

Figure 16. Change curve of reservoir energy storage state in pumped storage power station 

 

Table 8 Comparison of operating cost between cold, heat and power supply and power supply 

Energy method fom(CNY) ffuel(CNY) fgrid(CNY) fopen(CNY) total(CNY) 

Combined supply of 

cooling 

121.47 1359.67 208.91 10 1700.05 

Separate power 72.16 229.18 2522.68 10 2834.02 

Cost saving -49.31 -1130.49 2313.77 0 1133.97 
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Figure 17. The cost comparison between the joint supply system and the sub - supply system in 

summary 

It can be seen from Figure 16 that the pumped storage power station has two discharge storage 

processes in the whole dispatching cycle: power storage in the time periods of 1:00-7:59 and 

15:00-17:59, discharging in the time periods of 8:00-13:59 and 18:00-21:59, and no operation in the rest 

periods.  

As can be seen from the comparison of cost data in Table 9, compared with the traditional 

supply division system, the power purchase cost of CCHP micro-grid is reduced by 91.7%, and the 

comprehensive operation cost is reduced by 40%.  

As can be seen from Figure 17, the total operating cost of CCHP system was slightly higher than 

that of the traditional supply distribution method in the flat-valley period. This is because in the 

flat-valley period, in addition to the cold, hot and electric load needs to be met, additional electricity 

needs to be purchased for energy storage. In the peak period, the operating cost of the supply mode 

is much higher than that of the supply mode. This is because the cost of CCHP generation is less than 

the selling price of the power grid, so after the pumped storage power generation and the output of 

the micro gas turbine meet the electrical balance of the system, the cost is reduced by selling the 

remaining power, and the cost is further reduced by recovering the waste heat discharged by the 

micro gas turbine under the full operating condition for refrigeration. In the case of split supply, 

electricity is purchased from the grid at a higher price to meet the electricity load and cooling load, 

which indicates that CCHP has a high economic benefit in the peak period. 

5.4.2 Typical daily optimal scheduling in winter 

The dispatching results of electrical load balance and thermal load balance of the CCHP 

microgrid on a typical day in winter are shown in Figure 18 and 19. 

 

Figure 18. Equilibrium curve of typical winter conditions 
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Figure 19. Typical daily heat balance curve in winter 

It can be seen from Figure 18 that compared with summer, the demand for heat energy in 

winter is strong, and the cooling load demand is negligible. As the core of cogeneration system, 

micro gas turbine is the main component of thermal load response. During the period from 00:00 to 

7:59, the heat load demand is small, and the waste heat recovery device absorbs the waste heat from 

the flue gas generated during the generation process of the micro-gas turbine. When the heat 

demand is met, the output of the micro gas turbine is increased considering the characteristics of 

translational load of the storage tank, and the excess heat is stored in the storage tank. During the 

period from 8:00 to 23:59, with the increase of thermal load demand, the output of the micro gas 

turbine is increased and reaches full capacity. In this case, the heat output from the waste heat 

recovery unit cannot meet the heat load balance, and the heat release from the storage tank is first 

filled. When the waste heat recovery unit and the heat storage tank are not balanced, the heat load of 

the system is supplemented by the heating of the gas-fired boiler. 

It can be seen from FIG. 19 that the generation of micro-turbine is mainly determined by the 

thermal load demand balance. In the valley period, although the power generation cost of the 

micro-gas turbine is higher than the power purchase cost, the operation cost of using the micro-gas 

turbine to generate power to meet both the heat and power needs is lower than that of the supply 

method due to the high thermal load demand. Between 0:00 and 5:00, when the micro-turbine meets 

the thermal load demand and there is a surplus, the surplus electricity is used for pumped storage. 

During peak hours, the micro gas turbine reaches full capacity. Stimulated by the selling price of the 

power grid, the combined output of pumped storage and micro gas turbine not only meets the 

electricity demand, but also sells more power generation to the large power grid, thus reducing the 

operating cost. 

 

Figure 20. Change curve of reservoir energy storage state in pumped storage power station 
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Figure 20 shows the change process of the reservoir energy storage state on the pumped storage 

power station. The comparison results of operating costs between the CCHP microgrid and the 

traditional supply distribution grid are shown in Table 9 and Figure 21. 

Table 9. Comparison of operating costs of cold, heat and power supply combined with supply in winter 

Energy method fom(CNY) ffuel(CNY) fgrid(CNY) fopen(CNY) total(CNY) 

Combined supply of 

cooling 

186.59 2336.15 -247.94 15 2289.8 

Separate power 174.36 1525.69 1821.96 10 3532.01 

Cost saving -12.23 -810.46 2069.9 -5 1242.21 

 

Figure 21. The cost comparison between the joint supply system and the sub-supply system in winter 

It can be seen in Table 9, compared with the traditional supply division system, although the 

cost of operation and maintenance and fuel consumption have been increased, the integrated 

operation cost of the CCHP microgrid in winter has been reduced by 35.2%.  

Figure 21 shows the comparison chart of the operating costs of the two modes in different 

periods. During the flat-valley period, the micro-turbine can not only meet the demand of heat and 

electricity load, but also store the remaining heat and electricity, so the total operation cost is slightly 

higher than the traditional distribution method. In the peak period, the operation cost of the system 

is greatly reduced by using the self-generated electricity and the discharge of energy storage. In the 

distribution mode, electricity is purchased from the grid at a higher price to meet the electrical load 

demand, and a single gas-fired boiler consumes gas to provide the thermal response of the system. 

Therefore, the operating cost of the supply mode is much higher than that of the joint supply mode. 

This shows that the combined heat and power micro grid system can make full use of energy and 

make the overall economic benefit value higher.  

6 Conclusions 

The key factors that influence the PV generation and load power prediction are analyzed to 

determine the input and output variables of the corresponding prediction model. KELM parameter 

is optimized by PSO algorithm to improve KELM prediction accuracy. PV and load power are 

predicted by PSO-KELM, GA-KELM and KELM respectively, which proves that PSO-KELM is 

effective and the proposed method has better prediction accuracy. Due to SFLA is easy to fall into 

local optimal, Cauchy variation is introduced, and individuals in the population are adaptively 

mutated, thus the population diversity is increased.  Compared with the traditional SFLA, the 

simulation test shows that MSFLA improves the accuracy and convergence speed.  

The minimization of the sum of equipment operation and maintenance costs, fuel costs, 

downtime costs, and power exchange costs is the objective function for the economic operation of 

CCHP microgrid. An improved shuffled frog leaping algorithm is used to optimize the scheduling 
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model in the grid-connected operation state. The coordinated output of each micro-power supply 

and energy storage device in summer and winter is simulated. The scheduling scheme is analysed, 

and it was verified that the CCHP microgrid could obtain better economic benefits, and the 

effectiveness and feasibility of the improved shuffled frog leaping algorithm in CCHP scheduling 

are also verified. 
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