We extend our high-resolution MRI-based Finite Element (FE) head model, previously presented and validated in [1–3], by considering the heterogeneities of the white matter structures captured through the use of Magnetic Resonance Elastography (MRE). This approach imparts more sophistication to our numerical model and yields results that more closely match experimental results. It is found that the peak pressure more closely matches the experiments as compared to the heterogeneous case. Qualitatively, we find differences in stress wave propagation near the corpus callosum and the corona radiata, which are stiffer on average than the global white matter. We are able to study the effects of these stiff structures on transient stress wave propagation within the cerebrum, something that cannot be done with a homogenized material model.
Keywords:
Subject: Medicine and Pharmacology - Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.