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Abstract

Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral
infection and can affect the heart muscle and its electrical system. It has remained as one of the most
challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately
20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered as a noninvasive and
golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing
various cardiac diseases. However, the performance of CMR is heavily dependent on the clinical
presentation and non-specific features such as chest pain, arrhythmia, and heart failure. Besides, other
imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose,
and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper
introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL)
to diagnose the Myocarditis. The hybrid CNN-KCL method performs the early and accurate diagnosis of
Myocarditis. To the best-of-our-knowledge, a Convolutional neural network has never been used before for
the diagnosis of Myocarditis. In this study, we used 47 subjects to diagnose myocarditis patients from
Tehran's Omid Hospital. The total number of data examined is 10425. Our results demonstrate that CNN-
KCL achieves 92.3% in terms of diagnosis myocarditis prediction accuracy which is significantly better
than those reported in previous studies.

Keywords: Myocarditis; Diagnosis; Convolutional Neural Network; Cardiac MRI; prediction
1. Introduction

Cardiovascular Diseases (CVD) are among the most important causes of mortality around the world [1, 2].
Atherosclerosis as the leading cause of CVD referring to build-up of different substances including
cholesterol and fat in and on the walls of the arteries. The flow of blood is constrained in such a situation
which in turn affect the whole body. CVDs due to atherosclerosis include cerebrovascular disease (e.g.
stroke), ischemic heart disease (e.g. heart attack), and hypertensive heart disease. Other CVDs embrace
rheumatic heart disease, inflammatory heart disease, congenital heart disease, cardiac arrhythmias, and
heart failure [2].
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Inflammation of the heart muscles is clinically termed as myocarditis [3]. In Figure 1, discrimination of
normal and myocarditis affected heart can be seen. The inflammation of heart muscles is evident in
myocarditis affected heart as shown in Figure 1. The symptoms of myocarditis include chest pain or mild
dyspnea. Common viral infections such as hepatitis B and C, parvovirus and the recent one, COVID-19
may also cause myocarditis. Other specific forms of myocarditis include sarcoidosis, giant-cell myocarditis,
hypersensitivity drug reactions, toxic or pathogens which may occur less commonly [4]. Patients that are
diagnosed with myocarditis should be referred to the heart specialist for endomyocardial biopsy. The
endomyocardial biopsy enables the clinicians to check the presence of premorbid in the patients of
myocardial inflammation. Myocardial is the prime cause of unexpected death approximately 20% in adults
less than 40 years old [5]. Although it had been centuries since the recognition of this enigmatic disease,
effective treatment strategies are yet to develop because of several issues such as: insensitivity to diagnostic
tests, complex relations between maladaptive and adaptive immune responses [4]. A recent development in
the genetic basis of immune-mediated heart disease and studies in animals provided key information in
treating the disease.

Inflammation

Normal Myocarditis

Figure 1: Demonstration of Myocarditis (on the right) and normal heart (on the left). As shown here, the
inflammation of the heart muscles is evident in myocarditis affected heart.

Early detection of heart diseases and hazards is crucial for decreasing the mortality rate [6]. It is thorny for
the specialist as well to interpret accurately different images such as electrocardiograms, echocardiograms
or magnetocardiogram for diagnosis of heart related diseases as it is time consuming, costly, and error-
prone. Hence, automatic computer-based diagnosis systems are in high demand to assist the clinicians to
detect and diagnose the diseases more accurately, faster, and less costly. Such systems are used in various
diseases including heart-related diseases. These systems utilize various machine learning and data mining
techniques to effectively resolve issues [6]. The aim is to develop prognostic models that effectively predict
(with reasonable specificity and sensitivity) the occurrence and outcome of disease in the near future.

The screening methods provided above help physicians diagnose the disease at an early stage and they can
manually analyze the data to know if one has the disease. However, using imaging techniques (for
diagnosing the disease) often causes a misdiagnosis. Factors such as fatigue and excessive workload of the
physician as well as other factors such as the presence of various noises in the images or the presence of a
mass or lesion that is not visible to the eye can cause misdiagnosis [7]. A wrong diagnosis in the early
stages, can be seriously challenging for a person's health leading to possible death. To address this problem,
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computerized aided diagnosis (CADS) can help clinicians in diagnosing the diseases in their early stages

8].

Machine learning methodologies are deployed to predict and analysis different disease-related issues [9].
Analyzing large numbers of images collected from patients and using non-deep learning algorithms is
difficult because when the data becomes too large the algorithm becomes complicated due to the number
of segmentation algorithms, required feature extraction, and classification process [10]. In addition, non-
deep learning methods can partially receive the input data, and if the data exceeds a certain limit, they
become unable to adequately process it. However, the deep learning-based methods can solve these
complex problems. In fact, for deep learning-based models, the more the input data increases, the more they
become accurate and efficient. Deep learning plays a crucial role in successfully analyzing heart-related
images [11]. The performance of the classification methods is enhanced by utilizing deep learning
techniques.

To the best-of-our-knowledge, there is no scientific literature related to deep learning-based studies on the
detection and diagnosis of myocarditis disease. This is the first step towards such a study. We, therefore,
systematically reviewed the literature based on Cardiomyopathy oriented diseases. The rest of the paper is
organized as follows: Section 2 describes literature review; Section 3 presents Z-Alizadeh Sani myocarditis
dataset; Section 4 represents method while section 5 describes experimental results; Section 6 presents the
discussion which is follows by section 7 that presents conclusion and future work.

2. Literature Review

BaefBler et al. [12] examined whether machine learning-based techniques might be utilized for the
recognition of myocardial tissue alterations in hypertrophic cardiomyopathy (HCM) on T1- weighted non-
contrast cardiac magnetic resonance (CMR) images using texture analysis (TA). Texture feature selection
and step-wise dimension reduction were exploited for feature selection and identification of myocardial
tissue alterations on non-contrast T1-weighted CMR images in HCM patients.

In another study, Ovreiu and Simon [13] investigated the diagnosis of cardiomyopathy in its two common
forms: hypertrophic and dilated via P wave features. They applied a novel evolutionary technique dubbed
as biogeography-based optimization (BBO) and developed a neuro-fuzzy network. They demonstrated that
cardiomyopathy could be successfully diagnosed by applying a neuro-fuzzy model. Later Ali et al.
presented a computerized framework for detection of cardiomyopathy diseases utilizing a multilayered
perceptron (MLP) neural network [14]. In this study, the high-frequency noise removal method was
employed using moving and median average filters at the preprocessing stage.

More recently Alis ef al. [15] exploited a machine learning approach for texture feature analysis of cardiac
magnetic resonance imaging (MRI) for examining the incidence of ventricular tachyarrhythmia (VT) in
hypertrophic cardiomyopathy patients. Similarly, Borkar et al. [16] proposed a machine learning approach
for the automatic detection of Atrial Septal Defect (ASD) and dilated cardiomyopathy (DCM) diseases.
Their dataset comprised of the ultrasound videos of DCM, ASD, and normal cases. In another study,
Sengupta et al. [17] designed a machine learning algorithm based on an associative memory classifier using
echocardiographic and clinical records of 44 patients with restrictive cardiomyopathy and 50 with
constrictive pericarditis. To discriminate constrictive pericarditis from restrictive cardiomyopathy, they
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normalized the speckle tracking echocardiography images with respect to 47 controls with no structural
heart disease and evaluated the diagnostic area under the ROC curve of the associative memory classifier.

At the same time, Begum et al. [18] developed an automated diagnostic system for cardiomyopathy disease
using feed-forward backpropagation neural network and SVM classifiers. They utilized online PTB
diagnostic ECG database and preprocessed it for baseline correction and noise cancellation. They then
proposed four time-based features and classified them using artificial neural networks and SVM [19]. More
recently, Green et al. [20] studied the echocardiograms and photo plethysmography data from a control
cohort of 64 healthy volunteers and 19 HCM patients with left ventricular outflow tract obstruction
(oHCM). In another study, Tsai and Kojima[21] utilized four texture features of ultrasonic images for heart
disease classification. Their proposed method took as input the heart images that measured texture features
by generating a gray-level co-occurrence matrix.

More recently, Narula et al. [22] examined the potential for a machine learning system that integrated
speckle-tracking echocardiographic recordings for discrimination of HCM from physiological hypertrophy
seen in athletes (ATH). Similarly, Rahman et al. [23] proposed an HCM patient classifier utilizing standard
12-lead and 10-seconds ECG signals. They derived 504 temporal and morphological features including
both newly-developed and commonly used ones from ECG signals for heartbeat classification.

Recently, Shao et al. [24] examined whether TA parameters on magnetic resonance T1 mapping could be
applied for the diagnosis of DCM. In this study, Modified Look-Locker Inversion Recovery (MOLLI)
sequence at a 3.0 T MR scanner was used to acquire T1 maps. The epicardium and endocardium were
strained on the short-axis slices of the T1 maps by a skilled radiologist. Most recently, Capture et al. [25]
performed plasma proteomics and exploratory myocardial screens and consequently devised a multiplexed
targeted liquid chromatography-tandem/mass spectrometry-based assay to examine 26 peptide biomarkers
to recognize novel plasma biomarkers for patients with HCM.

Based on the related works, there is no deep learning based method for diagnosing myocarditis. In the
proposed CNN-KCL method, a combination of k-means clustering and CNN classifier was used. Because
of the large number of image sections, we first used clustering method. In k-means algorithm, due to the
reduction of low slope K, the elbow method cannot be used. For this reason, we increased the value of K
from 2 clusters to 24 clusters to determine the effect of increasing the number of clusters on the accuracy
of CNN classification.

3. Z-Alizadeh Sani myocarditis dataset

Cardiac MR Imaging is considered as the noninvasive and diagnostic golden standard of myocarditis in the
absence of biopsy. CMR provides the possibility of anatomical and functional imaging and accurate
assessment of heart. However, in this respect, its ability of tissue characterization is even more
important[26]. Three diagnostic targets for the three recommended Cardiac MRI criteria are myocardial
edema, hyperemia/capillary leak, and scar which is known as Lake Louise Criteria (LLC) [27]. Existence
of contrast enhancement (CE-GD) affirms myocardial injury (i.e. scar, fibrosis) while T2-weighted images
show interstitial edema, known as an integral part of the inflammatory response. The pre and post-contrast
T1-Weighted image indicates presents of hyperemia/capillary leak in myocardial tissue. The LLC has been
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accepted beyond clinical criteria and endomyocardial biopsy. Two out of three “Lake Louise Criteria” have
80.0% accuracy for a correct diagnosis of acute myocarditis [28]. In this study, we developed a model to
diagnose myocarditis based on three indexes of Lake Louise Criteria (LLC).

CMR imaging protocols

This study was prospectively performed from September 2018 to September 2019 at the CMR department
of OMID hospital at Tehran, IRAN. The study was approved by the local ethical committee of the OMID
hospital. CMR examination was performed using a 1.5-T system (MAGNETOM Aera Siemens, Erlangen
Germany) [29]. All patients were scanned with dedicated body coils in the standard supine position. The
CMR protocols are as follows:

We performed CINE-segmented images and pre-contrast T2-Weighted (trim) images in short and long-axis
views. Pre contrast T1-Weighted relative images were acquired in axial views of the myocardium.
Immediately after Gadolinium injection (DOTAREM 0/1 mmol/kg) the T1-Weighted relative sequence
was repeated and after 10-15 minutes, Late Gadolinium Enhancements (LGE- high-resolution PSIR)
sequences in short and long-axis views were performed. Table 1 shows the parameters and details of CMR
sequences:

Table 1.Z-Alizadeh Sani myocarditis dataset description”

slice Concatenation Breath-
Protocols & TE TR Segment thickness and NEX h.Old
Parameters (ms) (ms) (mm) Slice number time
(s)
CINE_segmented (true
FISP) Long Axis (LAX): | 1> | 3360 15 7 3 1 8
CINE_segmented (true
FISP) Short Axis (SAX): | 11 | 3192 15 7 15 1 8
T2-Weighted (TIRM) .
LAX, pre-contrast 52 800 Non-cine 10 3 1 9
T2-Weighted (TIRM) .
SAX, pre-contrast 52 800 Non-cine 10 5 1 10
T1 Relative-Weighted
TSE (Trigger)- AXIAL- .
dark blood 24 525 Non-cine 8 5 1 7
pre and post-contrast
Late-GD Enhancement
LGE(high-resolution 3.16 666 Non-cine 8 1 1 7
PSIR) SAX and LAX

*Sequences’/protocols’ name and parameters description Used by CMR in Patients of this study. TE: Time Echo, TR:
Time Repetition, Segment: numbers of frames (Segmented acquisition to produce a series of images that can be
displayed as a movie of cardiac function (cine)), Slice Thickness: how thick the slices are, Concatenation:
distribution of the slices to be measured over multiple TR, NEX: Number of Excitations (How many times each line
of k-space data is acquired during the scan), Breath-hold time: Duration of time that patient should hold his/her breath
in order to avoiding chest motion artifacts.

4. Method
4.1 Convolutional Neural Network (CNN)
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A CNN is a deep learning technique that takes an image as input, allocates importance (biases and learnable
weights) to different objects/aspects in the image, and then classify them [30]. CNN requires much lower
pre-processing compared to the other deep learning architectures. Generally, filters are hand-engineered in
primitive methods while CNN has the ability to learn these characteristics/filters. The connectivity pattern
of neurons in the Human Brain and the architecture of CNN are analogous. In fact, CNN is developed based
on the organization of the Visual Cortex. A CNN is comprised of an input layer, multiple hidden layers,
and an output layer. The hidden layers of CNN are typically created with convolutional layers that convolve
with others [31]. The activation function is usually a Rectified Linear Units (ReLU) layer and additional
convolutions such as normalization layers, fully connected layers, and pooling layers are consequently
followed [32]. There are various architectures of CNNs that are extensively used in the deep learning
domain. Some of such architectures are LeNet [33], AlexNet [34], VGGNet [35], GoogleNet [36], and
ResNet [37]. CNN is widely used in many different areas of research including computer vision, medical
image analysis, recommendation system, financial time series, natural language processing, image, and
video recognition and classification [38]. CNN has been applied successfully in detection and diagnosis of
various diseases using various image modalities [31, 39-43].

4.2 K-means clustering

K-means clustering is one of the popular and simplest unsupervised technique used in machine learning
domain [44]. It is based on vector quantization that aims to partition »n observations into k clusters. Each
observation belongs to a cluster with nearest mean value (cluster centroid or cluster centers). The Euclidean
distance (or any other distance metrics) is usually utilized to compute & groups of similarity [45]. Each item
is categorized to its closest mean and the mean’s coordinates are updated as the averages of the items
categorized in that cluster so far.

4.3 Elbow method

A basic step in any clustering method is to estimate the optimal number of clusters in which data needs to
be clustered to. To estimate the optimal value of k£ (number of clusters), the elbow method [45] is considered
as one of the popular techniques. In this method, the mean of the squared distances from the cluster centers
of the relevant clusters is termed as distortion. The sum of squared distances of samples to their closest
cluster center is dubbed as inertia. To find the optimal number of the clusters, the values of k is iterated
(from 1 to n) and the values of distortions for each value of & is computed to measure the inertia and
distortion. The optimal number of clusters is then computed by selecting the value of £ at the “elbow” i.e.
the point after which the inertia/distortion begins to decrease linearly [46].

4. 4 Proposed CNN-KCL scheme

The block diagram of the proposed clustering method namely Convolutional Neural Network-Clustering
(CNN-KCL) is shown in Figure 2, which includes the steps of data entry, clustering, classification, and
final prediction.
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Figure 2. The block diagramof the proposed CNN-KCL method
According to Figure 2, the implementation steps are shown briefly:
Step 1: In the first step, the proposed dataset is entered into the system.

Step 2: The second step is related to the initial pre-processing. All dataset images are on a Gray level. So
there is no need to delete the image channels. Dataset images are available in a variety of sizes. For this
purpose, all images are resized to a size of 100 x 100. After resizing the images in the data pre-processing
step, the image normalization operation is performed. Normalization of images transforms the light
intensity of all image pixels to the range of zero and one (0 and 1).

Step 3: Due to the great variety of image sections, clustering is used in this step. There are different methods
for clustering data that in this research, the k-means method is used to cluster images. It is important to note
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that the k-means algorithm is not capable of clustering two-dimensional images. For this reason, all images
are reshaped into the vector of pixels, and then these are used in the k-means algorithm.

Step 4: In this step, the data is divided into 2, 4, 10, and 24 clusters by the k-means algorithm.

Step 5: In this step, the data of each cluster are classified using CNN separately. Convolution layers are for
feature extraction and fully connected layers act as classifiers in this network.

Step 6: In step 6, the results of the classification of 2, 4, 10, and 24 clusters are displayed separately.

Step 7: Finally, the results of the classification of clustered images performed by k-means and CNN
algorithms are compared.

We explain the above steps in more detail. When we used different images as input to CNN-KCL, it did
not have an accurate detection of incoming images. It was mainly due to the fact that our employed dataset
contains images with a very large difference, meaning that images were taken from different angles such
as side, front, bottom, and top. Hence, it was decided to use several clusters to incorporate the accuracy in
different modes with better results. In order to cluster the data, the K-means method has been used where
K is the number of clusters. We also used the Elbow method to find the best K.

In this study, we implemented the Elbow method from one cluster to 30 clusters (K =1 to 30). The resulting
graph was declining very slightly, so-called Smooth, and we could not identify the Elbow inside (that is,
the point with a very steep slope, and once the chart breaks and becomes horizontal). Hence, with the Elbow
method, we could not find the best number of clusters. For this reason, the K-means method was used with
K =4, k=10, and k=24 to determine the trend of accuracy changes with increasing and decreasing K. In fact,
we increase the number of clusters from 1 to 30 clusters and examine the results. First, we have 2 clusters
(K =2) that have 1 class for healthy people and 1 class for sick people. To divide the number of clusters
even further, we divide healthy people into 2 clusters and divide sick people into 2 clusters (a total of 4
clusters (K = 4)). In this way, input images should be classified by CNN-KCL to 4 classes. We also
increased the number of clusters to 10, so that 5 clusters were created for sick people and 5 clusters for
healthy people. As a result, a total of 10 clusters or 10 classes (K = 10) were created to identify healthy and
sick people at CNN-KCL output. Finally, the number of clusters increased to 24 (K = 24), which we divided
into 12 clusters for healthy people and 12 clusters for sick people. An input image is classified as healthy
if it is categorized in one of the healthy clusters. All modes of 2 clusters, 4 clusters, 10 clusters, and 24
clusters in conditions 30-70 (70% data for training and 30% data for a test) and 20-80 (80% of the data for
training and 20% of the data for the test), have been examined.

4.6 Recommended CNN-KCL architecture

The proposed CNN-KCL architecture is shown in Figure 3. CNN-KCL includes input layers, convolution
(32 kernels), Maxpooling (2 * 2), Dropout, re-convolution layers (64 kernels), Maxpooling (2 * 2), and
Dropout. It also has the Flatten layer, fully connected, and the dropout layer, and finally the desired output.
CNN-KCL is described in detail in Table 2.
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Table 2. Details explanation of CNN-KCL
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Figure 3. The geneal archutecture of CNN-KCL

The proposed CNN architecture is presented in Figure 3. Images with a size of 100 * 100 enter the CNN
network. As the first part of the network, a convolution layer with a 3 * 3 kernel size, a Maxpooling layer
with a 2 * 2 kernel size, and a dropout layer with a size of 0.2 have been selected. In this network, the
convolution layer is used to extract the feature from the dataset. The dropout layer is used to randomly
remove a number of neurons to avoid overfitting in the network. The combination of these three layers with
the activation function on CNN is usually referred to as one layer. The proposed CNN network consists of
three layers with the mentioned features. The numbers of filters in the first, second, and third convolution
layers are 32, 64, and 64, respectively. After passing the data through these three layers, the Flatten layer is
used to change the form of the data from two-dimensional to one-dimensional mode. Then, the Fully
Connected layer is used to classify the network. After the Fully Connected layer, the Dropout layer is used
again to avoid the network overfit. As the output layer, there is a vector with the number of neurons equal
to the number of clusters, i.e., 2, 4, 10, and 24.
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5. Experimental results

In this section, the proposed algorithm is applied on Z-Alizadeh Sani myocarditis dataset described in
before. We also used Python programming language and the Keras library used with the Tensorflow to
implement CNN-KCL. The results of clustering and classification are presented in this section.

In the first step, CNN-KCL was applied for the classification purpose. Initially, the Z-Alizadeh Sani
myocarditis dataset was given to the CNN-KCL model without clustering. In fact, just a cluster for healthy
persons and a cluster for sick persons considered. Due to a great variety in the employed dataset and
existence of images in different parts of the heart, the initial accuracy of CNN-KCL was very low. For this
reason, the data was divided into more clusters to represents the data with more distinctive pattern.

In order to cluster the data, the K-means method was used where K is the number of clusters. The Elbow
method was used to find the best K. The value of K was examined for the Elbow method from 1 to 30.
Figures 4 shows the Elbow method’s result to identify the optimal K. As shown in this figure, since we did
not observe a sharp slope, the exact amount of the best K was not determined. For this reason, the K-means
method was used with different values of K (4, 10, and 24) to determine the process of accuracy changes
considering different values of K. In the first steps, K = 4 was placed (that means 2 clusters for healthy
persons and 2 clusters for sick persons). Previously, 1 cluster for healthy persons and 1 cluster for sick
persons were examined.

For the case where K = 4, two clusters were obtained for healthy individuals and 2 clusters for individuals.
As the value of K increased to 10 and 24, the accuracy of CNN-KCL decreased. In each of the K states (2
(before clustering), 4, 10, and 24) CNN-KCL networks were executed, and the results were obtained. The
results achieved using different number of clusters are shown in Figures 5 to 10, respectively. The figures
represent Accuracy [47], LOSS [48], and ROC [49]. Also, the figures are created for 2 clusters, 4 clusters,
and 24 cluster modes.

1le12 Elbow Method for Optimal K
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Figure 4. Elbow method for optional K
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Figure 6. Accuracy of CNN-KCL for different numbers of clusters for 80/20 training/ testing. a) before clustering.
b) 4 clusters. ¢) 10 clusters. d) 24 clusters.

Figures 5 and 6 show the accuracy in 30-70 modes (70% of the data for training and 30% of the data for
testing) and 20-80 (80% of the data for training and 20% of the data for testing), respectively. In each of
these two figures, the results with 4 clusters, 10 clusters, and 24 clusters are shown, and the blue and orange
lines represent the training and validation process over 70 epochs, respectively. In Figures 5 and 6, in the

30-70 mode without clustering, the CNN-KCL network is not well trained and has low accuracy. While in
4-cluster, 10-cluster, and 24-cluster modes, the training and validation process are almost identical as shown

in these figures, the best results achieved using CNN-KCL and K = 4 clusters.

It was observed in Figures 7 and 8that as loss of training data approached to zero, less error in detecting

the input images was recorded. In general, the validation data should move in accordance with the training

chart. If the distance between these two graphs increases, the difference between the two training and
validation graphs increases, and as a result, the error increases and the network tend to overfit.


https://doi.org/10.20944/preprints202007.0650.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2020 d0i:10.20944/preprints202007.0650.v1

Loss of Deep Neural Network Loss of Deep Neural Network
0.9 4
—— Train Data —— Train Data
7.6 4 — Validation Data 0.8 | —— Validation Data
0.7 4
7.5
0.6 1
@ 74 10 0.5
e g
0.4 4
7.3
0.3 4
7.2
0.2 4
71 4 0.1
0 10 20 30 40 50 60 70 T
0 10 20 30 40 50 60 70
Epochs
Epochs
Loss of Deep Neural Network Loss of Deep Neural Network
1.4 —— Train Data 2.00 —— Train Data
—— Validation Data —— Validation Data
1.75 4
124
1.50 4
10+
1.25 4
@ 0.8 4
E| 3 100
0.6 4
0.75 4
041 0.50 A
0.2 4 0.25 A
T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epochs Epochs

Figure 7. Loss of CNN-KCL for different number of clusters for 70/30 training/ testing. a) before clustering. b) 4
clusters. ¢) 10 clusters. d) 24 clusters.

As shown in Figure 7, in the case of 2 clusters, by dividing the data by 30-70 ratio, the error increases
dramatically, and in the cases of 4, 10, and 24 clusters, the errors decrease. In the case of 4 clusters, we
observe the least error. We also observe similar results in the 20-80 ratio data division in 4, 10, and 24
cluster modes in Figure 8.
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Figure 8. Loss of CNN-KCL for a different number of clusters for 80/20 training/ testing. a) before clustering. b) 4
clusters. ¢) 10 clusters. d) 24 clusters.

Finally, as demonstrated in Figures 9 and 10, we obtained the ROC diagram for the 4, 10, and 24 cluster
modes to divide the data into 30-70 and 20-80 ratios. Here, the ROC used to evaluate different models. As
shown in this figure, the proposed method can detect the disease very well in 4, 10 and 24 cluster modes.

In Figure 9, in the case of 2 clusters, we have the lowest AUC value, while in cases of 4, 10, and 24 clusters,

the performance of ROC chart are increasing. As shown in this figure, using 4 clustering, ROC chart

demonstrates the best performance compared to other modes.
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Figure 9. ROC of CNN-KCL for different number of clusters for 70/30 training/ testing. a) before clustering b) 4
clusters. ¢) 10 clusters. d) 24 clusters.

In addition, in Figure 10, we observe similar results in terms of ROC for the above modes (70/30 and 80/20
ratios).Finally, the results of the comparison for the diagnosis of myocarditis using CNN-KCL with 4, 10,
and 24 clusters for data division in 30-70 and 20-80 ratios are presented in Table 3.
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Figure 10. ROC of CNN-KCL for a different number of clusters for 80/20 training/ testing. a) before clustering. b)
4 clusters. ¢) 10 clusters. d) 24 clusters.

Table 3. The classification results achieved using CNN-KCL when using different number of clusters.

Number of | Train/test | Accuracy (%) | Precision (%) | Recall (%) | Specificity | Fl-score Loss
clusters (%) (%)

Without 70/30 52.8 52.8 100.0 0 69.1 7.565
clustering 80/20 85.0 92.8 79.1 92.6 85.4 0.317
4 clusters 70/30 91.9 943 92.5 93.5 93.4 0.272

80/20 92.3 95.9 93.1 95.5 94.5 0.301
10 clusters 70/30 87.8 94.1 91.5 94.0 92.8 0.563
80/20 88.1 94.7 92.6 94.2 93.6 0.394
24 clusters 70/30 84.9 93.8 92.7 92.5 93.3 0.691
80/20 86.0 92.4 92.9 91.7 92.6 0.585



https://doi.org/10.20944/preprints202007.0650.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2020 d0i:10.20944/preprints202007.0650.v1

According to Table 3, we investigated various evaluation criteria including: precision, accuracy, recall,
specificity, F1-Score, and Loss. We have examined 30-70 and 20-80 ratios to divide the data to build
independent test set. In the non-clustering mode, by dividing the data using 30-70 ratio, the values of
accuracy, precision, recall, specificity, F1-score, and Loss are 52.8%, 52.8%, 100%, 0.0, 69.1% and 7.6,
respectively. By dividing the data using 20-80 ratio, the values of accuracy, precision, recall, specificity,
F1-score, and Loss are 85.0, 92.8, 79.0, 92.6, 85.4 and 0.32, respectively. According to the obtained results,
using the CNN-KCL method, when K = 4, by dividing the data into 30-70 and 20-80 ratios, the best
performance is achieved compared to other modes.

6. Conclusion and future works

Myocarditis which remains one of the most challenging diagnoses in cardiology can affect the heart muscle
and its electrical system. The most common cause of myocarditis is viral infection but other potential causes
include Bacteria, Parasites, Fungi, Medications, or illegal drugs that might cause an allergic or toxic
reaction, chemicals, or radiation [50]. Patients might present with a wide variety of symptoms like
palpitations, dizziness, or syncope, serious ventricular arrhythmia, and angina like chest pain [4]. Sudden
cardiac death and acute coronary syndrome in healthy young adults can be caused by heart failure or severe
arrhythmia [51].

Nowadays, thanks to the advent of technology, diagnostic possibilities have expanded and improved but
there is still room for additional modifications and improvements [52]. Endomyocardial biopsy (EMB) as
the invasive gold standard for diagnosis of myocarditis is subject to sampling error, false negative, false-
positive results, procedural risks, or lack of local expertise therefore due to these limitations is infrequently
performed [53]. Among non-invasive methods, Electrocardiogram (ECG) and echocardiography are the
primary diagnostic tools for the heart diseases which are applicable for excluding other causes of
cardiomyopathy. They can help to document disease development because temporal changes in systolic
function, chamber size, and thickness can be evaluated regularly. However, they do not provide determined
signs for myocarditis. Their utility base more on excluding other causes in assessing heart function. Even
normal findings in a patient do not exclude myocarditis [54]. When it is compared, cardiac MRI (CMR)
has been considered as a noninvasive and golden standard diagnostic tool for suspected myocarditis and
plays an indispensable role in diagnosing various cardiac diseases. CMR provides the possibility of
anatomical and functional imaging and accurate assessment of heart. However, in this respect what is more
important is its ability of tissue characterization [26, 52].

Based on our experimental results and studies on diseases, the convolutional neural network has an
acceptable function for detecting and classifying images. However, no studies have used CNN-KCL to
diagnose myocarditis. The images were very diverse because they were taken from different angles.
Therefore, in dealing with such images, we used the K-means clustering method. We used the Elbow
method to find the optimal K, which in the end, this method was not successful. For this reason, in this
study, in this study, a novel hybrid CNN-KCL method was first used to diagnose and classify myocarditis
on Z-Alizadeh Sani myocarditis dataset. Our proposed method consists of two parts: clustering and
convolutional neural network. Due to the diversity and heterogeneity of the input data in that heart images,
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we adopted clustering method to separate healthy samples from unhealthy samples. As a result, the non-
tagged method of clustering with K-means was used. We considered different values for K (from 1 to 30).
On the other hand, for testing, the data set was divided into 30-70 and 20-80 ratios. We demonstrated our
results using various evaluation criteria including accuracy, accuracy, F1-score, sensitivity, transparency,
recall, and Loss. As shown in this paper, CNN-KCL when using 4-cluster mode demonstrates the best
performance compared to other modes. As shown in Table 3, CNN-KCL achieves to 92.3%, 95.9%, 93.1%,
95.5%, 94,5%, and 0.3 in terms of accuracy, precision, recall, specificity, F1-score, and Loss, respectively.
As of future works, we aim at using semi-supervised methods, reinforcement learning e.g., deep
reinforcement learning, and supervised methods such as Recurrent Neural Networks (RNN) to enhance the
prediction performance. We also aim at using explainable Al and Case-Based Reasoning (CBR).

Author contributions

SS, RA, and ZAS designed the study. DS, RA, JHJ, SH, AS, and FH wrote the manuscript; FH, ZAS, and
AS collected data. SS, AD, and HAR edited the manuscript; DS, RA, and JHJ carried out the analyses. DS,
RA, and JHJ generated all figures and tables. All authors have read and approved the final version of the

paper.
Ethics approval and consent to participate

NA

Conflict of interest

The authors declare no competing financial and non-financial interests.
Funding

HAR is supported by UNSW Scientia Program Fellowship and is a member of the UNSW Graduate School
of Biomedical Engineering.

Acknowledgments

HAR is supported by a UNSW Scientia Program Fellowship.

References

[1] "Different heart diseases - World Heart Federation https://www.world-heart-federation.org/resources/different-heart-
diseases/, accessed on 05.04.2020." (accessed.

[2] J. H. Joloudari et al., "Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees

Model," International Journal of Environmental Research and Public Health, vol. 17, no. 3, p. 731, 2020. [Online].
Available: https://www.mdpi.com/1660-4601/17/3/731.

[3] L. T. Cooper, "Myocarditis," New England Journal of Medicine, vol. 360, no. 15, pp. 1526-1538, 2009, doi:
10.1056/NEJMra0800028.
[4] L. A. Blauwet and L. T. Cooper, "Myocarditis," Progress in Cardiovascular Diseases, vol. 52, no. 4, pp. 274-288,

2010/01/01/ 2010, doi: https://doi.org/10.1016/j.pcad.2009.11.006.



https://www.world-heart-federation.org/resources/different-heart-diseases/
https://www.world-heart-federation.org/resources/different-heart-diseases/
https://www.world-heart-federation.org/resources/different-heart-diseases/
https://www.world-heart-federation.org/resources/different-heart-diseases/
https://www.mdpi.com/1660-4601/17/3/731
https://www.mdpi.com/1660-4601/17/3/731
https://doi.org/10.1016/j.pcad.2009.11.006
https://doi.org/10.1016/j.pcad.2009.11.006
https://doi.org/10.20944/preprints202007.0650.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2020 d0i:10.20944/preprints202007.0650.v1

[5] A. M. Feldman and D. McNamara, "Myocarditis," New England Journal of Medicine, vol. 343, no. 19, pp. 1388-1398,
2000, doi: 10.1056/nejm200011093431908.
[6] M. Abdar, E. Nasarian, X. Zhou, G. Bargshady, V. N. Wijayaningrum, and S. Hussain, "Performance Improvement of

Decision Trees for Diagnosis of Coronary Artery Disease Using Multi Filtering Approach," in IEEE 4th International
Conference on Computer and Communication Systems (ICCCS), 2019, pp. 26-30.

[7] E. Nasarian et al., "Association between work-related features and coronary artery disease: A heterogeneous hybrid
feature selection integrated with balancing approach," Pattern Recognition Letters, vol. 133, pp. 33-40,2020/05/01/2020,
doi: https://doi.org/10.1016/j.patrec.2020.02.010.

[8] R. Alizadehsani et al., "Hybrid genetic-discretized algorithm to handle data uncertainty in diagnosing stenosis of coronary
arteries," Expert Systems, vol. n/a, no. n/a, doi: 10.1111/exsy.12573.

[9] R. Alizadehsani et al., "Model uncertainty quantification for diagnosis of each main coronary artery stenosis," Soft
Computing, vol. 24, no. 13, pp. 10149-10160, 2020/07/01 2020, doi: 10.1007/s00500-019-04531-0.

[10] H. Greenspan, B. v. Ginneken, and R. M. Summers, "Guest Editorial Deep Learning in Medical Imaging: Overview and

Future Promise of an Exciting New Technique," IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153-1159,
2016, doi: 10.1109/TMI1.2016.2553401.

[11] B. C. S. Loh and P. H. H. Then, "Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions,"
mHealth, vol. 3, pp. 45-45, 2017.

[12] B. BaeBller, M. Mannil, D. Maintz, H. Alkadhi, and R. Manka, "Texture analysis and machine learning of non-contrast
T1-weighted MR images in patients with hypertrophic cardiomyopathy—Preliminary results," European Journal of
Radiology, vol. 102, pp. 61-67, 2018.

[13] M. Ovreiu and D. Simon, "Biogeography-based optimization of neuro-fuzzy system parameters for diagnosis of cardiac
disease," presented at the Proceedings of the 12th annual conference on Genetic and evolutionary computation, Portland,
Oregon, USA, 2010.

[14] M. Ali, M. F. Rani, A. H. Jahidin, M. F. Saaid, and M. Z. H. Noor, "Identification of cardiomyopathy disease using
hybrid multilayered perceptron network," in /EEE International Conference on Control System, Computing and
Engineering, 2012, pp. 23-27.

[15] D. Alis, A. Guler, M. Yergin, and O. Asmakutlu, "Assessment of ventricular tachyarrhythmia in patients with
hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac
MRL" Diagnostic and Interventional Imaging, vol. 101, no. 3, pp. 137-146, 2020.

[16] S. Borkar and M. N. Annadate, "Supervised Machine Learning Algorithm for Detection of Cardiac Disorders," in Fourth
International Conference on Computing Communication Control and Automation (ICCUBEA), 2018, pp. 1-4.

[17] P. P. Sengupta et al., "Cognitive Machine-Learning Algorithm for Cardiac Imaging," Circulation: Cardiovascular
Imaging, vol. 9, no. 6, p. €004330, 2016, doi: doi:10.1161/CIRCIMAGING.115.004330.

[18] R. Begum and M. Ramesh, "Detection of cardiomyopathy using support vector machine and artificial neural network,"

International Journal of Computer Applications, vol. 133, no. 14, pp. 29-34, 2016.

[19] J. H. Joloudari, H. Saadatfar, A. Dehzangi, and S. Shamshirband, "Computer-aided decision-making for predicting liver
disease using PSO-based optimized SVM with feature selection," Informatics in Medicine Unlocked, vol. 17, p. 100255,
2019/01/01/ 2019, doi: https://doi.org/10.1016/j.imu.2019.100255.

[20] E. M. Green, R. v. Mourik, C. Wolfus, S. B. Heitner, O. Dur, and M. J. Semigran, "Machine Learning Detection of
Obstructive Hypertrophic Cardiomyopathy Using a Wearable Biosensor," Circulation, vol. 136, pp. A24031-A24031,
2017.

[21] D.-Y. Tsai and K. Kojima, "Measurements of texture features of medical images and its application to computer-aided
diagnosis in cardiomyopathy," Measurement, vol. 37, no. 3, pp. 284-292, 2005.

[22] S. Narula, K. Shameer, A. M. Salem Omar, J. T. Dudley, and P. P. Sengupta, "Machine-Learning Algorithms to Automate
Morphological and Functional Assessments in 2D Echocardiography," Journal of the American College of Cardiology,
vol. 68, no. 21, p. 2287, 2016, doi: 10.1016/j.jacc.2016.08.062.

[23] Q. A. Rahman, L. G. Tereshchenko, M. Kongkatong, T. Abraham, M. R. Abraham, and H. Shatkay, "Utilizing ECG-
Based Heartbeat Classification for Hypertrophic Cardiomyopathy Identification," I[EEE Transactions on
NanoBioscience, vol. 14, no. 5, pp. 505-512, 2015, doi: 10.1109/TNB.2015.2426213.

[24] X.-N. Shao et al., "Texture analysis of magnetic resonance T1 mapping with dilated cardiomyopathy: A machine learning
approach," Medicine, vol. 97, no. 37, pp. €12246-¢12246, 2018.

[25] G. Captur et al., "Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative
Proteomics and Machine Learning," Molecular &amp;amp; Cellular Proteomics, vol. 19, no. 1, p. 114, 2020, doi:
10.1074/mcp.RA119.001586.

[26] M. Chetrit and M. G. Friedrich, "The unique role of cardiovascular magnetic resonance imaging in acute myocarditis,"
F1000Research, vol. 7, pp. F1000 Faculty Rev-1153, 2018.

[27] M. D. Cornicelli, C. K. Rigsby, K. Rychlik, E. Pahl, and J. D. Robinson, "Diagnostic performance of cardiovascular
magnetic resonance native T1 and T2 mapping in pediatric patients with acute myocarditis," Journal of Cardiovascular
Magnetic Resonance, vol. 21, no. 1, pp. 40-48, 2019.

[28] M. A. G. M. Olimulder, J. van Es, and M. A. Galjee, "The importance of cardiac MRI as a diagnostic tool in viral
myocarditis-induced cardiomyopathy," Netherlands Heart Journal, vol. 17, no. 12, pp. 481-486, 2009.



https://doi.org/10.1016/j.patrec.2020.02.010
https://doi.org/10.1016/j.patrec.2020.02.010
https://doi.org/10.1016/j.imu.2019.100255
https://doi.org/10.1016/j.imu.2019.100255
https://doi.org/10.20944/preprints202007.0650.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2020 d0i:10.20944/preprints202007.0650.v1

[29] C. Moenninghoff et al., "Workflow Efficiency of Two 1.5 T MR Scanners with and without an Automated User Interface
for Head Examinations," Academic Radiology, vol. 20, no. 6, pp. 721-730, 2013/06/01/ 2013, doi:
https://doi.org/10.1016/j.acra.2013.01.004.

[30] N. Ghassemi et al., "Material Recognition for Automated Progress Monitoring using Deep Learning Methods," arXiv
preprint arXiv:2006.16344, 2020.
[31] A. Shoeibi et al., "Epileptic seizure detection using deep learning techniques: A Review," arXiv preprint

arXiv:2007.01276, 2020.
[32] A. Shoeibi ef al., "Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review,"
arXiv preprint, pp. 1-20, 2020.

[33] Y. LeCun et al., "Handwritten digit recognition with a back-propagation network," in Advances in neural information
processing systems, 1990, pp. 396-404.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in
Advances in neural information processing systems, 2012, pp. 1097-1105.

[35] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint
arXiv:1409.1556, 2014.

[36] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 1-9.

[37] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770-778.

[38] S. Lawrence, C. L. Giles, T. Ah Chung, and A. D. Back, "Face recognition: a convolutional neural-network approach,"
IEEE Transactions on Neural Networks, vol. 8, no. 1, pp. 98-113, 1997, doi: 10.1109/72.554195.

[39] H. Shin et al., "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset
Characteristics and Transfer Learning," IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1285-1298, 2016,
doi: 10.1109/TM1.2016.2528162.

[40] U. R. Acharya et al., "Deep convolutional neural network for the automated diagnosis of congestive heart failure using
ECG signals," Applied Intelligence, vol. 49, no. 1, pp. 16-27, 2019/01/01 2019, doi: 10.1007/s10489-018-1179-1.

[41] U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, "Automated detection of coronary artery disease
using different durations of ECG segments with convolutional neural network," Knowledge-Based Systems, vol. 132, pp.
62-71,2017/09/15/ 2017, doi: https://doi.org/10.1016/j.knosys.2017.06.003.

[42] J. H. Tan et al., "Application of stacked convolutional and long short-term memory network for accurate identification
of CAD ECG signals," Computers in Biology and Medicine, vol. 94, pp. 19-26, 2018/03/01/ 2018, doi:
https://doi.org/10.1016/j.compbiomed.2017.12.023.

[43] M. Khodatars et al., "Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of Autism Spectrum
Disorder: A Review," arXiv preprint arXiv:2007.01285, 2020.

[44] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrddl, "Constrained k-means clustering with background knowledge," 2001.

[45] A. K. Jain, "Data clustering: 50 years beyond K-means," Pattern Recognition Letters, vol. 31, no. 8, pp. 651-666,
2010/06/01/ 2010, doi: https://doi.org/10.1016/].patrec.2009.09.011.

[46] P. Bholowalia and A. Kumar, "EBK-means: A clustering technique based on elbow method and k-means in WSN,"
International Journal of Computer Applications, vol. 105, no. 9, 2014.

[47] R. Alizadehsani et al., "A database for using machine learning and data mining techniques for coronary artery disease
diagnosis," Scientific Data, vol. 6, no. 1, p. 227,2019/10/23 2019, doi: 10.1038/s41597-019-0206-3.

[48] E. M. Song et al., "Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model,"

Scientific Reports, vol. 10, no. 1, p. 30, 2020/01/08 2020, doi: 10.1038/s41598-019-56697-0.

[49] S. Hussain and G. Hazarika, "Educational data mining model using rattle," Editorial Preface, vol. 5, no. 6, 2014.

[50] I. Kindermann et al., "Update on Myocarditis," Journal of the American College of Cardiology, vol. 59, no. 9, p. 779,
2012, doi: 10.1016/j.jacc.2011.09.074.

[51] T. S. Kafil and N. Tzemos, "Myocarditis in 2020: Advancements in Imaging and Clinical Management," JA4CC: Case
Reports, vol. 2, no. 2, pp. 178-179, 2020.

[52] A. d. Roos, "Diagnosis of Myocarditis at Cardiac MRI: The Continuing Quest for Improved Tissue Characterization,"
Radiology, vol. 292, no. 3, pp. 618-619, 2019, doi: 10.1148/radiol.2019191476.

[53] F. Dominguez, U. Kiihl, B. Pieske, P. Garcia-Pavia, and C. Tschope, "Update on Myocarditis and Inflammatory
Cardiomyopathy: Reemergence of Endomyocardial Biopsy," Revista Espaiiola de Cardiologia (English Edition), vol.
69, no. 2, pp. 178-187, 2016.

[54] C. Butta, L. Zappia, G. Laterra, and M. Roberto, "Diagnostic and prognostic role of electrocardiogram in acute
myocarditis: A comprehensive review," Annals of Noninvasive Electrocardiology, vol. 1, pp. 1-10.


https://doi.org/10.1016/j.acra.2013.01.004
https://doi.org/10.1016/j.knosys.2017.06.003
https://doi.org/10.1016/j.knosys.2017.06.003
https://doi.org/10.1016/j.compbiomed.2017.12.023
https://doi.org/10.1016/j.compbiomed.2017.12.023
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.20944/preprints202007.0650.v1

