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Abstract

We have introduced a sign operator of energy, analogous to the oper-
ator helicity, but in the direction of what we call energy vector. How-
ever, this energy vector need time vector. For giving physical senses
to the components of such time vector we try to explain the time di-
lation in special relativity in terms of them and try to relate them to
the tunnelling times when an electron crosses a potential barrier.

Keywords : Tunnelling time, helicity, time dilation, Dirac equation, super-
luminal velocity.

Introduction

Mysteries of time incresease as physics penetrate deeper and deeper into na-
ture’s secrets. [1] said ”The treatment of time in quantum mechanics is one of
the important and challenging open questions in the foundations of quantum
theory”.
The title of the paper make us think immediately to three dimensional time.
Three dimensional time theories are not something news. Many literatures
have already spoken about them. Among other are [2–6]. At our side we
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have been by chance fallen to this question when we have encountered what
we call energy vector. But, many different time quantities : tunnelling times,
decay times, dwell times, delay times, arrival times, or jump times in quan-
tum mechanics and proper time, time dilation in special relativity make us
dare to introduce time vector in the Dirac theory, a quantum relativistic the-
ory which put time and space on an equal footing.
The resolution of the Dirac equation by using the tensor product or Kro-
necker product of matrices gives rise an operator [7] whose eigenvalues are
the negative energy and the positive energy. We called this operator the
”sign operator of energy”. Both this operator and the operator helicity are
vectors in the Pauli algebra. Their components with respect to the Pauli
basis (σ1, σ2, σ3) are, respectively the components of what we call energy
vector and the momentum vector. We know that the phase of a wave func-
tion solution of the Dirac equation is a combination of the components of the
momentum vector coupled to the components of the position vector, that is
the scalar product ~p.~x, and the energy coupled with the classical time, that
is Et. So, if we consider the energy vector, time vector should be needed in
the phase of the wave function. However, we should give senses to the com-
ponents of this time vector, in order to know in what situations we should
consider them.
We will study at first the time vector for a free electron and will try to explain
the time dilation in special relativity.

The components of a time vector and any combinations of these com-
ponents would evolve simultaneously from the begining to the ending of a
phenomenon like the passage time and the dwell time in quantum tunnelling,
from the entrance to the outrance of a potential barrier. So it is normal to
think that we will able to give senses to the components of the time vector
by using the tunnelling times in quantum tunnelling.
Our method consist to put forward some hypotheses for the couplings of
energies with different combinations of the components of the time vector,
for example the magnitude of the energy vector couples with magnitude of
the time vector, and try to find out what combinations of the components
of the time vector couples with the same energy as couples with such and
such tunnelling time. It follows what combination of components of the time
vector is equal to the tunneling time.
The paper is organized as follows : in the first section we will show the road
which has lead us to an energy vector; in the second section we will intro-
duce the time vectors for free electron and for electron crossing through a
potential; in the last section we will try to give senses to the components of
time vector compared with the quantum tunnelling times when the electron
crosses a potential barrier.
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1 Sign Operator of energy in the Dirac The-

ory

The Dirac equation [8]
i~γµ∂µψ −mcψ = 0 (1)

is the quantum relativistic equation for a free spin-1
2

fermion, where the γµ’s
are the gamma matrices. In this equation ~ is the Planck constant, c the
speed of light, m the mass of the spin-1

2
fermion and ψ is its wave function.

Throughout this paper we use the Dirac representation, where the gamma
matrices are

γ0 = σ3 ⊗ σ0, γ1 = iσ2 ⊗ σ1, γ2 = iσ2 ⊗ σ2 γ3 = iσ2 ⊗ σ3

with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and σ0 =

(
1 0
0 1

)
are the Pauli matrices and σ0 the 2× 2-unit matrix.
The wave function solution of the Dirac equation may be written as Kronecker
product or tensor product (See, for instance [9])

ψ(t, ~x) = ξ ⊗ se−
i
~ (±Et−~p.~x) (2)

of the energy state ξe−
i
~ (±Et−~p.~x) and helicity state s, where ξ = |ξ(E, p)〉 =√

E+mc2

2E

(
1
εcp

E+mc2

)
is the eigenvector associated to the positive energy E =

+
√
c2p2 +m2c4 or ξ =

∣∣ξ̄(E, p)〉 =
√

E+mc2

2E

(
− εcp
E+mc2

1

)
, eigenvector associ-

ated to the negative energy −E = −
√
c2p2 +m2c4 of the hamiltonian oper-

ator hD = εcpσ1 + mc2σ3, and s is the eigenvector of the helicity operator
~
2
~σ.~n, that is the spin operator in the direction of the momentum vector

~p =

p1p2
p3

, with ~n = ~p
‖~p‖ = ~p

p
=

n1

n2

n3

.

In all of that ε is the sign of the helicity or the handedness.
We called the operator hD = εcpσ1 +mc2σ3 ”sign operator of energy” [7,10].

Let us introduce the ”energy vector” ~E =

 εcp
0
mc2

. Therefore, the operator

~
2
hD
E

= ~
2
~σ. ~E
E

is the projection of the spin operator in the direction of the
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energy vector ~E. Let us call the eigenvalues of this operator ”enginity” and
this operator the ”enginity operator”. Therefore there is the probabilities of
the particle of having the positive enginity +~

2
or the negative enginity −~

2
.

For seeing that more clearly let us compare the enginity operator with the
helicity operator.

hD = εcpσ1 +mc2σ3 hamiltonian operator ~σ.~p = p1σ1 + p2σ2 + p3σ3

let ~E =

 εcp
0
mc2

 energy vector with ~p =

p1p2
p3

 momentum vector

E =
∥∥∥ ~E∥∥∥ =

√
m2c4 + c2p2 the energy p = ‖~p‖ =

√
p21 + p22 + p23

~
2E
hD = ~

2E
εcpσ1 + ~

2E
mc2σ3 ~

2p
~σ.~p = ~

2p
p1σ1 + ~

2p
p2σ2 + ~

2p
p3σ3

enginity operator helicity operator or

spin operator in the direction of ~E spin operator in the direction of ~p
hD
E

= εcp
E
σ1 + mc2

E
σ3 enginity sign ~σ.~p

p
= p1

p
σ1 + p2

p
σ2 + p3

p
σ3 helicity

operator sign operator
Probability for having positive Probability for having positive
or negative enginity (energy) or negative helicity

So, a spin-1
2

particle can be in a superposition of a state of positive and
a state of negative energy.

But, as we have said in the introduction, energy vector ~E =

 εcp
0
mc2

 need

time vector ~t =

t1t2
t3

.

2 Components of the Time Vector

Let us at first regard an electron with mass m, moving freely along an x axis,
from a point O to a point A of this axis. An observer observes the motion
of the electron in a frame where the electron is at rest. So, this observer can
mesure the time, the proper time τ = t3 that takes the electron for moving
from O to A. For calculating the energy of the electron this observer use the
formula E = mc2.
Now let us see how an observer in a frame fixed at the point O, mesures the
time that takes the electron for moving from O to A with velocity v and how
he calculates the energy of the electron. For this observer, A is at a distance
L from O. The electron takes the impulsion p = mv√

1−(v/c)2
, and the observer

mesure the time τ ′ for the passage of the electron from O to A and use the
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formula E =
√
m2c4 + c2p2 for calculating the energy of the electron. The

energy is the magnitude of the energy vector ~E =

εcp,0
mc2

 which need the

time vector ~t′ =

t′10
t′3

, where ε is the sign of the helicity.

mc2t3 = mc2t′3 + εcpt′1 − px (3)

c2t23 = c2t′23 + c2t′21 − x2 (4)

From these equations, t′3 = t3 if, and only if for helicity positive t′1 = x
c

and
for helicity negative t′1 = −x

c
.

For the contrast case, where t′3 6= t3, solving this system of two equations we
will have two time vectors. But, according to (4), these two time vectors have
the same euclidian norm, and according to the special relativity of Einstein

τ ′ =
√
t′23 + t′21 =

1√
1− (v/c)2

τ (5)

t′3 ≤ t3 if, and only if for helicity positive t′1 ≥ x
c

and for helicity negative
t′1 ≤ −x

c
, that is t′1 is the time of a subluminal velocity for moving from O

to A. Then, according to the formula (5) the time t′1 appeared when the
electron takes the impulsion p is responsible of the time dilation in special
relativity.
But for the contrast case, t′3 > t3, where t′1 < x

c
for helicity positive or

t′1 > −x
c

for helicity negative, we cannot say what about the contribution of
t′1 to the dilation of time.
The classical time τ ′ =

√
t′23 + t′21 and the component times t′3, t

′
1 evolve from

O to A, but only the classical time can be observed. Then, the wave function
is of the form (2).

Now let us suppose that from O to A the electron moves in a uniform
potential U . For the observer at the frame where the electron is fixed the

energy vector is ~E ′ =

 0,
−U
mc2

 and the time vector is ~T =

 0
T2
T3

. Whereas

for the observer at the second frame the energy vector is ~E =

εcp,−U
mc2

 whose

components are respectively the energy due to the impulsion, the energy
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due to the mass and the potential energy, that is the energy due to the
space, which makes appear the second component of the time vector, ~T ′ =T ′1T ′2
T ′3

. The minus sign of the second component of the energy vector will

be explained later. It follows

φ = T3mc2 − T2U = mc2T ′3 + εcpT ′1 − UT ′2 − px (6)

c2T 2
3 + c2T 2

2 = c2T ′23 + c2T ′21 + c2T ′22 − x2 (7)

and √
T ′23 + T ′21 + T ′22 =

1√
1− (v/c)2

√
T 2
3 + T 2

2

The total energy of the electron is the magnitude

E =
√
m2c4 + c2p2 + U2 (8)

of the energy vector, which is like the one in [11] for the extension to the
Klein-Gordon equation, and the magnitude

T ′ =
√
T ′23 + T ′21 + T ′22

of the time vector ~T ′ is the classical time.
We put forward the following hypotheses for possible couplings of energy
with time in the phase of the wave function:

ET ′ =
√
m2c4 + c2p2 + U2

√
T ′23 + T ′21 + T ′22 (9)

ET =
√
m2c4 + c2p2

√
T ′23 + T ′21 (10)

mc2T ′3 (11)

UT ′2 (12)√
c2p2 + U2

√
T ′22 + T ′21 (13)

εcpT ′1 (14)
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3 Components of Time Vector and tunnelling

Times of electron

For giving physical senses of the components of time vector, we think that
it is normal to try to find their possible relations with the tunnelling times.
But, let us at first search for the Dirac type equation for the electron in a
potential less than the kinetic energy of the electron.

3.1 A Dirac equation with parity violation

The Dirac equation we would like to search for is a Dirac equation which has

the energy vector ~E =

εcp,−U
mc2

, that is whose operator enginity is

H = εcpσ1 − Uσ2 +mc2σ3 (15)

with U <
√
c2p2 +m2c4.

The search for a solution of the form ψ = A(p)e−
i
~ (Et−~p·~x) of the Dirac-

Sidharth equation [12]

i~γµ∂µψ −mcψ − i
√
αl~γ5∆ψ = 0

by using the kronecker product leads to the operator enginity

H ′ = εcpσ1 − c
√
αp2

l

~
σ2 +mc2σ3

with γ5 = iγ0γ1γ2γ3 = σ1 ⊗ σ0.
Then, in following the backward way, from the operator enginity (15)

we will have as Dirac equation for discribing electron in a potential U the
following equation

i~γµ∂µψ −mcψ − i
U

c
γ5ψ = 0 (16)

Because of the presence of γ5, party is violated [13]. Looking for a wave
function of the form

ψ = A(p)e−
i
~ (Et−~p·~x)

that is of the form of (2), by using the kronecker product of matrices, we will
have

ψ =

√
E +mc2

2E
1√

2 (1 + n3)

(
1

−cp−iU
E+mc2

)
⊗
(
−n1 + in2

1 + n3

)
e−

i
~ (Et−~p·~x) (17)

as solution with positive enginity and negative helicity.
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3.2 Components of Time Vector and tunnelling Times

The components of the time vector make us to think to this one of the con-
troversial issues of modern quantum theory, the question of tunnelling time,
i.e. the time that takes a particle to move from one side of a barrier of
potential to the other side [14]. Some experimental investigations have sup-
ported a nonzero tunnelling time, while others supported a zero tunnelling
time , [15,16].

But for giving senses to the components of the time vector we have to opt
to the nonzero tunnelling time and let us consider the case of one dimensional
tunnelling of electron through a potential barrier.

x

y

O

x

Barrier region

x

y

O
z′

Direction of tunnelling

O′

y′

x′

z

e

0 L

U(x)

U

E

I II III

Incident

Reflected

Transmitted

Figure 1: An electron e with kinetic energy E moves along the x-axis and interacts
with a rectangular barrier with height U , U > E, and width L

Quantum tunnelling is a phenomenon in which particles penetrate a po-
tential energy barrier with a height greater than the total energy of the
particles.
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The phenomenon is interesting and important because it violates the
principles of classical mechanics. Suppose an uniform and time-independent
beam of electrons with energy E traveling along the x-axis (in the positive
direction to the right) encounters a potential barrier (Figure1) described by
(See, for instance [17])

U(x) =


0 when x < 0

U when 0 ≤ x ≤ L

0 when x > L

When both the width L and the height U are finite, a part of the quantum
wave packet incident on one side of the barrier can penetrate the barrier
boundary and continue its motion inside the barrier, where it is gradually
attenuated on its way to the other side. A part of the incident quantum
wave packet eventually emerges on the other side of the barrier in the form
of the transmitted wave packet that tunneled through the barrier. How much
of the incident waves can tunnel through a barrier depends on the barrier
width L and its height U , and on the energy E of the quantum particle
incident on the barrier. For such transmitted waves there are four widely
used tunnelling times calculated by finding the transmission amplitude given
by: T = |T | eiθ [18].The two of them are : Larmor time [19, 20], τLM and
Eisenbud-Wigner times [21], τEW . The first has been called resident or dwell
time:

τLM = −~ ∂θ
∂U

(18)

The second has been called the passage time,

τEW = ~
∂θ

∂E
+
L

k
(19)

An additional term, L/k is present in τEW , where L and k are the barrier
width and electron velocity, respectively. This additional term corresponds
to the propagation of the electron in the barrier region if that barrier were
absent, and has to be added to get the total time [22], since the first term
only gives a relative time shift [21].

However, the quantum tunnelling phenomena and the consideration of
the time vector make to think that the Dirac equation inside the potential
barrier (E < U) is not of the form (16) [24]. So, let us constructe the wave
function of the electron inside the barrier in terms of the components of the
time vector.
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The energy vector ~E =

 εcp
0
mc2

 before the barrier region will become

~E =

 εcp
−U
mc2

 when the particle is inside the barrier region.

The time T =
√
T ′23 + T ′21 and T ′2 can be qualified respectively as passage

time Tp =
√
T ′23 + T ′21 and resident time Tr = T ′2 . These three times, the

classical time T ′ =
√
T ′23 + T ′21 + T ′22 , the passage time Tp and the resident

time Tr evolve from the entrance to the outrance of the barrier region. But
according to the quantum tunnelling phenomena the classical time can not
be observed, whereas at least one of the passage time and the resident time
can be. Actually,

T ′ > Tp T ′ > Tr
All these times evolve from zero to positive values.
Let us search for θ in (18) and (19) in terms of τLM and τEW . From (18)

θ = −1

~
τLMU +K(E)

where K(E) is a function of E. Then,

∂θ

∂E
= K ′(E)

in substituting in (19)

K ′(E) =
1

~
τEW −

1

~
L

v

Using the relations p = mv√
1− v2

c2

and E = mc2√
1− v2

c2

(See for instance, [23]), we

have

K ′(E) =
1

~
τEW −

1

~
E√

E2 −m2c4
L

and then

θ =
1

~
(EτEW − UτLM − pL) + λ(L) (20)

with λ(L) independant of E and U , such that U > E.
We will able to see the value of the constant λ(L) if a boundary conditions
on the phase difference θ are determined. But, according to the couplings
(10) and (12), for giving senses to the components of time vector, define the
phase which evolves from the phase at x = 0 to x = L, inside the potential
barrier, as

ϕII = −1

~

(
E
√
T ′23 + T ′21 − UT ′2 − px

)
10
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with at x = L,
√
T ′23 + T ′21 = τEW and T ′2 = τLM . Then, we have λ(L) = 0

and for the case of positive enginity and negative helicity incident, reflected
and transmitted wave functions are

ψI(x) =

(
1
−cp

E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
t′23 +t′21 −px

)

+ A

(
1
cp

E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
t′23 +t′21 +px

)
(x < 0)

ψII(x) = B

(
1

−cp−iU
E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
T ′2
3 +T ′2

1 −UT ′
2−px

)

+ C

(
1

cp−iU
E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
T ′2
3 +T ′2

1 −UT ′
2+px

)
(0 < x < L) (21)

ψIII(x) = D

(
1
−cp

E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
t′23 +t′21 −px−EτEW+UτLM+pL

)
(L < x)

The form of each term of the wave function (21) inside the barrier is not like
the one has been thought in [24]. It is a wave function solution, not of (1+1)
spacetime Dirac equation particular case of (17), but a (1 + 2) spacetime
Dirac equation.
In the case where the energy of the electron is higher than the value of the
potential (E > U), the wave function inside the potential will be of the form

ψII(x) = A′
(

1
−cp−iU
E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
T ′2
3 +T ′2

2 +T ′2
1 −px

)

= A′
(

1
−cp−iU
E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
τ2EW+τ2LM−px

)

because according to (9) the classical time t in the wave function (17) is
t =

√
T ′23 + T ′22 + T ′21 .

3.3 Discussion

The minus sign before the potential energy U in the phase difference (20)
explains our choice of the minus sign before the second component of the
energy vector ~E . Thus this second component is a negative energy. Like
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the first component which may be positive or negative energy depending on
whether helicity sign ε is positive or negative, the second component may
also be positive or negative energy.
If we choose +U as second component of the energy vector ~E , the Larmor
time τLM will be negative.
For both the two choices, according to the Feynman-Stückelberg interpreta-
tion of the negative energy in the Dirac theory (See for instance [25]) it is
not the electron which spends the resident time τLM but its antiparticle, a
positron. In fact, that is due to the minus sign in the equation (18).

Concluding Remarks

The energy vector in the Dirac theory has come when we would try to show
the analogy between sign of helicity and the sign of energy, which we have
then called sign of enginity. This energy vector need time vector whose
components deserve physical senses.
The component t′1 of the time vector which occurs when the electron takes
an impulsion is responsible of the time dilation in special relativity if it is
the time of a subluminal velocity. For the contrast case, we cannot say what
about the contribution of t′1 to the dilation of time.
In the Dirac representation, for the tunnelling of the electron through a
potential barrier the passage time can be defined as the magnitude of the
projection of the time vector to the plan of first and third components of the
time vector, whereas the dwell time can be defined as the second components
of the time vector. They are respectively the Eisenbud-Wigner time and the
Larmor time, τEW and τLM , at the potential barrier outrance. Then, for an

electron crossing a potential barrier the classical time
∥∥∥ ~T ′∥∥∥ =

√
τ 2EW + τ 2LM

can not be observed, whereas the passage time τEW can be.
It has been shown from the coupling of the negative energy −U with the
Larmor time τLM in the expression (20) of the phase difference that it is
not the electron which spends the resident time τLM but its antiparticle, a
positron. However, the minus sign in the equation (18) is at the orgin of this
consequence.
For a free electron we can not give senses to t′3 or t′1 separately. We think
that a possible observability of these two components of time vector would
be in a phenomenon of free spin-1

2
superluminal particle, then whose wave

function would be a solution of a (3 + 2) spacetime Dirac equation. So, we
join the authors of [26, 27] which say :”The problem of representation and
localizations of superluminal particles has been solved only by the use of
higher dimensional space and it has been claimed that the localization space
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for tachyons is T 4- space with one space and three times”.
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