Preprint
Article

Building Models for Agricultural Land Fire Prediction Using Remote Sensed Environmental Data: A Case Study in Dien Bien Province, Vietnam (2003 – 2016)

Altmetrics

Downloads

323

Views

220

Comments

0

Submitted:

21 July 2020

Posted:

23 July 2020

You are already at the latest version

Alerts
Abstract
Agricultural land fires have been linked to various and adverse impacts on ecosystems, food security and the agriculture sector. Understanding the patterns and drivers of agricultural land fires is essential for effective agricultural land fire management. The key objectives of this study were to (1) analyze the temporal and spatial patterns of agricultural land fires using satellite remote sensed data, (2) assess a range of environmental conditions that could drive the occurrence of agricultural land fires, (3) determine the best model for predicting agricultural land fires and (4) determine the relative contribution of each environmental condition variable on the best predictive model. We used both univariate and multivariate regressions for the fire prediction capability of four independent environmental conditions (fuel, weather, topographic and anthropogenic). Analysis of historical satellite data revealed that agricultural land fires were more frequent than forested land fires. Our analyses also revealed that fuel condition was the most important variable for predicting agricultural land fires followed by weather, topographic and anthropogenic conditions. This study provides a novel multivariate model for predicting agricultural land fires that harbors the potential to improve agricultural land fire management and reduce fire risk within the agricultural sector.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated