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Abstract 

Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral 

infection and can affect the heart muscle and its electrical system. It has remained as one of the most 

challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 

20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered as a noninvasive and 

golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing 

various cardiac diseases. However, the performance of CMR is heavily dependent on the clinical 

presentation and non-specific features such as chest pain, arrhythmia, and heart failure. Besides, other 

imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, 

and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper 

introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) 

to diagnose the Myocarditis. The hybrid CNN-KCL method performs the early and accurate diagnosis of 

Myocarditis. To the best-of-our-knowledge, a Convolutional neural network has never been used before for 

the diagnosis of Myocarditis. In this study, we used 47 subjects to diagnose myocarditis patients from 

Tehran's Omid Hospital. The total number of data examined is 10425. Our results demonstrate that CNN-

KCL achieves 92.3% in terms of diagnosis myocarditis prediction accuracy which is significantly better 

than those reported in previous studies.   
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1. Introduction 

Cardiovascular Diseases (CVD) are among the most important causes of mortality around the world [1, 2]. 

Atherosclerosis as the leading cause of CVD referring to build-up of different substances including 

cholesterol and fat in and on the walls of the arteries. The flow of blood is constrained in such a situation 

which in turn affect the whole body. CVDs due to atherosclerosis include cerebrovascular disease (e.g. 

stroke), ischemic heart disease (e.g. heart attack), and hypertensive heart disease. Other CVDs embrace 

rheumatic heart disease, inflammatory heart disease, congenital heart disease, cardiac arrhythmias, and 

heart failure [2].  
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Inflammation of the heart muscles is clinically termed as myocarditis [3]. In Figure 1, discrimination of 

normal and myocarditis affected heart can be seen. The inflammation of heart muscles is evident in 

myocarditis affected heart as shown in Figure 1. The symptoms of myocarditis include chest pain or mild 

dyspnea. Common viral infections such as hepatitis B and C, parvovirus and the recent one, COVID-19 

may also cause myocarditis. Other specific forms of myocarditis include sarcoidosis, giant-cell myocarditis, 

hypersensitivity drug reactions, toxic or pathogens which may occur less commonly [4]. Patients that are 

diagnosed with myocarditis should be referred to the heart specialist for endomyocardial biopsy. The 

endomyocardial biopsy enables the clinicians to check the presence of premorbid in the patients of 

myocardial inflammation. Myocardial is the prime cause of unexpected death approximately 20% in adults 

less than 40 years old [5]. Although it had been centuries since the recognition of this enigmatic disease, 

effective treatment strategies are yet to develop because of several issues such as: insensitivity to diagnostic 

tests, complex relations between maladaptive and adaptive immune responses [4]. A recent development in 

the genetic basis of immune-mediated heart disease and studies in animals provided key information in 

treating the disease.  

 

 

Figure 1: Demonstration of Myocarditis (on the right) and normal heart (on the left). As shown here, the 

inflammation of the heart muscles is evident in myocarditis affected heart. 

Early detection of heart diseases and hazards is crucial for decreasing the mortality rate [6]. It is thorny for 

the specialist as well to interpret accurately different images such as electrocardiograms, echocardiograms 

or magnetocardiogram for diagnosis of heart related diseases as it is time consuming, costly, and error-

prone. Hence, automatic computer-based diagnosis systems are in high demand to assist the clinicians to 

detect and diagnose the diseases more accurately, faster, and less costly. Such systems are used in various 

diseases including heart-related diseases. These systems utilize various machine learning and data mining 

techniques to effectively resolve issues [6]. The aim is to develop prognostic models that effectively predict 

(with reasonable specificity and sensitivity) the occurrence and outcome of disease in the near future.    

The screening methods provided above help physicians diagnose the disease at an early stage and they can 

manually analyze the data to know if one has the disease. However, using imaging techniques (for 

diagnosing the disease) often causes a misdiagnosis. Factors such as fatigue and excessive workload of the 

physician as well as other factors such as the presence of various noises in the images or the presence of a 

mass or lesion that is not visible to the eye can cause misdiagnosis [7]. A wrong diagnosis in the early 

stages, can be seriously challenging for a person's health leading to possible death. To address this problem, 
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computerized aided diagnosis (CADS) can help clinicians in diagnosing the diseases in their early stages 

[8]. 

Machine learning methodologies are deployed to predict and analysis different disease-related issues [9]. 

Analyzing large numbers of images collected from patients and using non-deep learning algorithms is 

difficult because when the data becomes too large the algorithm becomes complicated due to the number 

of segmentation algorithms, required feature extraction, and classification process [10]. In addition, non-

deep learning methods can partially receive the input data, and if the data exceeds a certain limit, they 

become unable to adequately process it. However, the deep learning-based methods can solve these 

complex problems. In fact, for deep learning-based models, the more the input data increases, the more they 

become accurate and efficient. Deep learning plays a crucial role in successfully analyzing heart-related 

images [11]. The performance of the classification methods is enhanced by utilizing deep learning 

techniques.  

To the best-of-our-knowledge, there is no scientific literature related to deep learning-based studies on the 

detection and diagnosis of myocarditis disease. This is the first step towards such a study. We, therefore, 

systematically reviewed the literature based on Cardiomyopathy oriented diseases. The rest of the paper is 

organized as follows: Section 2 describes literature review; Section 3 presents Z-Alizadeh Sani myocarditis 

dataset; Section 4 represents method while section 5 describes experimental results; Section 6 presents the 

discussion which is follows by section 7 that presents conclusion and future work. 

2. Literature Review 

Baeßler et al. [12] examined whether machine learning-based techniques might be utilized for the 

recognition of myocardial tissue alterations in hypertrophic cardiomyopathy (HCM) on T1- weighted non-

contrast cardiac magnetic resonance (CMR) images using texture analysis (TA). Texture feature selection 

and step-wise dimension reduction were exploited for feature selection and identification of myocardial 

tissue alterations on non-contrast T1-weighted CMR images in HCM patients.  

 

In another study, Ovreiu and Simon [13] investigated the diagnosis of cardiomyopathy in its two common 

forms: hypertrophic and dilated via P wave features. They applied a novel evolutionary technique dubbed 

as biogeography-based optimization (BBO) and developed a neuro-fuzzy network. They demonstrated that 

cardiomyopathy could be successfully diagnosed by applying a neuro-fuzzy model. Later Ali et al. 

presented a computerized framework for detection of cardiomyopathy diseases utilizing a multilayered 

perceptron (MLP) neural network [14]. In this study, the high-frequency noise removal method was 

employed using moving and median average filters at the preprocessing stage.  

 

More recently Alis et al. [15] exploited a machine learning approach for texture feature analysis of cardiac 

magnetic resonance imaging (MRI) for examining the incidence of ventricular tachyarrhythmia (VT) in 

hypertrophic cardiomyopathy patients. Similarly, Borkar et al. [16] proposed a machine learning approach 

for the automatic detection of Atrial Septal Defect (ASD) and dilated cardiomyopathy (DCM) diseases. 

Their dataset comprised of the ultrasound videos of DCM, ASD, and normal cases. In another study, 

Sengupta et al. [17] designed a machine learning algorithm based on an associative memory classifier using 

echocardiographic and clinical records of 44 patients with restrictive cardiomyopathy and 50 with 

constrictive pericarditis. To discriminate constrictive pericarditis from restrictive cardiomyopathy, they 
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normalized the speckle tracking echocardiography images with respect to 47 controls with no structural 

heart disease and evaluated the diagnostic area under the ROC curve of the associative memory classifier. 

 

At the same time, Begum et al. [18] developed an automated diagnostic system for cardiomyopathy disease 

using feed-forward backpropagation neural network and SVM classifiers. They utilized online PTB 

diagnostic ECG database and preprocessed it for baseline correction and noise cancellation. They then 

proposed four time-based features and classified them using artificial neural networks and SVM [19]. More 

recently, Green et al. [20] studied the echocardiograms and photo plethysmography data from a control 

cohort of 64 healthy volunteers and 19 HCM patients with left ventricular outflow tract obstruction 

(oHCM). In another study, Tsai and Kojima[21] utilized four texture features of ultrasonic images for heart 

disease classification. Their proposed method took as input the heart images that measured texture features 

by generating a gray-level co-occurrence matrix.  

 

More recently, Narula et al. [22] examined the potential for a machine learning system that integrated 

speckle-tracking echocardiographic recordings for discrimination of HCM from physiological hypertrophy 

seen in athletes (ATH). Similarly, Rahman et al. [23] proposed an HCM patient classifier utilizing standard 

12-lead and 10-seconds ECG signals. They derived 504 temporal and morphological features including 

both newly-developed and commonly used ones from ECG signals for heartbeat classification.  

 

Recently, Shao et al. [24] examined whether TA parameters on magnetic resonance T1 mapping could be 

applied for the diagnosis of DCM. In this study, Modified Look-Locker Inversion Recovery (MOLLI) 

sequence at a 3.0 T MR scanner was used to acquire T1 maps. The epicardium and endocardium were 

strained on the short-axis slices of the T1 maps by a skilled radiologist. Most recently, Capture et al. [25] 

performed plasma proteomics and exploratory myocardial screens and consequently devised a multiplexed 

targeted liquid chromatography-tandem/mass spectrometry-based assay to examine 26 peptide biomarkers 

to recognize novel plasma biomarkers for patients with HCM.  

 

Based on the related works, there is no deep learning based method for diagnosing myocarditis. In the 

proposed CNN-KCL method, a combination of k-means clustering and CNN classifier was used. Because 

of the large number of image sections, we first used clustering method. In k-means algorithm, due to the 

reduction of low slope K, the elbow method cannot be used. For this reason, we increased the value of K 

from 2 clusters to 24 clusters to determine the effect of increasing the number of clusters on the accuracy 

of CNN classification. 

 

3. Z-Alizadeh Sani myocarditis dataset  

Cardiac MR Imaging is considered as the noninvasive and diagnostic golden standard of myocarditis in the 

absence of biopsy. CMR provides the possibility of anatomical and functional imaging and accurate 

assessment of heart. However, in this respect, its ability of tissue characterization is even more 

important[26]. Three diagnostic targets for the three recommended Cardiac MRI criteria are myocardial 

edema, hyperemia/capillary leak, and scar which is known as Lake Louise Criteria (LLC) [27]. Existence 

of contrast enhancement (CE-GD) affirms myocardial injury (i.e. scar, fibrosis) while T2-weighted images 

show interstitial edema, known as an integral part of the inflammatory response. The pre and post-contrast 

T1-Weighted image indicates presents of hyperemia/capillary leak in myocardial tissue. The LLC has been 
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accepted beyond clinical criteria and endomyocardial biopsy. Two out of three “Lake Louise Criteria” have 

80.0% accuracy for a correct diagnosis of acute myocarditis [28]. In this study, we developed a model to 

diagnose myocarditis based on three indexes of Lake Louise Criteria (LLC). 

CMR imaging protocols 

This study was prospectively performed from September 2018 to September 2019 at the CMR department 

of OMID hospital at Tehran, IRAN. The study was approved by the local ethical committee of the OMID 

hospital. CMR examination was performed using a 1.5-T system (MAGNETOM Aera Siemens, Erlangen 

Germany) [29]. All patients were scanned with dedicated body coils in the standard supine position. The 

CMR protocols are as follows: 

We performed CINE-segmented images and pre-contrast T2-Weighted (trim) images in short and long-axis 

views. Pre contrast T1-Weighted relative images were acquired in axial views of the myocardium. 

Immediately after Gadolinium injection (DOTAREM  0/1 mmol/kg) the T1-Weighted relative sequence 

was repeated and after 10-15 minutes, Late Gadolinium Enhancements (LGE- high-resolution PSIR) 

sequences in short and long-axis views were performed. Table 1 shows the parameters and details of CMR 

sequences:  

Table 1.Z-Alizadeh Sani myocarditis dataset description* 

Protocols & 

Parameters 

TE 

(ms) 

TR 

(ms) 
Segment 

slice 

thickness 

(mm) 

Concatenation 

and 

Slice number 

NEX 

Breath-

hold 

time 

(s) 

CINE_segmented (true 

FISP) Long Axis (LAX): 
1.15 33.60 15 7 3 1 8 

CINE_segmented (true 

FISP) Short Axis (SAX): 
1.11 31.92 15 7 15 1 8 

T2-Weighted (TIRM) 

LAX, pre-contrast 
52 800 Non-cine 10 3 1 9 

T2-Weighted (TIRM) 

SAX, pre-contrast 
52 800 Non-cine 10 5 1 10 

T1 Relative-Weighted 

TSE (Trigger)- AXIAL- 

dark blood 

pre and post-contrast 

24 525 Non-cine 8 5 1 7 

Late-GD Enhancement 

LGE(high-resolution 

PSIR) SAX and LAX 

3.16 666 Non-cine 8 1 1 7 

*Sequences’/protocols’ name and parameters description Used by CMR in Patients of this study.TE: Time Echo, TR: 

Time Repetition, Segment: numbers of frames (Segmented acquisition to produce a series of images that can be 

displayed as a movie of cardiac function (cine)), Slice Thickness: how thick the slices are, Concatenation: 

distribution of the slices to be measured over multiple TR, NEX: Number of Excitations (How many times each line 

of k-space data is acquired during the scan), Breath-hold time: Duration of time that patient should hold his/her breath 

in order to avoiding chest motion artifacts. 

4. Method 

4.1 Convolutional Neural Network (CNN) 
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A CNN is a deep learning technique that takes an image as input, allocates importance (biases and learnable 

weights) to different objects/aspects in the image, and then classify them [30]. CNN requires much lower 

pre-processing compared to the other deep learning architectures. Generally, filters are hand-engineered in 

primitive methods while CNN has the ability to learn these characteristics/filters. The connectivity pattern 

of neurons in the Human Brain and the architecture of CNN are analogous. In fact, CNN is developed based 

on the organization of the Visual Cortex. A CNN is comprised of an input layer, multiple hidden layers, 

and an output layer. The hidden layers of CNN are typically created with convolutional layers that convolve 

with others [31]. The activation function is usually a Rectified Linear Units (ReLU) layer and additional 

convolutions such as normalization layers, fully connected layers, and pooling layers are consequently 

followed [32]. There are various architectures of CNNs that are extensively used in the deep learning 

domain. Some of such architectures are LeNet [33], AlexNet [34], VGGNet [35], GoogleNet [36], and 

ResNet [37]. CNN is widely used in many different areas of research including computer vision, medical 

image analysis, recommendation system, financial time series, natural language processing, image, and 

video recognition and classification [38]. CNN has been applied successfully in detection and diagnosis of 

various diseases using various image modalities [31, 39-43]. 

 

4.2 K-means clustering 

K-means clustering is one of the popular and simplest unsupervised technique used in machine learning 

domain [44]. It is based on vector quantization that aims to partition n observations into k clusters. Each 

observation belongs to a cluster with nearest mean value (cluster centroid or cluster centers). The Euclidean 

distance (or any other distance metrics) is usually utilized to compute k groups of similarity [45]. Each item 

is categorized to its closest mean and the mean’s coordinates are updated as the averages of the items 

categorized in that cluster so far.  

4.3 Elbow method  

A basic step in any clustering method is to estimate the optimal number of clusters in which data needs to 

be clustered to. To estimate the optimal value of k (number of clusters), the elbow method [45] is considered 

as one of the popular techniques.  In this method, the mean of the squared distances from the cluster centers 

of the relevant clusters is termed as distortion. The sum of squared distances of samples to their closest 

cluster center is dubbed as inertia. To find the optimal number of the clusters, the values of k is iterated 

(from 1 to n) and the values of distortions for each value of k is computed to measure the inertia and 

distortion. The optimal number of clusters is then computed by selecting the value of k at the “elbow” i.e. 

the point after which the inertia/distortion begins to decrease linearly [46]. 

4. 4 Proposed CNN-KCL scheme 
 

The block diagram of the proposed clustering method namely Convolutional Neural Network-Clustering 

(CNN-KCL) is shown in Figure 2, which includes the steps of data entry, clustering, classification, and 

final prediction.  
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Figure 2. The block diagramof the proposed CNN-KCL method 

According to Figure 2, the implementation steps are shown briefly:  

Step 1: In the first step, the proposed dataset is entered into the system. 

Step 2: The second step is related to the initial pre-processing. All dataset images are on a Gray level. So 

there is no need to delete the image channels. Dataset images are available in a variety of sizes. For this 

purpose, all images are resized to a size of 100 x 100. After resizing the images in the data pre-processing 

step, the image normalization operation is performed. Normalization of images transforms the light 

intensity of all image pixels to the range of zero and one (0 and 1).  

 Step 3: Due to the great variety of image sections, clustering is used in this step. There are different methods 

for clustering data that in this research, the k-means method is used to cluster images. It is important to note 
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that the k-means algorithm is not capable of clustering two-dimensional images. For this reason, all images 

are reshaped into the vector of pixels, and then these are used in the k-means algorithm. 

Step 4: In this step, the data is divided into 2, 4, 10, and 24 clusters by the k-means algorithm. 

Step 5: In this step, the data of each cluster are classified using CNN separately. Convolution layers are for 

feature extraction and fully connected layers act as classifiers in this network.  

Step 6: In step 6, the results of the classification of 2, 4, 10, and 24 clusters are displayed separately. 

Step 7: Finally, the results of the classification of clustered images performed by k-means and CNN 

algorithms are compared. 

 We explain the above steps in more detail. When we used different images as input to CNN-KCL, it did 

not have an accurate detection of incoming images. It was mainly due to the fact that our employed dataset 

contains images with a very large difference, meaning that images were taken from different angles such 

as side, front, bottom, and top. Hence, it was decided to use several clusters to incorporate the accuracy in 

different modes with better results. In order to cluster the data, the K-means method has been used where 

K is the number of clusters. We also used the Elbow method to find the best K.  

In this study, we implemented the Elbow method from one cluster to 30 clusters (K = 1 to 30). The resulting 

graph was declining very slightly, so-called Smooth, and we could not identify the Elbow inside (that is, 

the point with a very steep slope, and once the chart breaks and becomes horizontal). Hence, with the Elbow 

method, we could not find the best number of clusters. For this reason, the K-means method was used with 

K =4, k=10, and k=24 to determine the trend of accuracy changes with increasing and decreasing K. In fact, 

we increase the number of clusters from 1 to 30 clusters and examine the results. First, we have 2 clusters 

(K = 2) that have 1 class for healthy people and 1 class for sick people. To divide the number of clusters 

even further, we divide healthy people into 2 clusters and divide sick people into 2 clusters (a total of 4 

clusters (K = 4)). In this way, input images should be classified by CNN-KCL to 4 classes. We also 

increased the number of clusters to 10, so that 5 clusters were created for sick people and 5 clusters for 

healthy people. As a result, a total of 10 clusters or 10 classes (K = 10) were created to identify healthy and 

sick people at CNN-KCL output. Finally, the number of clusters increased to 24 (K = 24), which we divided 

into 12 clusters for healthy people and 12 clusters for sick people. An input image is classified as healthy 

if it is categorized in one of the healthy clusters. All modes of 2 clusters, 4 clusters, 10 clusters, and 24 

clusters in conditions 30-70 (70% data for training and 30% data for a test) and 20-80 (80% of the data for 

training and 20% of the data for the test), have been examined.  

 

4.6 Recommended CNN-KCL architecture 

The proposed CNN-KCL architecture is shown in Figure 3. CNN-KCL includes input layers, convolution 

(32 kernels), Maxpooling (2 ˟ 2), Dropout, re-convolution layers (64 kernels), Maxpooling (2 ˣ 2), and 

Dropout. It also has the Flatten layer, fully connected, and the dropout layer, and finally the desired output. 

CNN-KCL is described in detail in Table 2. 
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Table 2. Details explanation of CNN-KCL 
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Figure 3. The geneal archutecture of CNN-KCL 

The proposed CNN architecture is presented in Figure 3. Images with a size of 100 * 100 enter the CNN 

network. As the first part of the network, a convolution layer with a 3 * 3 kernel size, a Maxpooling layer 

with a 2 * 2 kernel size, and a dropout layer with a size of 0.2 have been selected. In this network, the 

convolution layer is used to extract the feature from the dataset. The dropout layer is used to randomly 

remove a number of neurons to avoid overfitting in the network. The combination of these three layers with 

the activation function on CNN is usually referred to as one layer. The proposed CNN network consists of 

three layers with the mentioned features. The numbers of filters in the first, second, and third convolution 

layers are 32, 64, and 64, respectively. After passing the data through these three layers, the Flatten layer is 

used to change the form of the data from two-dimensional to one-dimensional mode. Then, the Fully 

Connected layer is used to classify the network. After the Fully Connected layer, the Dropout layer is used 

again to avoid the network overfit. As the output layer, there is a vector with the number of neurons equal 

to the number of clusters, i.e., 2, 4, 10, and 24. 
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5. Experimental results 

In this section, the proposed algorithm is applied on Z-Alizadeh Sani myocarditis dataset described in 

before. We also used Python programming language and the Keras library used with the Tensorflow to 

implement CNN-KCL. The results of clustering and classification are presented in this section. 

In the first step, CNN-KCL was applied for the classification purpose. Initially, the Z-Alizadeh Sani 

myocarditis dataset was given to the CNN-KCL model without clustering. In fact, just a cluster for healthy 

persons and a cluster for sick persons considered. Due to a great variety in the employed dataset and 

existence of images in different parts of the heart, the initial accuracy of CNN-KCL was very low. For this 

reason, the data was divided into more clusters to represents the data with more distinctive pattern.  

In order to cluster the data, the K-means method was used where K is the number of clusters. The Elbow 

method was used to find the best K. The value of K was examined for the Elbow method from 1 to 30. 

Figures 4 shows the Elbow method’s result to identify the optimal K. As shown in this figure, since we did 

not observe a sharp slope, the exact amount of the best K was not determined. For this reason, the K-means 

method was used with different values of K (4, 10, and 24) to determine the process of accuracy changes 

considering different values of K. In the first steps, K = 4 was placed (that means 2 clusters for healthy 

persons and 2 clusters for sick persons).  Previously, 1 cluster for healthy persons and 1 cluster for sick 

persons were examined.  

For the case where K = 4, two clusters were obtained for healthy individuals and 2 clusters for individuals. 

As the value of K increased to 10 and 24, the accuracy of CNN-KCL decreased. In each of the K states (2 

(before clustering), 4, 10, and 24) CNN-KCL networks were executed, and the results were obtained. The 

results achieved using different number of clusters are shown in Figures 5 to 10, respectively. The figures 

represent Accuracy [47], LOSS [48], and ROC [49]. Also, the figures are created for 2 clusters, 4 clusters, 

and 24 cluster modes. 

 

Figure 4. Elbow method for optional K 
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c d 
Figure 5. Accuracy of CNN-KCL for different number of clusters for 70/30 training/ testing. a) before clustering. b) 

4 clusters. c) 10 clusters d) 24 clusters. 
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Figure 6. Accuracy of CNN-KCL for different numbers of clusters for 80/20 training/ testing. a) before clustering. 

b) 4 clusters. c) 10 clusters. d) 24 clusters. 

Figures 5 and 6 show the accuracy in 30-70 modes (70% of the data for training and 30% of the data for 

testing) and 20-80 (80% of the data for training and 20% of the data for testing), respectively. In each of 

these two figures, the results with 4 clusters, 10 clusters, and 24 clusters are shown, and the blue and orange 

lines represent the training and validation process over 70 epochs, respectively. In Figures 5 and 6, in the 

30-70 mode without clustering, the CNN-KCL network is not well trained and has low accuracy. While in 

4-cluster, 10-cluster, and 24-cluster modes, the training and validation process are almost identical as shown 

in these figures, the best results achieved using CNN-KCL and K = 4 clusters.  

It was observed in Figures 7 and 8that as loss of training data approached to zero, less error in detecting 

the input images was recorded. In general, the validation data should move in accordance with the training 

chart. If the distance between these two graphs increases, the difference between the two training and 

validation graphs increases, and as a result, the error increases and the network tend to overfit.  
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c d 

 

Figure 7. Loss of CNN-KCL for different number of clusters for 70/30 training/ testing. a) before clustering. b) 4 

clusters. c) 10 clusters. d) 24 clusters. 

As shown in Figure 7, in the case of 2 clusters, by dividing the data by 30-70 ratio, the error increases 

dramatically, and in the cases of 4, 10, and 24 clusters, the errors decrease. In the case of 4 clusters, we 

observe the least error. We also observe similar results in the 20-80 ratio data division in 4, 10, and 24 

cluster modes in Figure 8. 
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c d 

 

Figure 8. Loss of CNN-KCL for a different number of clusters for 80/20 training/ testing. a) before clustering. b) 4 

clusters. c) 10 clusters. d) 24 clusters. 

Finally, as demonstrated in Figures 9 and 10, we obtained the ROC diagram for the 4, 10, and 24 cluster 

modes to divide the data into 30-70 and 20-80 ratios. Here, the ROC used to evaluate different models. As 

shown in this figure, the proposed method can detect the disease very well in 4, 10 and 24 cluster modes. 

In Figure 9, in the case of 2 clusters, we have the lowest AUC value, while in cases of 4, 10, and 24 clusters, 

the performance of ROC chart are increasing. As shown in this figure, using 4 clustering, ROC chart 

demonstrates the best performance compared to other modes.  
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Figure 9. ROC of CNN-KCL for different number of clusters for 70/30 training/ testing. a) before clustering b) 4 

clusters. c) 10 clusters. d) 24 clusters. 

 

In addition, in Figure 10, we observe similar results in terms of ROC for the above modes (70/30 and 80/20 

ratios).Finally, the results of the comparison for the diagnosis of myocarditis using CNN-KCL with 4, 10, 

and 24 clusters for data division in 30-70 and 20-80 ratios are presented in Table 3. 
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Figure 10. ROC of CNN-KCL for a different number of clusters for 80/20 training/ testing. a) before clustering. b) 

4 clusters. c) 10 clusters. d) 24 clusters. 

 

Table 3. The classification results achieved using CNN-KCL when using different number of clusters. 

Number of 

clusters 

Train/test Accuracy (%) Precision (%) Recall (%) Specificity 

(%) 

F1-score 

(%) 

Loss 

Without 

clustering 

70/30 52.8 52.8 100.0 0 69.1 7.565 

80/20 85.0 92.8 79.1 92.6 85.4 0.317 

4 clusters 70/30 91.9 94.3 92.5 93.5 93.4 0.272 

80/20 92.3 95.9 93.1 95.5 94.5 0.301 

10 clusters 70/30 87.8 94.1 91.5 94.0 92.8 0.563 

80/20 88.1 94.7 92.6 94.2 93.6 0.394 

24 clusters 70/30 84.9 93.8 92.7 92.5 93.3 0.691 

80/20 86.0 92.4 92.9 91.7 92.6 0.585 
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According to Table 3, we investigated various evaluation criteria including: precision, accuracy, recall, 

specificity, F1-Score, and Loss. We have examined 30-70 and 20-80 ratios to divide the data to build 

independent test set. In the non-clustering mode, by dividing the data using 30-70 ratio, the values of 

accuracy, precision, recall, specificity, F1-score, and Loss are 52.8%, 52.8%, 100%, 0.0, 69.1% and 7.6, 

respectively. By dividing the data using 20-80 ratio, the values of accuracy, precision, recall, specificity, 

F1-score, and Loss are 85.0, 92.8, 79.0, 92.6, 85.4 and 0.32, respectively. According to the obtained results, 

using the CNN-KCL method, when K = 4, by dividing the data into 30-70 and 20-80 ratios, the best 

performance is achieved compared to other modes. 

 

6. Conclusion and future works 

Myocarditis which remains one of the most challenging diagnoses in cardiology can affect the heart muscle 

and its electrical system. The most common cause of myocarditis is viral infection but other potential causes 

include Bacteria, Parasites, Fungi, Medications, or illegal drugs that might cause an allergic or toxic 

reaction, chemicals, or radiation [50]. Patients might present with a wide variety of symptoms like 

palpitations, dizziness, or syncope, serious ventricular arrhythmia, and angina like chest pain [4]. Sudden 

cardiac death and acute coronary syndrome in healthy young adults can be caused by heart failure or severe 

arrhythmia [51].  

Nowadays, thanks to the advent of technology, diagnostic possibilities have expanded and improved but 

there is still room for additional modifications and improvements [52]. Endomyocardial biopsy (EMB) as 

the invasive gold standard for diagnosis of myocarditis is subject to sampling error, false negative, false-

positive results, procedural risks, or lack of local expertise therefore due to these limitations is infrequently 

performed [53]. Among non-invasive methods, Electrocardiogram (ECG) and echocardiography are the 

primary diagnostic tools for the heart diseases which are applicable for excluding other causes of 

cardiomyopathy. They can help to document disease development because temporal changes in systolic 

function, chamber size, and thickness can be evaluated regularly. However, they do not provide determined 

signs for myocarditis. Their utility base more on excluding other causes in assessing heart function. Even 

normal findings in a patient do not exclude myocarditis [54]. When it is compared, cardiac MRI (CMR) 

has been considered as a noninvasive and golden standard diagnostic tool for suspected myocarditis and 

plays an indispensable role in diagnosing various cardiac diseases. CMR provides the possibility of 

anatomical and functional imaging and accurate assessment of heart. However, in this respect what is more 

important is its ability of tissue characterization [26, 52].  

Based on our experimental results and studies on diseases, the convolutional neural network has an 

acceptable function for detecting and classifying images. However, no studies have used CNN-KCL to 

diagnose myocarditis. The images were very diverse because they were taken from different angles. 

Therefore, in dealing with such images, we used the K-means clustering method. We used the Elbow 

method to find the optimal K, which in the end, this method was not successful. For this reason, in this 

study, in this study, a novel hybrid CNN-KCL method was first used to diagnose and classify myocarditis 

on Z-Alizadeh Sani myocarditis dataset. Our proposed method consists of two parts: clustering and 

convolutional neural network. Due to the diversity and heterogeneity of the input data in that heart images, 
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we adopted clustering method to separate healthy samples from unhealthy samples. As a result, the non-

tagged method of clustering with K-means was used. We considered different values for K (from 1 to 30). 

On the other hand, for testing, the data set was divided into 30-70 and 20-80 ratios. We demonstrated our 

results using various evaluation criteria including accuracy, accuracy, F1-score, sensitivity, transparency, 

recall, and Loss. As shown in this paper, CNN-KCL when using 4-cluster mode demonstrates the best 

performance compared to other modes. As shown in Table 3, CNN-KCL achieves to 92.3%, 95.9%, 93.1%, 

95.5%, 94,5%, and 0.3 in terms of accuracy, precision, recall, specificity, F1-score, and Loss, respectively. 

As of future works, we aim at using semi-supervised methods, reinforcement learning e.g., deep 

reinforcement learning, and supervised methods such as Recurrent Neural Networks (RNN) to enhance the 

prediction performance. We also aim at using explainable AI and Case-Based Reasoning (CBR). 
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