Commercially available oxidized (carboxylic groups) and non-oxidized multiwalled carbon nanotubes were studied as adsorbents of cerium(III) in batch operation mode. Several variables affecting the rare earth adsorption were investigated, including: the stirring speed applied to the system, the pH of the solution and the metal concentration and carbon dosages. Although the removal of cerium from the solution is different and dependent upon the adsorbent type: i) adsorption in non-oxidized multiwalled carbon nanotubes, ii) cation exchange in the case of using oxidized multiwalled carbon nanotubes, the adsorption kinetics, the rate law and the isotherm models are the same for both adsorbents: pseudo-second order, film diffusion and Langmuir Type-1, respectively. Cerium is desorbed from loaded adsorbents using acidic solutions.
Keywords:
Subject: Chemistry and Materials Science - Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.