Preprint
Article

Second-Order Optimality Conditions: An extension to Hadamard Manifolds

Altmetrics

Downloads

331

Views

130

Comments

0

Submitted:

12 July 2020

Posted:

14 July 2020

You are already at the latest version

Alerts
Abstract
This work is intended to lead a study of necessary and sufficient optimality conditions for scalar optimization problems on Hadamard manifolds. In the context of this geometry, we obtain and present new function types characterized by the property of having all their second-order stationary points to be global minimums. In order to do so, we extend the concept convexity in Euclidean space to a more general notion of invexity on Hadamard manifolds. This is done employing notions of second-order directional derivative, second-order pseudoinvexity functions and the second-order Karush-Kuhn-Tucker-pseudoinvexity problem. Thus, we prove that every second-order stationary point is a global minimum if and only if the problem is either second-order pseudoinvex or second-order KKT-pseudoinvex depending on whether the problem regards unconstrained or constrained scalar optimization respectively. This result has not been presented in the literature before. Finally, examples of these new characterizations are provided in the context of \textit{"Higgs Boson like"} potentials among others.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated