Preprint
Article

Regularized Latent Class Analysis for Polytomous Item Responses: An Application to SPM-LS Data

Altmetrics

Downloads

198

Views

178

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

09 July 2020

Posted:

12 July 2020

You are already at the latest version

Alerts
Abstract
The last series of Raven's standard progressive matrices (SPM-LS) test were studied with respect to its psychometric properties in a series of recent papers. In this paper, the SPM-LS dataset is analyzed with regularized latent class models (RLCM). For dichotomous item response data, an alternative estimation approach for RLCMs is proposed. For polytomous item responses, different alternatives for performing regularized latent class analysis are proposed. The usefulness of the proposed methods is demonstrated in a simulated data illustration and for the SPM-LS dataset. For the SPM-LS dataset, it turned out the regularized latent class model resulted in five partially ordered latent classes.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated