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Abstract

In this article we first write a brief review of supersymmetric quantum mechanics and then we

discuss the equivalence of two co-existing formalisms viz. tensor product formalism and partner

hamiltonian formalism for 1-D SUSY Harmonic oscillator. Finally, we present a Mathematica code

with which one can calculate the eigenstates of any 1-D SUSY partner Hamiltonian along with two

illustrated examples of 1-D SUSY HO and 1-D SUSY infinite potential boxa.

a SUSY, supersymmetry; 1-D, 1 Dimensional; HO, Harmonic Oscillator
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I. SUPERSYMMERIC QUANTUM MECHANICS

The promising idea of supersymmetry in physics started becoming the point of attraction

in the late twenties. The main idea here is to consider a broader picture of the standard

model in particle physics by considering bosons and fermions in the same footing. This

idea has the potential of solving many problems beyond standard model and in order to

that it brought a new kind of symmetry into the picture. This new symmetry allows one to

interchange between two seemingly very different kind of particles, bosons and fermions and

it brings a new conserved quantity with it namely supercharge. The simplest case of SUSY

quantum mechanics is 1D SUSY harmonic oscillator. There exists two parallel formalisms53

for this system in the literature and both of them solve the problem uniquely. In this article

we will discuss about how both of these formalisms are deeply related and will point out

the equivalence of these two formalisms. At last we will also provide a Mathematica code

to calculate and plot the eigenfunction of 1D supersymmetric partner Hamiltonian.

II. A BRIEF REVIEW OF TWO FORMALISMS FOR SUSY HARMONIC OSCIL-

LATOR

Bosonic and fermionic harmonic oscillators are main building block of many physical

theories. However, there is a mojor difference between the behaviour of these two particles2.

By definition, bosons have integeral spin and fermions have half integeral spin. Moreover,

according to Pauli exclusion principle no two identical fermions can occupy the same state

but there is no such constraint for bosons. Also, we know that under the exchange of two

identical fermions the wave function describing the state of these two particles takes up a

minus sign but if we exchange two bosons no such minus sign appears in the wave function.

Now, to bring the bosonic and fermionic particles in the same footing ‘supersymmetry’ plays

a crucial role and to incorporate them in a single frame one needs to build a common Hilbert

space for both of them. There are mainly two ways of constructing the Hilbert space of this

system that yield two different formalisms.
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A. Tensor product formalism

The bosonic harmonic oscillator resides in a Hilbert space,HB that is L2(R) in nature and

the Hilbert space of fermionic harmonic oscillator,HF is a C2 space. The ladder operators

of bosonic harmonic oscillator are defined by their commutator relations and the ladder

operator of fermionic harmonic oscillator are defined by their anti-commutator relation.

Now one of the ways to construct the Hilbert space of SUSY harmonic oscillator is by going

to a tensor product space of these two systems as

HS = HB ⊗HF . (1)

The basis of this Hilbert space is defined as

|n〉S = |n〉B ⊗ |n〉F ,

where |n〉B and |n〉F are the number state basis of bosonic and fermionic harmonic oscillators

respectively. An operator in this Hilbert space is defined as

O1 ⊗O2 : HB ⊗HF −→ HB ⊗HF . (2)

The Hamiltonian of the bosonic harmonic oscillator can be written as

HB = ~ωB

(
a†a+

1

2

)
, (3)

where a† and a are respectively annihilation and creation operators defined as

a† =
1√

2m~ωB

(−ip+mωBx) (4)

a =
1√

2m~ωB

(ip+mωBx) . (5)

The commutation relation between them is given by

[
a, a†

]
= 1, [a, a] = 0,

[
a†, a†

]
= 0, (6)

and NB = a†a is the bosonic number operator. This operator acting on the n-th number

state gives the number of bosonic particles of that particular state as the eigenvalue.

NB|n〉B = nB|n〉B, nB = 0, 1, 2, .. (7)
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The energy eigenvalue equation for the above state can be written as

HB|n〉B = EnB
|n〉B =

(
nB +

1

2

)
~ω|n〉B. (8)

The operation of the creation and annihilation operators on the number states is given by

a†|n〉B =
√
nB + 1|n+ 1〉B (9)

a|n〉B =
√
nB|n− 1〉B. (10)

On the other hand the Hamiltonian of fermionic harmonic oscillator is given by

HF = ~ωF

(
c†c− 1

2

)
, (11)

where c and c† are respectively the fermionic annihilation and creation operator that satisfy

the anti-commutation relation as

{c, c†} = 1, {c†, c†} = 0, {c, c} = 0. (12)

The fermionic number operator is similarly defined as

NF = c†c, (13)

which acts on the n-th fermionic number state as

NF |n〉F = nF |n〉F , nF = 0, 1. (14)

The energy eigen value equation for this state would be written as

HF |n〉F = EnF
|n〉F =

(
nF −

1

2

)
~ω|n〉F . (15)

One property of fermionic creation and annihilation operators is that due to their anti-

commutation relations, they are nilpotent of order 2 which means

{c†, c†}|n〉F = 0 (16)(
c†c† + c†c†

)
|n〉F = 0

c†c†|n〉F = −c†c†|n〉F

c†c†|n〉F = 0. (17)
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Similarly for the annihilation operator

cc|n〉F = 0, (18)

which only leaves two possible state in the fermionic ladder namely |0〉 and |1〉 that satisfies

c|0〉 = 0 & c†|1〉 = 0. (19)

Now we construct the Hilbert space of the joint system as of Eq.1 and keeping in mind the

form of the operators in this Hilbert space as of Eq.2 we write the Hamiltonian of the Hilbert

space of SUSY harmonic oscillator as

HS = HB ⊗ IF + IB ⊗HB (20)

= ~ωB

(
a†a+

1

2

)
⊗ IF + IB ⊗

(
c†c− 1

2

)
~ωF , (21)

where IB and IF are the identities of bosonic and fermionic Hilbert spaces respectively.

By using the number operator of respective spaces the energy eigenspectrum of the Hilbert

space of SUSY harmonic oscillator becomes

E = EB + EF =

(
nB +

1

2

)
~ωB +

(
nF −

1

2

)
~ωF . (22)

Likewise, We can define the number operator of this SUSY harmonic oscillator as

NS = NB ⊗ IF + IB ⊗NF . (23)

We now come to the main part of the supersymmetry and define an operator Q called

Supercharge and its conjugate Q† as

Q = a⊗ c† and Q† = a† ⊗ c. (24)

These two operators acting on the number state of the Hilbert Space HS yield

Q†|n〉S =
(
a† ⊗ c

)
|n〉B ⊗ |n〉F = |n+ 1〉B ⊗ |n− 1〉F (25)

Q|n〉S =
(
a⊗ c†

)
|n〉B ⊗ |n〉F = |n− 1〉B ⊗ |n+ 1〉F . (26)

These operators change one fermion to one boson and vice versa. So these two operators are

called the generators of the supersymmetry. Now in Eq.1 if we take a simplifying assumption

that ωB = ωF = ω, HS takes the form

HS = ~ω
((

a†a+
1

2

)
⊗ IF + IB ⊗

(
c†c− 1

2

))
HS = ~ω

(
a†a⊗ IF + IB ⊗ c†c

)
. (27)
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Now it can be very easily shown that Q† and Q commutes with HS i.e.

[HS, Q] =
[
HS, Q

†] = 0. (28)

This implies that the system posses symmetry under the exchange of bosons and fermions

and the supercharge is also a conserved quantity. Q and Q† also obey the following anti-

commutator relations

{Q,Q†} = HS, {Q,Q} = 0 and {Q†, Q†} = 0. (29)

B. Super-Potential Formalism

This is a more general formalism and can handle various 1D SUSY systems unlike the

tensor product formalism. Here the trick is also to factorise the Hamiltonian. We begin

with 1D time independent Schrodinger’s equation of the system of our interest as

H1ψ
(n)
1 =

(
− ~2

2m

d2

dx2
+ V1(x)

)
ψ

(n)
1 = E

(n)
1 ψ

(n)
1 (30)

where E
(n)
1 and ψ

(n)
1 are the nth eigenvalue and eigenfunction of H1. Therefore, we can

express the potential in terms of the ground state eigenfunction and eigenvalue as

V1(x) =
~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
+ E

(0)
1 (31)

Now by defining H1 − E(0)
1 as HB we can write it as

H1 − E(0)
1 = HB (32)

= − ~2

2m

d2

dx2
+

~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
(33)

= − ~2

2m

d2

dx2
+ VB, where VB =

~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
. (34)

At this point we introduce two operators A and A† in the following manner

A† = − ~√
2m

d

dx
+W (x)

A =
~√
2m

d

dx
+W (x), (35)
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where W (x) is known as Superpotential. With a little algebra we get

A†A = − ~2

2m

d2

dx2
− ~√

2m
W ′(x) +W 2(x). (36)

We can therefore factorise the Hamiltonian HB as

HB = A†A, (37)

with the identification

VB = W 2(x)− ~√
2m

W ′(x) = V1 − E(0)
1 . (38)

We denote the eigenvalues and eigenfunction of HB as E
(n)
B and ψ

(n)
B respectively. Note that

ψ
(n)
B and ψ

(n)
1 are same and the eigenvalues E

(n)
B are different from E

(n)
1 by a constant shift

of E
(0)
1 . Now comes the SUSY part and we define what we call “Partner Hamiltonian” of

HB as

HF = AA†. (39)

Using definition of A and A† from Eq.35 we can write this equation as

HF = − ~2

2m

d2

dx2
+ VF (x) (40)

where, VF (x) = W 2(x) +
~√
2m

W ′(x). (41)

We can denote the nth eigenvalue and eigenfunction of HF as E
(n)
F and ψ

(n)
F . These states

posses some beautiful relations which will be very useful later. Note that using Eq.37 and

Eq.39 we get

HB{A†ψ(n)
F (x)} = A†HFψ

(n)
F (x) = E

(n)
F {A

†ψ
(n)
F (x)} (42)

HF{Aψ(n)
B (x)} = AHBψ

(n)
B (x) = E

(n)
B {Aψ

(n)
B (x)} (43)

This shows that A†ψ
(n)
F (x) is an eigenstate of HB and Aψ

(n)
B (x) is an eigenstate of HF . So A†

and A are intertwining operators that link the eigenstates of the two partner Hamiltonians

HB and HF . With little algebra it can be shown that

ψ
(n)
F =

(
E

(n+1)
B

)−1/2
Aψ

(n+1)
B (44)

ψ
(n+1)
B =

(
E

(n)
F

)−1/2
A†ψ

(n)
F (45)

E
(n)
F = E

(n+1)
B (46)
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Now in this formalism to show the supersymmetric invariance of the system we go to di-

rect sum space of HB and HF where Hamiltonian HB belongs to HB Hilbert space and

Hamiltonian HF belongs to HF Hilbert space. So, we define the new Hilbert space and the

Hamiltonian as

HS = HB ⊕HF and (47)

HS =

HB 0

0 HF

 (48)

and the super charge operator and its conjugate as

Q =

0 0

A 0

 and Q† =

0 A†

0 0

 . (49)

Now it is easy to show that these operators follow the same commutation and anti-

commutation rules as of Eq.28 and Eq.29. We can write the SUSY wave function as

ψ
(n)
S =

ψ(n)
B

ψ
(n)
F

 (50)

but note that this is not an eigenstate of HS due to Eq.46. We shall have to take the state

as

ψ
(n)
S =

 ψ
(n)
B

ψ
(n−1)
F

 (51)

to make it an eigenstate of HS. Now at this point the two formalisms seem to be using

different techniques to deal with the problem of SUSY harmonic oscillator. So, in the next

section we would like to discuss and illustrate how they are related and how the partner

eigenstates are related to the number state of tensor product formalism.

III. EQUIVALENCE OF TENSOR PRODUCT AND PARTNER HAMILTONIAN

FORMALISM FOR 1-D SUSY HARMONIC OSCILLATOR

To understand the equivalence of these two formalisms we have to first understand what

ψ
(n)
F and ψ

(n)
B means physically. A system is called fermionic when the total spin of the

system is half integral and we note that in 1-D harmonic oscillator the number of bosons
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can range from 0 to any large value but the number of fermion can be either 0 or 1. From

Eq.32 we see that for 1-D harmonic oscillator ψ
(n)
B has energy eigenvalue

E
(n)
B = E

(n)
1 − E

(0)
1 = n~ω. (52)

This directly implies that there are total n bosons and 0 fermions in this state which is

equivalent to |n〉 ⊗ |0〉 state of tensor product formalism or the nth bosonic excitation state

of SUSY Hamiltonian of tensor product space. The fermionic partner Hamiltonian state ψ
(n)
F

refers a state where we have n bosons and 1 fermion making the total spin half integral and

hence it is equivalent to the |n〉⊗ |1〉 state of tensor product formalism. By this comparison

we can see clear physical meaning of Eq.46. From Eq.52 and Eq.46 we get E
(n)
F = (n+1)~ω.

Using this idea of equivalence we can find it to be trivial that ψ
(n)
F is a state containing n+1

particles and therefore, its energy is same as the energy of |n〉 ⊗ |1〉 state. From Eq.44 and

Eq.45 we can now understand the operation of A and A† on the partner eigenstates more

clearly that they respectively create a fermion by destroying a boson and vice versa. This

property was not that clear from equation 35. The normalisation constant of Eq.44 and

Eq.45 can be calculated very easily. To derive Eq.44, Let us assume that

ψ
(n)
F = c1Aψ

(n+1)
B (53)

where c1 is the normalisation constant then by taking inner products we get

1 = c21〈ψ
(n+1)
B |A†A|ψ(n+1)

B 〉 (54)

= c21〈ψ
(n+1)
B |HB|ψ(n+1)

B 〉 (55)

= c21E
(n+1)
B (56)

or,c1 =
(
E

(n+1)
B

)−1/2
(57)

we can do this similarly for Eq.45. Now we present a schematic diagram for visualising the

connections between these formalisms and their corresponding states and energies.
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FIG. 1. Schematic diagram of equivalence of tensor product and partner Hamiltonian formalism

In the partner Hamiltonian formalism the ground state is a bit special as there is no

fermionic partner eigenstate for this and the ground state of SUSY harmonic oscillator is

bosonic. In the diagram we have a pair of black vertical lines. The nodes on the left one of

them represents the bosonic states whereas the nodes on the right one denotes the fermionic

states and these states are equidistant, marked by their corresponding level of excitation.

Here we give a table showing the equivalence of states of the two formalisms and their

corresponding positions marked in the diagram. All the arrows represent the necessary

operators for going from one state to another one.
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Point in the diagram Cor. TP state Eqv. PH wave fn. E of the state nB of the state nF of the state

0B |0〉B ⊗ |0〉F ψ
(0)
B 0 0 0

0F |0〉B ⊗ |1〉F ψ
(0)
F ~ω 0 1

1B |1〉B ⊗ |0〉F ψ
(1)
B ~ω 1 0

1F |1〉B ⊗ |1〉F ψ
(1)
F 2~ω 1 1

2B |2〉B ⊗ |0〉F ψ
(2)
B 2~ω 2 0

2F |2〉B ⊗ |1〉F ψ
(2)
F 3~ω 2 1

3B |3〉B ⊗ |0〉F ψ
(3)
B 3~ω 3 0

(n-2) F |n− 2〉B ⊗ |1〉F ψ
(n−2)
F (n− 1)~ω n-2 1

(n-1)B |n− 1〉B ⊗ |0〉F ψ
(n−1)
B (n− 1)~ω n-1 0

(n-1) F |n− 1〉B ⊗ |1〉F ψ
(n−1)
F n~ω n-1 1

n B |n〉B ⊗ |0〉F ψ
(n)
B n~ω n 0

n F |n〉B ⊗ |1〉F ψ
(n)
F (n+ 1)~ω n 1

(n+1) B |n+ 1〉B ⊗ |0〉F ψ
(n+1)
B (n+ 1)~ω n+1 0

Cor., Corresponding; TP, Tensor Product; Eqv., Equivalent; PH, Partner Hamiltonian;

fn, function; E, Energy; nB, number of bosons; nF , number of fermions;

TABLE I. Table of equivalence

So we note that the index ‘n’ in partner Hamiltonian formalism irrespective of ψB or ψF

represents the number of bosons in that state. Now as A destroys a boson and creates a

fermion, for the bosonic ground state we can write

Aψ
(0)
B (x) = 0. (58)

This implies, W (x) = − ~√
2m

1

ψ
(0)
B

dψ
(0)
B

dx
(59)

= − ~√
2m

dln
(
ψ

(0)
B

)
dx

. (60)

So, this equation completes the calculation of SUSY wave function for 1D cases as using

equations 35, 44, 46, 60 we can calculate the partner wave functions of any 1-D SUSY

quantum mechanical system as we show in the next section.
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IV. CALCULATION OF SUSY PARTNER WAVE FUNCTIONS FOR 1-D SUSY

HARMONIC OSCILLATOR

In this section we calculate the eigenfunction of the fermionic Hamiltonian HF . Now for

1-D harmonic oscillator we know that

H1ψ
(n)
1 =

(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψ

(n)
1 = E

(1)
1 ψ

(n)
1 . (61)

The eigenfunction and and the energy eigenvalues are given by

ψ
(n)
1 =

(mω
π~

)1/4 1√
2nn!

exp
(
−mω

2~
x2
)
Hn

[(mω
~

)1/2
x

]
(62)

where, Hn(x) are Hermite polynomials and

E
(n)
1 =

(
n+

1

2

)
~ω. (63)

So, as we have discussed earlier that ψ
(n)
1 = ψ

(n)
B and E

(n)
B = n~ω. The ground state wave

function of ψ
(n)
B and its derivative is given by

ψ
(0)
B =

(mω
π~

)1/4
exp

(
−mω

2~
x2
)

and
d

dx
ψ

(0)
B = −xmω

~
ψ

(0)
B . (64)

From Eq.60 we get

W (x) =
~√
2m

mω

~
x =

√
m

2
ωx. (65)

So, now from Eq.41 we can write

VF (x) =
mω2

2
x2 +

1

2
~ω, (66)

and from Eq.46 we get

E
(n)
F = (n+ 1)~ω. (67)

Now, from Eq.44 and Eq.35 we can write the form of eigenstate of HF as

ψ
(n)
F =

1√
E

(n+1)
B

Aψ
(n+1)
B (68)

=
1√

(n+ 1)~ω

(
~√
2m

d

dx
+W (x)

)(
N exp

(
−mωx

2

2~

)
Hn

[(mω
~

)1/2
x

])
, (69)

where N is the corresponding normalisation constant.
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Now after doing the simplification we get

ψ
(n)
F =

(mω
π~

)1/4 1√
2nn!

exp
(
−mω

2~
x2
)
Hn

[(mω
~

)1/2
x

]
. (70)

We see that the form of eigenfunctions are same for HB and HF in the case of 1-D SUSY

harmonic oscillator which is a well known example of shape invariant potential1 in super-

symmetric quantum mechanics.

V. MATHEMATICA CODE

In this section we present a Mathematica code using which one can calculate the eigen-

functions of HB and HF for any 1-D SUSY quantum mechanical system. The plots of the

eigenfunctions have been made in two different ways. Firstly, we have used the superpoten-

tial formalism in order to obtain ψ
(n)
F from ψ

(n)
B as shown in previous section. Secondly, we

have used the analytical solution of the partner eigenfunction to plot it.The first method is

a more general numerical way of obtaining the supersysmmetric partner eigenfunction even

for the cases when it is hard to solve the schrodinger equation of the system analytically.

We can observe that the plot of the wavefunctions made in two different ways matches

perfectly.

SUSY 1 - D Harmonic Oscillator

In[ ]:= Clear["Global`*"];

◼ Value of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
; ω = 1;

◼ Potential : -

In[ ]:= V1[x_] :=
1

2
m ω^2 x^2;
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◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Obtaining Eigenvalues and Eigenfunctions (Ground State to 5th Excited State) of 1 D 
Harmonic Oscillator : -

In[ ]:= {Eigenvalue, Eigenfunction} = NDEigensystem[H1, u[x], {x, -100, 100}, 6,

Method →

{"SpatialDiscretization" ->

{"FiniteElement", {"MeshOptions" -> {"MaxCellMeasure" -> 0.01}}}}];

◼ Obtaining Plot of the Eigenfunctions : -

In[ ]:= Plot[Eigenfunction, {x, -100, 100}, PlotRange → {{-10, 10}, All}, AxesOrigin → {0, 0},

ImageSize → Medium,

PlotLegends →

LineLegend[{"Ground state", "1st Excited state", "2nd Excited state",

"3rd Excited state", "4th Excited state", "5th Excited state"}, LegendLabel → "label",

LegendFunction → (Framed[#, Background → LightYellow, RoundingRadius → 5] &),

LegendMargins → 5]]

Out[ ]=

-10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

5th Excited state

◼ Defining : -
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In[ ]:= E1[n_] := Eigenvalue[[n]];

NOTE : Array indexing starts from 1 in Mathematica. So n = 1 is the Ground State in 
this case.

◼ Energy Eigenvalue and Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)-
1
2

ℏ
√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ
√(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

◼ Plot of the Eigenfunctions of HF : -

In[ ]:= Plot[Evaluate[Table[ψF[i], {i, 1, 5}]], {x, -10, 10},

PlotLegends →

LineLegend[{"Ground state", "1st Excited state", "2nd Excited state",

"3rd Excited state", "4th Excited state"}, LegendLabel → "label",

LegendFunction → (Framed[#, Background → LightPink, RoundingRadius → 5] &),

LegendMargins → 5]]
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The Analytic Solution of the Partner Hamiltonian 
Eigenfunction : -

◼ Parameters : -

In[ ]:= m =
1

2
; ω = 1; ℏ = 1;

Now by using the form of Eq. 70 we define,

In[ ]:= ϕF[n_, x_] := 
m*ω

π
^

1

4


1
√(2^n n!)

Exp-
(m*ω)

2 ℏ
x^2 HermiteHn, 

m*ω

ℏ
^

1

2
 x

◼ Plot of this Eigenfunctions : -

In[ ]:= Plot[Evaluate[Table[ϕF[i, x], {i, 0, 4}]], {x, -10, 10},

PlotLegends →

LineLegend[{"Ground state", "1st Excited state", "2nd Excited state",

"3rd Excited state", "4th Excited state"}, LegendLabel → "label",

LegendFunction → (Framed[#, Background → LightBlue, RoundingRadius → 5] &),

LegendMargins → 5]]
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NB : The plots of ψF and ϕF are same apart from a random sign

flip. This sign is actually inherited from the method that

Mathematica uses for solving the differential equations. However

it doesn' t matter because if ψF is an eigenfunction of HF then

(-ψF) is also an eigenfunction of HF with the same eigenvalue.

Changing the value of the potential V1(x) we can plot the partner eigenfunction for any 1D

SUSY Quantum System. Below we are showing the same thing for an 1D Infinite Potential

Box. For the analytic solution we have considered the form of the partner eigenfunction as

given in4.

SUSY 1 D InfinitePotential Box

In[ ]:= Clear["Global`*"];

◼ Values of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
;

◼ Potential : -

In[ ]:= V1[x_] := 0;
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◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Boundary Condition : -

In[ ]:= B = DirichletCondition[u[x] ⩵ 0, True];

◼ Obtaining Eigenvalues and Eigenfunctions(Ground State to 5th Excited State) of 1D Infinite Potential 
Box :-

In[ ]:= {Eigenvalue, Eigenfunction} = NDEigensystem[{H1, B}, u[x], {x, 0, 1}, 6,

Method → {"Eigensystem" → {"Arnoldi",

"MaxIterations" → 10 000},

"PDEDiscretization" → {"FiniteElement", "MeshOptions" → {"MaxCellMeasure" → 0.001}}}];

◼ Obtaining Plot of the Eigenfunctions : -

In[ ]:= Plot[Eigenfunction, {x, 0, 1}, PlotRange → {{0, 1}, All}, AxesOrigin → {0, 0}, ImageSize → Medium,

PlotLegends → LineLegend[{"Ground state", "1st Excited state", "2nd Excited state", "3rd Excited state",

"4th Excited state", "5th Excited state"}, LegendLabel → "label",

LegendFunction → (Framed[#, Background → LightGreen, RoundingRadius → 5] &), LegendMargins → 5]]
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Defining:-
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In[ ]:= E1[n_] := Eigenvalue[[n]];

◼ Energy Eigenvalue and Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)-
1
2

ℏ
√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ
√(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

◼ Plot of the Eigenfunctions of HF : -

Plot[Evaluate[Table[ψF[i], {i, 1, 5}]], {x, 0, 1},

PlotLegends →

LineLegend[{"Ground state", "1st Excited state", "2nd Excited state", "3rd Excited state",

"4th Excited state"}, LegendLabel → "label",

LegendFunction → (Framed[#, Background → LightPink, RoundingRadius → 5] &), LegendMargins → 5]]
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The Analytic Solution of the Partner Hamiltonian 
Eigenfunction : -

◼ Parameter : -

In[ ]:= L = 1;

In[ ]:= ϕF[n_, x_] := 
2

L ((n + 2)^2 - 1)
(n + 2)* Cos(n + 2)

π

L
x - Cot 

π

L
x * Sin (n + 2)

π

L
x

◼ Plot of this Eigenfunctions : -

In[ ]:= Plot[Evaluate[Table[ϕF[i, x], {i, 0, 4}]], {x, 0, 1},

PlotLegends →

LineLegend[{"Ground state", "1st Excited state", "2nd Excited state",

"3rd Excited state", "4th Excited state"}, LegendLabel → "label",

LegendFunction →

(Framed[#, Background → LightBlue, RoundingRadius → 5] &),

LegendMargins → 5]]
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VI. CONCLUSION

In this paper we have discussed about the equivalence of partner Hamiltonian and tensor

product formalism which is an important idea to understand the framework of SUSY 1-

D quantum mechanical systems. The Mathematica code can be used to get the partner

eigenstates for very general 1-D potentials also for which we can get perturbative analytic

solutions only.
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