Preprint
Article

Simulation of mTBI Utilizing White Matter Properties from MRE

Altmetrics

Downloads

218

Views

153

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

15 July 2020

Posted:

17 July 2020

You are already at the latest version

Alerts
Abstract
Tissues of the brain, especially white matter, are extremely heterogeneous - with constitutive response varying spatially. In this paper, we implement a high-resolution Finite Element (FE) head model where heterogeneities of white matter structures are introduced through Magnetic Resonance Elastography (MRE) experiments. Displacement of white matter under shear wave excitation is captured and the material properties determined though an inversion algorithm are directly used in the FE model. This approach is found to improve model predictions when compared to experimental results. In the first place, responses in the cerebrum near stiff structures such as the corpus callosum and corona radiata are markedly different compared with a homogenized material model. Additionally, the heterogeneities introduce additional attenuation of the shear wave due to wave scattering within the cerebrum.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated