Preprint
Article

Simulation of mTBI Utilizing White Matter Properties from MRE

This version is not peer-reviewed.

Submitted:

15 July 2020

Posted:

17 July 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Tissues of the brain, especially white matter, are extremely heterogeneous - with constitutive response varying spatially. In this paper, we implement a high-resolution Finite Element (FE) head model where heterogeneities of white matter structures are introduced through Magnetic Resonance Elastography (MRE) experiments. Displacement of white matter under shear wave excitation is captured and the material properties determined though an inversion algorithm are directly used in the FE model. This approach is found to improve model predictions when compared to experimental results. In the first place, responses in the cerebrum near stiff structures such as the corpus callosum and corona radiata are markedly different compared with a homogenized material model. Additionally, the heterogeneities introduce additional attenuation of the shear wave due to wave scattering within the cerebrum.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

222

Views

156

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated