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Abstract: Worldwide, about one in eight people live in a slum. Empirical studies based on satellite
data have identified that the size distributions of this type of settlement are similar in different cities
of the Global South. Based on this result, a model was developed that describes the formation of
slums with a Turing mechanism, in which patterns are created by diffusion-driven instability and the
inherent characteristic length of the system is independent of boundary conditions. It has not yet
been taken into account that Turing patterns usually arrange themselves regularly, while slums are
often found in clusters. Therefore, this study investigates to what extent a common reaction kinetics
for Turing models can be adapted to represent a locally concentrated arrangement of objects and to
adapt the size distribution of the objects to the empirical results. Based on a summary of the literature
and two numerical studies, it can be shown that although it is possible to adapt the model to the
empirical data, this also increases the complexity of the model.
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1. Introduction

The United Nations estimate that around 1 billion people worldwide live in slums [1]. In recent
years, the number of analyses of these settlement types has been steadily increasing [2–4]. Often the
studies are based on satellite data, since their use allows a globally comparability. Since satellite data
can be used to determine only the physical morphology of these settlements, conclusions about the
social group living in them can only be drawn indirectly [5]. Therefore, this settlements are called
morphological slums. Morphological slums are characterized by a high settlement density and organic,
complex settlement structures. The buildings themselves are small relative to the buildings in the
formal settlements in their surroundings and are characterized by low height. Friesen et al. [6,7]
analyse the size distribution of morphological slums and find that in contrast to cities within a country,
slums in eight different cities in the Global South show a similar size distribution with a similar
geometric mean. This leads to the conclusion that regardless of culture, country and continent, a
typical slum size of 0.01 km2 exists. This corresponds to an edge length of 100 m for a square area. The
size of most slums is between 10−3 km2 and 10−1 km2 and thus shows no dependence on the total
number of morphological slums within the city. This information can be used as typical scale in other
scientific domains such as infrastructural planning [8] or epidemiological analyses [9,10].

This studies on the similar size of slums were recently taken up by Pelz et al. [11] who put forward
the hypothesis that the development of slums could be described by a Turing model. This is due to
the fact, that a characteristic quantity can be observed in both Turing patterns and slums. Another
motivation for this hypothesis is the work of Theraulaz et al. [12], who show that Turing patterns are
also formed by higher organisms.

Pelz et al. [11] propose the thesis that the formation of slums results from the interaction of two
social groups with different characteristics. The interaction of both groups is described by two coupled
reaction diffusion (RD) differential equations, each of which represents a social group. The schematic
division of the population into two groups, differing mainly in their mobility, is based on their income.
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The main thesis is that these different mobilities lead to an instability of the equations, resulting in
patterns with a similar size.

While the instability predicted by the model generates structures of the same size and distance,
the sizes of the settlements in slums are similar, but the distances between them vary considerably
(Figure 1).

Figure 1. Qualitative visual comparison of slum patterns (a), [13] and simulated Turing patterns (b).

Comparing the pattern formation of slums 1a with the Turing patterns in Figure 1b, clear
differences are already noticeable visually. Besides shape and size, the slums show an arrangement in
which certain areas of the city are not covered with slums. In previous studies it was shown that slums
are arranged in clusters [14]. Hartig et al. [15] confirms that and show a tendency towards random
spatially distribution of slums within the clusters. Therefore, in this thesis we investigate the question
whether it is possible to map the clustering we see in the empirical data with RD equations by varying
the reaction kinetics spatially. Furthermore, it can be seen that the slums have a wider dispersion in the
size distribution than the patterns in the RD equations. This aspect is also quantified and discussed in
this paper.

To analyse these topics, the paper is structured in the following way: First, we shortly present
the model of Pelz et al. [11] (sec. 2.1). Afterwards, we present methods from the literature, dealing
with pattern formation in RD equations for inhomogeneous parameters (sec. 2.2). In a next step we
perform two parameter studies in order to quantify the relationship between the variing parameters
(reaction (sec. 3) and diffusion parameter (sec. 4)) and the resulting patterns. While the first investgates
the possibility to impliment clustering in the RD model, the second investigates the width of the size
distribution. We use the well-known approach of Schnakenberg, one of the simplest equations leading
to Turing patterns [16]. We then discuss the results in each section and finally conclude (sec. 5) our
paper.

2. Model and Methods

In this section, we shortly recapitulate the model of Pelz et al., present concepts from literature,
were inhomogeneous parameters were investigated and show the ideas and methods, we pursue in
this paper.

2.1. Model by Pelz et al.

In their work, Pelz et al. [11] describe the formation of slums as an interaction of two social groups
by two coupled differential equations. The equations in differential form are as follows:
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∂ũ1

∂t̃
= ÛR f1(u1, u2) + D1∆ũ1,

∂ũ2

∂t̃
= ÛR f2(u1, u2) + D2∆ũ2. (1)

ũi describes the density fields of both population groups (i = 1 represent “rich”, i = 2 represent
“poor”), Û the popultion density, Di the diffusion coefficients, R has the dimenson of a rate and fi are
the coupled reaction rates.

They bring the equation into a dimensionless form by using the following parameters t := Rt̃,
xj := x̃j

√
R/D1, ui := ũi/Û yielding to

∂ui
∂t

= fi(uj) + dij
∂2uj

∂xk∂xk
,
(
dij
)
=

(
1 0
0 d

)
(2)

with d := D2/D1. As the study was presented by Pelz et al. on a conceptual level, the parameters
presented so far were sufficient. In this paper an additional dimensionless parameter γ = l2R/D1 is
introduced. This quantity is the shape parameter γ and is necessary if calculations or simulations are
performed on a limited area of length l.

∂ui
∂t

= γ fi(uj) + dij
∂2uj

∂xk∂xk
(3)

To identify the the conditions, where Turing pattern occur, a linear stability analysis with the
following approach δuj = R[δûj exp(σt + ikkxk)] is conducted, leading to the following eigenvalue
problem:

(σδij − bij)δûj = 0, bij := γaij − k2dij (4)

with the Jacobian aij := ∂ fi/∂uj, the Kronecker delta δij, the eigenvalue σ and the Euclidian length
k =
√

kiki of the wave vector ki. A solution to the eigenvalue problem exists, if

det (σδij − bij) = 0 (5)

This results in the following dispersion relation:

σ1,2 =
1
2

bii ±
√

b2
ii − 4 det (bij) (6)

For a state stable in the absence of diffusion to become unstable, the following two conditions must be
met: (i)R(σ) < 0, if dij = 0 and (ii) for at least one k 6= 0 the real part of σ has to be positiveR(σ) > 0.
This is given under the following conditions, where tr is the trace of the matrix bi j:

− tr(bij) > 0 (7)

detbij > 0 (8)

da11 + a22 > 0 (9)
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(da11 + a22)
2

4d
> det(ai j) (10)

If these conditions are fulfilled, which can be achieved as shown here by an increasing value of
the diffusion coefficient. If one understands the different diffusion coefficients as different mobilities of
the two social groups to move within the city, this characteristic can be understood as a cause for the
formation of slums.

2.2. Literature review on pattern formation with inhomogenous parameters

With homogeneous parameters in the Turing space, if the reaction area is sufficiently large for
the unstable wavelengths, Turing patterns are formed in the entire reaction area with homogeneous
wavelengths. This means in particular that after convergence the whole area is covered by patterns.
Which of the possible unstable wavelengths emerges is determined by mode selection [17]. The
assumption of locally homogeneous parameters is naturally not always correct in real systems.
Especially Maini deals with the question of the effects of inhomogeneous parameters on Turing
patterns. In systems with parameter fluctuations, the height, width and distance of concentration
peaks can be influenced. Page, Maini and Monk [18] show both by a disturbance calculation, as well as
numerically on a Gierer-Meinhardt system, that a local parameter variation leads to complex pattern
formation. For very small d = D2/D1 applies,

• expansion of the acitvator peaks ∝
√

D1
• distance between the acitvator peaks ∝

√
D2

• height of the activator peaks ∝
√

D2/D1

Variing the parameters with a wavelength, the wavelength has an influence on the emerging
wavelengths of the system. If the wavelengths of variation are much larger than the natural wavelength
of the RD system, then the resulting pattern has the natural wavelength with an amplitude modulation
in the amount of the parameter variation. If the wavelength of the fluctuations is smaller than the
wavelength of the RD system, then only harmonics of the parameter variation appear [18].

With locally varying parameters, however, not only the patterns change. Besides dynamic
patterns that appear [18], the structure of the underlying mechanisms is also affected. Benson, Maini
and Sherratt [19] show that the bifurcation structure of Turing patterns is degenerated at homogeneous
parameters. For homogeneous parameters there is only one bifurcation point at which the system
changes from a homogeneous state to a state with pattern formation. In contrast, the bifurcation
structure is more complicated for location-dependent parameters. Using a perturbation method, the
authors show that a small local variation of diffusion coefficients is sufficient to excite secondary
side branches of the Turing bifurcation. At first, stable stripe patterns are formed, which change
into stable dot patterns. Besides the splitting of the bifurcation with inhomogeneous parameters, the
Turing bifurcation also loses Space may have its meaning. Jumps in kinetic parameters lead to pattern
formation outside the Turing space, as shown by Page, Maini and Monk [20]. On both sides of the
discontinuity, the system shows locally restricted pattern formation, even if the parameters are outside
the Turing space. The amplitudes become smaller with increasing distance from the discontinuity.
This initially counterintuitive result can be better understood if one considers that the Turing space
is derived under the condition of homogeneous parameters. Such locally restricted patterns are not
only provoked by parameter jumps, but can also occur in systems with different boundary conditions
[21]. Not always jumps lead to an extension of the Turing space. Using an analytical method, Benson,
Sherratt and Maini show that with piecewise constant parameters patterns occur which are restricted
to a part of the considered area. However, this behavior is due to the fact that the diffusion coefficient
on one side is greater than than the critical diffusion coefficient for a homogeneous area [22].
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2.3. Framework and reaction kinetics

As discussed in the literature review, there are different ways to change the pattern formation in
RD systems. With regard to our application we investigate two different questions:

1. Can the cluster formation observed in slum systems be implied by spatial variation of the reaction
kinetics in RD equations?

2. Can the width of the size distribution be changed by spatial variation of the diffusion coefficients?

To answer these questions, we first have to introduce reaction kinetics. There are many different
reaction kinetics known in the literature (cf. [23]), probably the simplest is the one of Schnakenberg
[16]. The two coupled reaction terms have the following form:

f1(u1, u2) = a− u1 + u2
1u2

f2(u1, u2) = b− u2
1u2. (11)

These reaction kinetics will be integrated in eq. 2 and the resulting system is analysed in the
follwing sections.

3. Analysis of spatial varying reaction coefficients

Turing patterns result from instability. Since every point in an area is unstable, when the inital
conditions are homogenous, there is no preference for certain space points at the beginning. Initial
condition does not ensure a spatially limited arrangement of concentration peaks when the patterns
converge, because, for example, there is no attractive field between concentration peaks. This can
impressivly be shown in Figure 2, where starting from clustered inital conditions and spatially
homgeneous parameters, the pattern merge into a homogeneously arranged pattern.

Figure 2. Qualitative illustration of a Schnakenberg system with clusters as initial condition and
homogeneous parameters. Initial condition (a) t = 0, (b) t = 0.16t = tend, (c) t = t = 0.27tend and end
(d) t = tend .

To achieve this symmetry and to integrate the results of the data analysis into the model, could
two methods can be identified by the literature search (see Sec. 2.1):

1. restriction of instability to a specific area by areas with parameters in Turing space and areas
with parameters outside the Turing space.

2. local pattern formation outside the Turing space by jumping in the parameter.

If the instability is limited to a certain area, Turing patterns are created specifically in a certain sub-area,
where the parameters lie within the Turing space. Another possibility is a jump in the parameters. A
jump in parameters may also create patterns outside the Turing space. This is possible, because with
the derivation of the conditions for pattern formation (sec. 2.1) a homogeneous system is assumed. A
jump in the parameters means inhomogeneity and the conditions generally no longer apply.
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For the second method, due to a lack of knowledge about the parameter range, with the local
pattern formation occurs through a parameter jump, a parameter study required. In the parameter
study, both methods can easily be tried out. Numerical simulations are used as a method. For
simulation the program FlexPDE from PDE Solutions Inc. in version 6.50n/W64 is used. It is a Finite
element program (FEM program) for the solution of partial, time-dependent Differential equations.
Meshing takes place automatically and is performed during the solution process adapted. The fineness
of the mesh can be determined by a budget of mesh nodes.

3.1. Parameter study

First of all, a parameter study is conducted to identify the region of parameters in which local
limited Turing patterns occur due to parameter jumps. The kinetics parameter b is initially set arbitrarily
to b = 0.5. The Turing space then looks as shown in Figure 3.

Figure 3. Turing space (hatched), area with unstable kinetics without diffusion (crosshatched) for
Schnakenberg kinetics with fixed parameter b = 0.5.

There will be a jump in the kinetics Parameter a examined. The reaction area is divided into two
subareas in which all parameters are equal, exept a (Fig. 4a). The Turing space as well as the area above
it is defined with of different numbers of points are covered.

With initial parameter studies, which are not documented here, the parameter range of a, d and
the step height are limited and it is ensured that the resulting patterns are largely converged out
after the break-off time. In these studies it has been found that the crosshatched area in Figure 3,
where the kinetics are unstable, is not a useful parameter range for simulations. Patterns do not arise
there. In the restricted parameter range, 100 simulations are performed, where the parameters a and
d were varied as shown in Figure 4b. The simulation time for each simulation is t = 50, the size
parameter γ = 70, the boundary conditions are no-flux boundary conditions, the initial conditions are
the stationary solution of the kinetics where the component u1 is randomly increased by 1 % by the
stationary solution u1,0 = a + b is varied. Since the components u1 and u2 are inverse, in the following
only the component u1 is evaluated.
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Figure 4. (a) Setup of the simulation area to investigate the influence of a jump of kinetic parameter a
by m. (b) Parameter study in the Turing Room with 100 points. The points are examined parameter
sets. Shown is the kinetics parameter left of the jump, a1. The value to the right of the jump is always
a2 = a1 + 0.05, the parameter b = 0.5. The results of the parameter study are coded as follows: Turing
pattern in the whole area ( ), Turing pattern in the left half (•), no pattern (◦), localized stripes (+),
localized points (*). (c) (i) Turing pattern on both sides of the jump (a1 = 0.2, d = 80.5), (ii) no Turing
pattern, just the concentraion difference due to the jump (a1 = 0.2, d = 1), (iii) Turing pattern on the left
side of the jump with parameters in the Turing space. No pattern on the right side of the jump, since
parameter is outside of the Turing space (a1 = 0.2, d = 18), (iv) stripe pattern, parameters outside of
the Turing space (a1 = 0.3, d = 34.5.5) and (v) Turing pattern left of the jump with parameters outside
of the Turing space (a1 = 0.3667, d = 100.5). The edgy patterns on the left of (c,v) are the result of
meshing, as the number of nodes is limited and the main part is used to map the jump.

In the results, five basically different solutions are observed, which are qualitatively different and
can be distinguished by the resulting patterns and the position of the parameters in space:

1. dot pattern in the whole area. With this result the parameters are all in the Turing space. As
expected, Turing patterns are created. Optically there is no difference in the distance and size of
the points between the halves of the simulation space.

2. no patterns on either side. Here all parameters are outside the Turing space. As expected, no
patterns are created.

3. dot pattern in one half. In this case the parameters left of the jump are inside the Turing space, the
parameters right of the jump are outside. Therefore patterns are concentrated in one half of the
simulation space.

4. stripe patterns that become smaller with distance from the jump. The parameters are outside the Turing
space. Stripes are created, which disappear with increasing distance from the jump. The further
away the parameters are from Turing space, the less pronounced the stripes are.
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5. dot patterns in one half, which become smaller with distance from the jump. The parameters are outside
the Turing space here too. But there are dot-like patterns that disappear with distance from the
jump.

In principle, the results found in the parameter study correspond to results from [20] and [22].
Two methods can be used to create spatially limited Turing patterns will be. On the one hand, by
limiting the instability to one side locally restricted (case 3). On the other hand, excited by a parameter
jump, local limited Turing-pattern occur outside of Turing space (here case 4 and 5). It can also be
shown, that in the system with Schnakenberg kinetics in the chosen parameter range these patterns
appear as points only in the surrounding of the Turing space. (see Figure 4b). At a greater distance
from the Turing space locally limited stripes are formed, which decrease in amplitude with distance.
This behaviour shows parallels to the results from [19]. In this thesis a changed bifurcation structure is
observed by non-constant parameters.

3.2. Influence of shape

The generic investigations of the previous section are a first step to illustrate cluster formation
with RD equations. In a further step the influence of the shape of a jump is to be considered. For this
purpose, a polygon is defined, with the jump running transverse to its edge.

Figure 5. Simulation of a jump in a with a course transverse to polygon (dashed). Parameters:
a1 = 0.4, a2 = 0.45, d = 133.5, b = 0.5, γ = 70, t = 100.

The pattern formation starts at about 10% of the total simulation time. The first Concentration
peaks occur at the corners. In the course of time these migrate outwards and other spikes appear
in between. As can be seen in Figure 5, the but not all points outside the polygon. Altogether the
concentration peaks in the shape of the polygon.

3.3. Discussion

With the parameter study it can be shown that, as described in the literature, local pattern
formation by jump excitation also occurs outside the Turing space. This is possible, because due to the
parameter jump the conditions for the derivation of the Turing space are no longer valid. Within the
Turing space, as expected, pattern formation occurs in the whole area. A second form of local pattern
formation also occurs in the results if the parameters on one side of the jump in the Turing space, but
on the other hand outside.

The patterns are locally limited to the side with the smaller parameter, here so left of the jump.
Patterns of dots do not occur everywhere in the parameter space, but mainly at the border to the Turing
area. Stripes appear also in larger distance to the border, which weaken considerably with distance.
Individual results indicate that the height of the step height increases the extent of the local limited
pattern increases. However, the parameter studies are not comprehensive, since neither the influence
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of parameters b and γ, nor any other parameters than a and d with a larger parameter range have been
investigated, but represent a possible solution in principle.

The patterns that are created by a jump in a kinetics parameter are induced, but do not tend to
form natural clusters, but only to local pattern formation around the jump. There is no attraction
between the concentration peaks, which leads to clustering. Clustering with regard to the total reaction
area can therefore only be created by a prepattern in the form of a jump. The shape of the prepattern
determines the quality of the model. To adapt the resulting patterns to real data, the results of previous
analysises [15] can serve as a basis for a prepattern. They show that a characteristic cluster size for
slums, which varies from city to city which is in the order of 103 m. The cluster size can be set in the
model to different ways to bring the model in line with reality bring.

A second method could be to use the characteristic cluster size to set up models only within
clusters, that is, to limit the validity of the model to the cluster size. Both methods require prior
knowledge in the form of pre-patterns or a validity range and therefore take away the simplicity of a
few parameters from the model.

However, Turing has also described that the analytically manageable case of pattern formation
from the homogeneous initial state can only be the exception and not the rule "Most of an organism,
most of the time, is developing from one pattern to another, rather than from homogeneity into a pattern." [24]
This statement is also valid for the city system, because geography, history of the city, culture and
the surrounding area influence the respective picture of a city. A slum model must, to be plausible,
certainly have some of these influences image. A prepattern is a way to do this without using the
model of the RD equations to change things.

4. Analysis of spatial variation of diffusion coefficients

Homogeneous parameters result in a so-called mode selection where an unstable wavelength
prevails in the pattern. For example, patterns like the one shown in Figure 6a are created, where
the pattern shows a homogeneous wavelength. The size distribution of the resulting patterns with
homogeneous parameters (Figure 6a) is shown in Figure 6b. As expected, it is limited to a small area
and therefore its shape does not show big similarities with the size distribution of slums in cities, like
the one shown in Figure 6d for the city of Dhaka, Bangladesh (Figure 6c).
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Figure 6. (a) Resulting pattern by homogeneous parameters (a = 0.2, b = 1, d = 50, γ = 70, t = 50). (b)
Size distribution of concentration peaks from (a) with a threshold of 2. (c) Empirical spatial pattern of
the slums of Dhaka (2010) from [13]. d) Size distribution of (c).

Page, Maini et al. show that especially locally varying parameters lead to a modulated wavelength
in the patterns [18]. Therefore, in the following the influence of locally monotonically varying diffusion
coefficients will be investigated. As described in section 2.2, there is a relationship between the
wavelength and the resulting pattern size. Influencing the wavelength therefore also leads to a wider
size distribution.

4.1. Parameter study

However, RD-Eq. 3 cannot be used to represent locally varying diffusion coefficients, but must be
derived from the more general form. In general, the derivations for the Turing space are no longer
valid. If one assumes a system which is undimensioned except for the diffusion coefficients, then the
initial equation becomes

∂u1

∂t
= ∇ · D1(x1, x2)∇u1 + γ(a− u1 + u2

1u2)

∂u2

∂t
= ∇ · D2(x1, x2)∇u2 + γ(b− u2

1u2). (12)

To de-size eq. 12, Di(x1) is split into a constant mean diffusion coefficient D̂i and a
location-dependent function gi(x1). The mean diffusion coefficients are then undimensioned in
the conventional way. This results in

∂u1

∂t
= ∇ · g1(x1, x2)∇u1 + γ(a− u1 + u2

1u2)

∂u2

∂t
= d∇ · g2(x1, x2)∇u2 + γ(b− u2

1u2). (13)
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Eq. 13 is used as the basis for the simulations in this chapter, with gi(x1) being specified in more
detail. Jumps for mapping for size distributions with varying diffusion coefficients are not advisable,
since many jumps would be necessary for a size distribution. This would involve very long calculation
times and the model would not be numerically practicable. In the following, therefore, the influence
of the wavelength of the Turing patterns by means of the local dependence of parameters on smooth
functions is analysed.

4.2. Spatial variation of diffusion

In order to find the connection between the change in diffusion coefficients over the location as
well as the size of the resulting patterns, gi(x1, x2) is first defined as a linear function. A rectangular
area is defined on the equation 13 with

gi(x1, x2) := 1 + mix1 (14)

depends on a direction in space. The slope parameter mi is set equal to zero or as a positive
number, depending on whether the diffusion coefficient of u1 or u2 is to be varied. The parameters for
all investigations are a = 0.2, b = 1, d = 50, γ = 70, t = 50. The initial conditions are the homogeneous
initial state, where u1, 0 is randomly varied by 1 %. The threshold for the simulation is 10−4 for u1 and
u2, the error limit is 10−5, the number of nodes is limited to 10000.

With the variation of g1 (cf. Figure 7a), the patterns only occur in a part of the reaction area. The
concentration decreases with increasing x1 until the patterns are not are more visible. The distance
between concentration peaks remains constant. At variation of g2 (cf. Figure 7b), on the other hand,
the patterns emerge in the whole reaction area. The concentration u1 increases as x1 increases. The
diameter of the Pattern seems to be slightly larger with increasing x1 , the distance between the
concentration peaks seems to remain constant.

Figure 7. (a) Spatial pattern for g1 = 1 + 0.25x1 and g2 = 1 (b) Spatial pattern with g2 = 1 + 0.25x1

and g1 = 1. (c) Spatial pattern with g1 = 1 + 0.25x1 and g2 = 1 + 0.25x1.

Varying both g1 and g2, the points become larger with x1 (see Figure 7c). The concentration
above x1 remains the same, the distance between concentration peaks increases. To determine the
development of the point size quantitatively, we conduct further investigations.

With a threshold of 2 the concentration u1 is converted into a binary pattern, meaning that all
points with u1 > 2 are set to 1, all points with u1 < 2 are set to 0. From this binary pattern we find the
sizes of the concentration peaks depending on the location. The points at the edge of the simulation
area were excluded from the analysis using a suitable filter method so as not to falsify the result.

When applying the areas from the filtered results of Figure 7c via the location and two other
simulations with the same parameters and varying slope parameters m = 0.5 and m = 0.75, Figure 8a
shows the results from the three simulations are arranged in a line.
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Figure 8. (a) Display of the dependence of the area on the position in x1 direction in the simulation
area for different with variation of g1 and g2.The area is undimensioned over the total area of the grid.
(b) Nearest-Neighbour-Distance plotted over the position. (Similar to (a))

Especially the results from of the simulation with m = 0.25 are additionally divided into smaller
groups. The latter can be explained by the fact that the points in the patterns are more or less parallel
to the x2-axis. Points of a size are thus located approximately at a position in x1-direction. The
arrangement in a line indicates a dependence of the form A ∝

√
x1. To verify this, the empirical

correlation coefficient between A and
√

x1 each of the simulations is determined. The results for this,
as well as the results of a linear regression, are summarized in Table 1. Since the correlation coefficients
in all three cases are very close to 1, a linear relationship can be assumed in Figure 8a and A ∝

√
x1 is

thus confirmed.

Table 1. Results from the regression of the data from Fig. 5a.

Simulation Correlationcoefficient Slope Intercept

m = 0.25 0.9816 0.1073 -0.0203
m = 0.5 0.9792 0.2063 -0.1413
m = 0.75 0.9876 0.2966 -0.2140

The change in the distance is measured using the Nearest-Neighbour-Distance, i.e. the Distance
of each point to its nearest neighbour, quantitatively evaluated, since an optical assessment based
on the simulation results is difficult. For the simulations in which g1 and g2 are varied at the same
time, Figure 8b. The course of the points is similar to the course of the points in Figure 8a. the points
from each of the three cases arrange themselves on a line, with each line divided into smaller groups.
Also for the other cases, where either only g1 or only g2 are varied, the result is a similar course (not
shown). The correlation coefficients give a similar picture as in the analysis of the areas. The connection
between the Nearest-Neighbour-Distance and

√
x1 is the for the variation of g1 and g2 linear. For the

other cases, where either only g1 or only g2 is varied, no linear relationship is apparent. Since both the
area and the Nearest-Neighbour-Distance are equally affected by

√
x1 this implies a proportionality

between the area and the nearest-dependent Neighbourhood Distance. The correlation coefficients in
Table 2 confirm this, especially for simultaneous location dependency of g1 and g2.
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Table 2. Correlation coefficients for nearest neighbour distance and area

Simulation g1 and g2 just g1 just g2

m = 0.25 0.9841 0.8512 0.5584
m = 0.5 0.9926 0.6254 0.9319

m = 0.75 0.9797 0.0212 0.2553

4.3. Discussion

In summary, it can be said that a linear change in the diffusion coefficients over a separation has
various effects on the height, distance and area of the concentration peaks that are produced. Thus, the
mode selection of Turing patterns can be negated by inhomogeneous diffusion coefficients. The effects
of the variation of individual diffusion coefficients are summarized in Table 3 for better clarity.

Table 3. Summary of the qualitative influence of linear location dependence on pattern formation.

Variation of heigth of peaks distance area

g1 and g2 constant increases increases
just g1 decreases constant decreases
just g2 increases increases increases

The height of the concentration peaks decreases with increasing f1 and increases with f2. These
effects cancel each other out for simultaneous variation of g1 and g2. The area decreases with g1 and
increases with g2. If one compares these results qualitatively with the results from [18], the results are
confirmed only for the height of the peaks. The results for the area and distance cannot be confirmed.
In principle, the distance in the simulations of this work shows the same dependencies as the surface.
Distance and area are therefore proportional to each other. This common increase shows that pattern
formation by RD equations is a strongly coupled phenomenon. The difference between the results
found here and the work may be due to the fact that a Schnakenberg kinetics is investigated here,
while the authors of [18] investigate a Gierer-Meinhardt kinetics. Furthermore, the authors use an
interference approach for which the ratio of the diffusion coefficients d must be much smaller than 1.
Here, however, the ratio is d = 50. Furthermore, it can be shown that the area of the points and their
distance increases proportionally with simultaneous and equal linear spatial dependence of g1 and g2.
Consequently, the square of the area is proportional to z or | when both diffusion coefficients are varied.
With this insight, theoretically any size distribution can be constructed. However, this is a difficult and
time-consuming problem compared to the reverse problem, the determination of a size distribution.
An analogous problem can be found with drag coefficients of wing profiles. The determination of
the coefficient of drag of a given wing profile is easily done by analytical or numerical calculations.
Conversely, however, calculating an airfoil with a desired drag coefficient is difficult due to the large
number of possible solutions. Therefore we will end at this point with the result that in principle a
solution exists. More important is the question of the usability of this solution for the representation of
slums by means of Turing patterns. With regard to this, the found proportionality of area and distance
with variation of both diffusion coefficients is a problem, since no such strong correlation is observed
in real slum data. The applicability of the approach investigated here is therefore questionable.

5. Conclusion

In this work, the question has been examined to what extent slums can be depicted as an urban
structure by means of Turing patterns. The main motivation for this is to find a characteristic slum
size that does not change regardless of culture and continent [6,7]. Turing patterns are caused by
instabilities in systems with reaction and diffusion and also show a characteristic size which is not
imposed on the system from the outside, but is created in the system by interaction of two components.
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For these reasons Pelz et al. [11] stated the hypothesis that slums as anthropogenic patterns can also be
mapped by Turing patterns. This model would have the advantage of a small number of parameters
and sizes compared to common slum models (see [25]).

The clustering observed in the slum data sets cannot be found in Turing patterns. Rather, Turing
patterns result in a homogeneous distribution of points in space. Moreover, unlike in slums, the
size distribution of the points is narrow and dominates by a particular size. The reason is the mode
selection in Turing patterns. Results from the literature suggest that the spatial arrangement and size
of the pattern using non-homogeneous parameters. This is done using simulations have shown that
jumps in one parameter of the reaction kinetics form spatially limited patterns. Parameter studies show
that these local pattern formation takes place outside the Turing space. Cluster formation could be
represented by a prepattern in form of jumps. To identify structures for the prepattern, the characteristic
cluster size found in this work could be can be used. By means of locally equally dependent diffusion
coefficients for both components in the RD equations, any size distribution of the resulting patterns
can be achieved. However, this also changes the distance between the concentration peaks, which
does not match the observed properties of the slums. The simulations show a proportionality between
area and distance, whereas in slums diameter and distance are hardly related. Turing patterns have
further properties which, unlike the resulting patterns, are not recognizable at first glance, but which
must be found in the potential system to be mapped. These properties mainly concern the origin of
the patterns and are therefore not directly visible in illustrations of the patterns. A comparison of the
properties yields few matches. For example, when Turing-patterns are created, the concentration of
both components changes simultaneously by interaction. In the case of slums, there is no simultaneous
growth of slums and surrounding city, which is an indication against self-organization. Furthermore,
in Turing patterns the wavelength of the patterns changes when the size of the area changes. This
behavior is not observed in slums, since they have a characteristic size independent of the city under
study.

This work shows show that there are differences between slum and Turing patterns, especially
in the development of the patterns. However, without considering the process of formation, the
slum patterns that emerge can basically be described with Create Turing patterns by considering
heterogeneous parameters. With the However, the use of heterogeneous parameters, possibly coupled
with a prepattern, is possible. the simplicity of the model through the interdependencies and more
parameters as a great advantage.

The results of the work show that when mapping slums using Turing patterns there are already
qualitative differences in the systems. The question therefore arises as to the reason for that. Apart
from the answer that slums do not depict themselves with Turing patterns there could be other reasons.
For example, one of the basic assumptions of this work could be to want to map the building structure,
be wrong. Perhaps building structures or slums are a result of previous processes. Such approaches
can also be found in the context of Turing patterns in biology. The Pattern formation by the Turing
mechanism takes place in a much shorter time as the final expression of the patterns in the form of cell
differentiation, for example [26]. Slums that do not grow simultaneously with the city surrounding
them also need space, on which they can grow. So there must also be a previous pattern. Investigation
of free surfaces and their properties could provide information about whether these surfaces can be
described by Turing patterns. Slums then arise from this pattern and are in a sense a third component
in the RD equations.
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