Preprint
Article

miR-142-3p Reduces the Size, Migration and Contractility of Endometrial and Endometriotic Stromal Cells by Targeting Integrin- and Rho GTPase-related Pathways that Regulate Cytoskeletal Function

Altmetrics

Downloads

177

Views

150

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 July 2020

Posted:

17 July 2020

You are already at the latest version

Alerts
Abstract
Downregulated microRNA-142-3p signaling contributes to the pathogenesis of endometriosis [1] [2], an invasive disease where the lining of the uterus grows at ectopic locations, by yet incompletely understood mechanisms. Using bioinformatics and in vitro assays, this study identifies cytoskeletal regulation and integrin signaling as two relevant categories of miR-142-3p targets. qPCR revealed that miR-142-3p upregulation in St-T1b cells downregulates ROCK2, CFL2, RAC1, WASL and ITGAV. qPCR and Western-blotting showed miR-142-3p effect on WASL and ITGAV was significant also in primary endometriotic stroma cells. Luciferase reporter assays in ST-T1b cells then confirmed direct regulation of ITGAV and WASL. On the functional side, miR-142-3p upregulation significantly reduced ST-T1b cell size, the size of vinculin plaques, migration through fibronectin-coated transwell filters and the ability of ST-T1b and primary endometriotic stroma cells to contract collagen I gels. These results suggest that miR-142-3p has a strong mechanoregulatory effect on endometrial stroma cells and its external administration reduces the invasive endometrial phenotype. Within the limits of an in vitro investigation, our study provides new mechanistic insights into the pathogenesis of endometriosis and provides a perspective for the development of miR-142-3p based drugs for inhibiting invasive growth of endometriotic cells.
Keywords: 
Subject: Medicine and Pharmacology  -   Obstetrics and Gynaecology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated