Preprint
Article

Enhancing Mouth-based Emotion Recognition using Transfer Learning

Altmetrics

Downloads

239

Views

189

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 July 2020

Posted:

17 July 2020

You are already at the latest version

Alerts
Abstract
The paper concludes the first research on mouth-based Emotion Recognition (ER), adopting a Transfer Learning (TL) approach. Transfer Learning results paramount for mouth-based emotion ER, because a few data sets are available, and most of them include emotional expressions simulated by actors, instead of adopting a real-world categorization. Using TL we can use fewer training data than training a whole network from scratch, thus more efficiently fine-tuning the network with emotional data and improving the convolutional neural network accuracy in the desired domain. The proposed approach aims at improving the Emotion Recognition dynamically, taking into account not only new scenarios but also modified situations with respect to the initial training phase, because the image of the mouth can be available even when the whole face is visible only in an unfavourable perspective. Typical applications include automated supervision of bedridden critical patients in an healthcare management environment, or portable applications supporting disabled users having difficulties in seeing or recognizing facial emotions. This work takes advantage from previous preliminary works on mouth-based emotion recognition using CNN deep-learning, and has the further benefit of testing and comparing a set of networks on large data sets for face-based emotion recognition well known in literature. The final result is not directly comparable with works on full-face ER, but valorizes the significance of mouth in emotion recognition, obtaining consistent performances on the visual emotion recognition domain.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated