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Abstract
In this article we first write a brief review of supersymmetric quantum mechanics and then we
discuss the equivalence of two co-existing formalisms viz. tensor product formalism and partner
hamiltonian formalism for 1-D SUSY Harmonic oscillator. Finally, we present a Mathematica code

with which one can calculate the eigenstates of any 1-D SUSY partner Hamiltonian along with two

illustrated examples of 1-D SUSY HO and 1-D SUSY infinite potential boxf}
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I. SUPERSYMMERIC QUANTUM MECHANICS

The promising idea of supersymmetry in physics started becoming the point of attraction
in the late twenties. The main idea here is to consider a broader picture of the standard
model in particle physics by considering bosons and fermions in the same footing. This
idea has the potential of solving many problems beyond standard model and in order to
that it brought a new kind of symmetry into the picture. This new symmetry allows one to
interchange between two seemingly very different kind of particles, bosons and fermions and
it brings a new conserved quantity with it namely supercharge. The simplest case of SUSY
quantum mechanics is 1D SUSY harmonic oscillator. There exists two parallel formalisms™
for this system in the literature and both of them solve the problem uniquely. In this article
we will discuss about how both of these formalisms are deeply related and will point out
the equivalence of these two formalisms. At last we will also provide a Mathematica code

to calculate and plot the eigenfunction of 1D supersymmetric partner Hamiltonian.

II. A BRIEF REVIEW OF TWO FORMALISMS FOR SUSY HARMONIC OSCIL-
LATOR

Bosonic and fermionic harmonic oscillators are main building block of many physical
theories. However, there is a mojor difference between the behaviour of these two particles?.
By definition, bosons have integeral spin and fermions have half integeral spin. Moreover,
according to Pauli exclusion principle no two identical fermions can occupy the same state
but there is no such constraint for bosons. Also, we know that under the exchange of two
identical fermions the wave function describing the state of these two particles takes up a
minus sign but if we exchange two bosons no such minus sign appears in the wave function.
Now, to bring the bosonic and fermionic particles in the same footing ‘supersymmetry’ plays
a crucial role and to incorporate them in a single frame one needs to build a common Hilbert
space for both of them. There are mainly two ways of constructing the Hilbert space of this

system that yield two different formalisms.
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A. Tensor product formalism

The bosonic harmonic oscillator resides in a Hilbert space,H that is L?(R) in nature and
the Hilbert space of fermionic harmonic oscillator,Hr is a C? space. The ladder operators
of bosonic harmonic oscillator are defined by their commutator relations and the ladder
operator of fermionic harmonic oscillator are defined by their anti-commutator relation.
Now one of the ways to construct the Hilbert space of SUSY harmonic oscillator is by going

to a tensor product space of these two systems as
Hs =Hp @ Hr. (1)
The basis of this Hilbert space is defined as
In)s = [n)s ® [n)p,

where |n) g and |n) p are the number state basis of bosonic and fermionic harmonic oscillators

respectively. An operator in this Hilbert space is defined as
O1R0y:HgR®Hr > HgQHr. (2)
The Hamiltonian of the bosonic harmonic oscillator can be written as
T 1
HB:th aa—|—§ y (3>

where a' and a are respectively annihilation and creation operators defined as

1

al = N (—ip + mwp) (4)
1
a= NI (ip + mwpx) . (5)

The commutation relation between them is given by
[a,aq =1,[a,a] =0, [aT, aT] =0, (6)

and N = a'a is the bosonic number operator. This operator acting on the n-th number

state gives the number of bosonic particles of that particular state as the eigenvalue.

NB|n>B :nB|n>B> np :071727" (7)
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The energy eigenvalue equation for the above state can be written as
1
HB|n>B:EnB|n>B: TLB+§ hw|n>3 (8)
The operation of the creation and annihilation operators on the number states is given by

a'ln)g = vnp + 1|ln +1)p 9)
alnyg = v/np|n — 1)p. (10)

On the other hand the Hamiltonian of fermionic harmonic oscillator is given by
" 1
HF:th CC—§ N (11)

where ¢ and ¢! are respectively the fermionic annihilation and creation operator that satisfy

the anti-commutation relation as
{e,c'} =1, {c,c'} =0, {c,c}=0. (12)
The fermionic number operator is similarly defined as
Np = cle, (13)
which acts on the n-th fermionic number state as
Np|n)rp = np|n)r, np=0,1 (14)

The energy eigen value equation for this state would be written as

Heln)r = By ) = (n - %) Rl (15)

One property of fermionic creation and annihilation operators is that due to their anti-

commutation relations, they are nilpotent of order 2 which means

{ct, ¢ n)p =0 (16)
(cfel +cfel) [n)r =0
cefln)p = —clefn)p
c'efln)p = 0. (17)
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Similarly for the annihilation operator
celnyp =0, (18)
which only leaves two possible state in the fermionic ladder namely |0) and |1) that satisfies
cl0) =0 & cf|1) =0. (19)

Now we construct the Hilbert space of the joint system as of EqI] and keeping in mind the
form of the operators in this Hilbert space as of Eq[2] we write the Hamiltonian of the Hilbert

space of SUSY harmonic oscillator as
Hs=Hp®7ZIr +Is® Hp (20)
1 1
= hwpg <CLTCL + §> RIr + Ip® <CTC — 5) hwr, (21)

where Zg and Zr are the identities of bosonic and fermionic Hilbert spaces respectively.
By using the number operator of respective spaces the energy eigenspectrum of the Hilbert

space of SUSY harmonic oscillator becomes
E:EB+EF:<nB+%) hwp + <nF—%) hwp. (22)
Likewise, We can define the number operator of this SUSY harmonic oscillator as
Ng=Np®ZIr + Ip® Np. (23)

We now come to the main part of the supersymmetry and define an operator () called

Supercharge and its conjugate Q' as
Q=a®c and Ql=d ®ec (24)
These two operators acting on the number state of the Hilbert Space Hs yield
Q'ln)s = (a'@c) [n)p@|n)r=In+1)p@|n—1)r (25)
QIn)s = (a@cT) Inyp®@|n)p=In—1)p®|n+1)p. (26)

These operators change one fermion to one boson and vice versa. So these two operators are
called the generators of the supersymmetry. Now in Eq.1 if we take a simplifying assumption

that wp = wp = w, Hg takes the form

1 1
Hg = hw (<CLTCL+§> Ly + Ip® <CTC—§)>

Hs=hw(ala®Ir + Ig®clc). (27)
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Now it can be very easily shown that QT and Q commutes with Hg i.e.

[Hs,Q] = [Hs, Q'] =0. (28)

This implies that the system posses symmetry under the exchange of bosons and fermions
and the supercharge is also a conserved quantity. @ and Q' also obey the following anti-

commutator relations

{Q.Q"Y =Hs, {Q.Q}=0 and {Q",Q"} =0. (29)

B. Super-Potential Formalism

This is a more general formalism and can handle various 1D SUSY systems unlike the
tensor product formalism. Here the trick is also to factorise the Hamiltonian. We begin

with 1D time independent Schrodinger’s equation of the system of our interest as
n h? d? n n) | (n
Hyy” = (__m7 +V1(-77)) Y = By (30)

where EYL) and @Z)YL) are the nth eigenvalue and eigenfunction of H;. Therefore, we can

express the potential in terms of the ground state eigenfunction and eigenvalue as

0
o1 @Y )

Vi(z) = om0 () da? Ly (31)
Now by defining H; — Efo) as Hp we can write it as
H - EY = Hy (32)
B2 2 B2 1 2
= ~oman %mdi (33)
(0)
= —%dd—; + Vg, where Vg = %m% (34)

At this point we introduce two operators A and A' in the following manner

h d

AT = —\/T_m% + W(ZL’)
A=l (35)
= Vamdx 0
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where W (x) is known as Superpotential. With a little algebra we get

ATA = P LW’( ) + W?2(z) (36)
 2mda® \2m . v

We can therefore factorise the Hamiltonian Hg as
Hp = ATA, (37)

with the identification

Vs = W2(x) - %W’@) =V, - EY. (38)

We denote the eigenvalues and eigenfunction of Hg as E(n) and ¢§;) respectively Note that
ng” and % are same and the eigenvalues E](g) are different from E by a constant shift
of Efo). Now comes the SUSY part and we define what we call “Partner Hamiltonian” of
Hp as

Hp = AAT. (39)

Using definition of A and A from Eq we can write this equation as

where, Vp(z) = W?(x) + \/%_mW/(x) (41)

We can denote the nth eigenvalue and eigenfunction of Hp as E}n) and zﬁ}n). These states

posses some beautiful relations which will be very useful later. Note that using Eq[37 and

Eq[39 we get

Hp{ AT (2)} = ATHpo P (z) = ES{ AT ()} (42)
Hp{ AV (2)} = AHpvy (2) = ES{AYY) (2)} (43)

This shows that ATz/ng)(x) is an eigenstate of Hp and Ang” (z) is an eigenstate of Hp. So AT
and A are intertwining operators that link the eigenstates of the two partner Hamiltonians

Hp and Hr. With little algebra it can be shown that

—1/2
wF _ < (n+1)) AQ/’ (n+1) (44)
n n _1/2 n
it = () T Aty (45)
EW = gt (46)
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Now in this formalism to show the supersymmetric invariance of the system we go to di-
rect sum space of Hp and Hr where Hamiltonian Hp belongs to Hz Hilbert space and
Hamiltonian Hr belongs to Hx Hilbert space. So, we define the new Hilbert space and the

Hamiltonian as

Hs =Hp D Hr and (47)
Hp 0
He= |7 (48)
0 Hp

and the super charge operator and its conjugate as

00 0 Af
Q= and Qf = . (49)
A0 0 0

Now it is easy to show that these operators follow the same commutation and anti-

commutation rules as of Eq28 and Eq[29] We can write the SUSY wave function as

o _ (V5
NS

but note that this is not an eigenstate of Hg due to Eq/46l We shall have to take the state

(50)

as
vy

(n) _
Vs = (n—1)
F

(51)

to make it an eigenstate of Hg. Now at this point the two formalisms seem to be using
different techniques to deal with the problem of SUSY harmonic oscillator. So, in the next
section we would like to discuss and illustrate how they are related and how the partner

eigenstates are related to the number state of tensor product formalism.

III. EQUIVALENCE OF TENSOR PRODUCT AND PARTNER HAMILTONIAN
FORMALISM FOR 1-D SUSY HARMONIC OSCILLATOR

To understand the equivalence of these two formalisms we have to first understand what
w%) and wg) means physically. A system is called fermionic when the total spin of the

system is half integral and we note that in 1-D harmonic oscillator the number of bosons
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can range from 0 to any large value but the number of fermion can be either 0 or 1. From

Eq we see that for 1-D harmonic oscillator 1/)1(9”) has energy eigenvalue
EW =E"™ — B9 = nhw. (52)

This directly implies that there are total n bosons and 0 fermions in this state which is
equivalent to |n) ® |0) state of tensor product formalism or the nth bosonic excitation state
of SUSY Hamiltonian of tensor product space. The fermionic partner Hamiltonian state ¢§;”
refers a state where we have n bosons and 1 fermion making the total spin half integral and
hence it is equivalent to the [n) ® |1) state of tensor product formalism. By this comparison
we can see clear physical meaning of Eq.46. From Eq and Eq.46 we get El(mn) = (n+1)hw.
Using this idea of equivalence we can find it to be trivial that 1/1;11) is a state containing n+1
particles and therefore, its energy is same as the energy of |n) ® |1) state. From Eq and
Eq we can now understand the operation of A and A on the partner eigenstates more
clearly that they respectively create a fermion by destroying a boson and vice versa. This
property was not that clear from equation 35. The normalisation constant of Eq.44 and

Eq.45 can be calculated very easily. To derive Eq.44, Let us assume that
Vi) = e Aty (53)

where c; is the normalisation constant then by taking inner products we get

1=yl VAT Al Y) (54)

= @y Hpleg ™) (55)

— 2By (56)

or,c, = (E§+1>>_1/2 (57)

we can do this similarly for Eq.45. Now we present a schematic diagram for visualising the

connections between these formalisms and their corresponding states and energies.
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Bosonic Fermionic
£ _ States States ‘®'s have been labelled
DR L i) e - T O Colour Operator according to partner
3 (n+1)B /nF _ Hamiltonian formalism
%) J/ “ A=ac and represent bosonic
D | 1 excited state / _____ n-1)F Al = o and fermionic states
5 / — 4
> — a
5 v =n)p @ |1)r
(& —
(n) =
— v = |n)p®|[0)F
s ol
CLCLCT

FIG. 1. Schematic diagram of equivalence of tensor product and partner Hamiltonian formalism

In the partner Hamiltonian formalism the ground state is a bit special as there is no
fermionic partner eigenstate for this and the ground state of SUSY harmonic oscillator is
bosonic. In the diagram we have a pair of black vertical lines. The nodes on the left one of
them represents the bosonic states whereas the nodes on the right one denotes the fermionic
states and these states are equidistant, marked by their corresponding level of excitation.
Here we give a table showing the equivalence of states of the two formalisms and their
corresponding positions marked in the diagram. All the arrows represent the necessary

operators for going from one state to another one.

10
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Point in the diagram|Cor. TP state |Eqv. PH wave fn.|E of the state|np of the state|ng of the state
0B 0@ [0)r [ 0 0 0
OF 0@ e | hew 0 1
1B W0  [vl) huw 1 0
1F Wpe e |vd 2hw 1 1
2B 2@ [0)r [ 2hw 2 0
oF 2@ e [v? 3hw 2 1
3B 3@ [0)r [ 3hw 3 0
(n-2) F In—2)p & [1)p|pi? (n—1hw  |n-2 1
(n-1)B In—1)p & |0)p|pi (n—1Dhw  |n-1 0
(n-1) F In—1)p[1)pypi nhw n-1 1
n B )0 [p nhw n 0
nF npeLp |y (n+Dhw  |n 1
(n+1) B n+1)p @ |0)p |0t (n+1)hw  |n+l 0

Cor., Corresponding; TP, Tensor Product; Eqv., Equivalent; PH, Partner Hamiltonian;

fn, function; E, Energy; np, number of bosons; ng, number of fermions;

TABLE 1. Table of equivalence

So we note that the index ‘n’ in partner Hamiltonian formalism irrespective of ¢ or ¥ g
represents the number of bosons in that state. Now as A destroys a boson and creates a

fermion, for the bosonic ground state we can write

AP () = (58)
(0)
This implies, W (z) = — \/72"1_ 1;0) dipjs (59)
mypp
dl 77&(0)
___n (v ) (60)

V2m  dz

So, this equation completes the calculation of SUSY wave function for 1D cases as using
equations 35, 44, 46, we can calculate the partner wave functions of any 1-D SUSY

quantum mechanical system as we show in the next section.

11
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IV. CALCULATION OF SUSY PARTNER WAVE FUNCTIONS FOR 1-D SUSY
HARMONIC OSCILLATOR

In this section we calculate the eigenfunction of the fermionic Hamiltonian Hp. Now for

1-D harmonic oscillator we know that
n h? d? 1 n n
The eigenfunction and and the energy eigenvalues are given by

W = (T:;;)IM \/21n_n!exp <—T;—;jx2> H, {(%)1/2 x} (62)

where, H,(z) are Hermite polynomials and

1
EM = (n + 5) hew. (63)

So, as we have discussed earlier that 1/;?1) = 1/1§3n) and Egl) = nhw. The ground state wave

function of @/ng) and its derivative is given by

mw\ 1/4 mw d (o mw (o
g)) = (ﬁ) exp (——xQ) and %@/}g) = —x?w%). (64)

From Eq.60 we get

z® + ~hw, (66)
and from Eq.46 we get

EW = (n+1)hw. (67)
Now, from Eq.44 and Eq.35 we can write the form of eigenstate of Hr as

n 1 n
o =yl ©

_ m (\/Z_m% +W(:r)) <Nexp (-m;";)ﬂn {(%)”ZD (69)

where N is the corresponding normalisation constant.

12
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Now after doing the simplification we get

- () e (B[]

We see that the form of eigenfunctions are same for Hg and Hp in the case of 1-D SUSY

harmonic oscillator which is a well known example of shape invariant potential’ in super-

symmetric quantum mechanics.

V. MATHEMATICA CODE

In this section we present a Mathematica code using which one can calculate the eigen-
functions of Hg and Hp for any 1-D SUSY quantum mechanical system. The plots of the
eigenfunctions have been made in two different ways. Firstly, we have used the superpoten-
tial formalism in order to obtain w};“‘) from ng”) as shown in previous section. Secondly, we
have used the analytical solution of the partner eigenfunction to plot it.The first method is
a more general numerical way of obtaining the supersysmmetric partner eigenfunction even
for the cases when it is hard to solve the schrodinger equation of the system analytically.
We can observe that the plot of the wavefunctions made in two different ways matches

perfectly.

SUSY 1 - D Harmonic Oscillator
in[-1= Clear["Global %"];
m Value of the Parameters : -

ln//’ifl:l;m: ;w:l;

NI

m Potential : -

NI =

nf[-1= Vi [x_] t= —mw™2x"2;

13
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m Hamiltonian : -

N

*U""'[X] +Vi[X] *u[x];

In[~]= Hy

= Obtaining Eigenvalues and Eigenfunctions (Ground State to 5th Excited State) of 1 D
Harmonic Oscillator : -

inf-1= {Eigenvalue, Eigenfunction} = NDEigensystem[H;, u[x], {x, -100, 100}, 6,
Method -
{"SpatialDiscretization" ->
{"FiniteElement", {"MeshOptions" -> {"MaxCellMeasure" -> ©0.01}}}}1];

= Obtaining Plot of the Eigenfunctions : -

i = Plot [Eigenfunction, {x, -100, 100}, PlotRange » {{-10, 10}, All}, AxesOrigin - {0, 0},
ImageSize -» Medium,
PlotLegends -
LineLegend[ {"Ground state", "1st Excited state”, "2nd Excited state”,
"3rd Excited state", "4th Excited state", "5th Excited state"}, LegendLabel - "label",
LegendFunction -» (Framed[ #, Background -» LightYellow, RoundingRadius - 5] &),

LegendMargins - 5] ]

label
— Ground state

—— 1st Excited state
— 2nd Excited state
—— 3rd Excited state
— 4th Excited state
— bth Excited state

Out[=]=

= Defining : -

14
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n[-1= Ex[n_]1 := Eigenvalue[[n]];

NOTE : Array indexing starts from 1 in Mathematica. So n = 1 is the Ground State in
this case.

m Energy Eigenvalue and Eigenfunction of Bosonic HamiltonianHg : -

In[-]= Eg[n_]
Ys[n_] :

= [n] -E [1] H
Eigenfunction[[n]];

m Superpotential : -

1= W= -y [1]"(-1) *D[¥s[1], X];

m Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian (Hg) : -

D[yg[n+1], X] + Wxyg[n + 1]

1
nfo1= Ye[n_1 = (Es[n+1])"(-5) *[

h
4/ (2m)
m Plot of the Eigenfunctions of Hrf: -

7= Plot [Evaluate[Table[y¢[i], {i, 1, 5}11, {x, -10, 10},
PlotLegends -
LineLegend[ {"Ground state", "1st Excited state", "2nd Excited state",
"3rd Excited state", "4th Excited state"}, LegendLabel - "label",
LegendFunction -» (Framed[ #, Background -» LightPink, RoundingRadius -» 5] &),
LegendMargins - 5] ]

15
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0.6

label
— Ground state

1st Excited state
— 2nd Excited state
— 3rd Excited state
— 4th Excited state

(. J

The Analytic Solution of the Partner Hamiltonian
Eigenfunction : -

m Parameters: -

In[-]= m=

NI

e
g

Il

=
e
(n )

1l

=
e

Now by using the form of Eq. [70| we define,

1= dpn_, x_1 = (m;w),\(%) mExp[—%x"Z] Her‘miteH[n, (m;w)/\(g) x]

= Plot of this Eigenfunctions : -

inf- = Plot [Evaluate[Table[¢f[i, x], {i, @, 4}]1], {x, -10, 10},
PlotLegends -
LineLegend[ {"Ground state", "1st Excited state", "2nd Excited state",
"3rd Excited state", "4th Excited state"}, LegendLabel -» "label",
LegendFunction » (Framed[ #, Background - LightBlue, RoundingRadius -» 5] &),
LegendMargins - 5] ]

16
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label
— Ground state

— 1st Excited state
—— 2nd Excited state
— 3rd Excited state
— 4th Excited state

(. J

Out[=]=

NB : The plots of Yy and ¢r are same apart froma randomsign
flip. This sign is actually inherited from the method that
Mathematica uses for solving the differential equations. However
it doesn' t matter because if Yy is an eigenfunction of Hr then
(-Yg) is also an eigenfunction of Hf with the same eigenvalue.

Changing the value of the potential Vi (x) we can plot the partner eigenfunction for any 1D
SUSY Quantum System. Below we are showing the same thing for an 1D Infinite Potential

Box. For the analytic solution we have considered the form of the partner eigenfunction as

given in.

SUSY 1 D InfinitePotential Box

in[-]= Clear["Global %"];
m Values of the Parameters : -

nf-]j=A=1;m= —;

NI

m Potential : -

inf[-1= V1 [x_ ] 1= 0;

17
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® Hamiltonian: -

N

h
nf-]= Hy = - o

*U""'[X] +Vi[X] *u[x];

= Boundary Condition: -

nf-]= B = DirichletCondition[u[x] == @, True];

m Obtaining Eigenvalues and Eigenfunctions(Ground State to 5th Excited State) of 1D Infinite Potential
Box :-

n[-]= {Eigenvalue, Eigenfunction} = NDEigensystem[{H;, B}, u[x], {x, @, 1}, 6,
Method - {"Eigensystem" -» {"Arnoldi",
"MaxIterations" - 10000},
"PDEDiscretization” -» {"FiniteElement", "MeshOptions" - {"MaxCellMeasure" - 0.001}}}];

m Obtaining Plot of the Eigenfunctions: -

= Plot [Eigenfunction, {x, @, 1}, PlotRange -» { {0, 1}, All}, AxesOrigin - {0, 0}, ImageSize -» Medium,
PlotLegends - LineLegend[ {"Ground state", "1st Excited state", "2nd Excited state", "3rd Excited state",
"4th Excited state", "5th Excited state"}, LegendLabel - "label",
LegendFunction -» (Framed[ #, Background -» LightGreen, RoundingRadius -» 5] &), LegendMargins - 5] ]

15F
1.0 label
— Ground state
0.
° 1st Excited state
ouf-J= 00 —— 2nd Excited state
— 3rd Excited state
05 —— 4th Excited state
10 — b5th Excited state
-15F

Defining:-

18
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n[-1= Ex[n_]1 := Eigenvalue[[n]];

m Energy Eigenvalue and Eigenfunction of Bosonic HamiltonianHg : -

inf]= Eg[n_]1 :=E1[n] - E1[1];
Yg[n_ ] := Eigenfunction[[n]];

m Superpotential : -

mio1= W= -yg[1]1”(-1) *D[Yg[1], X];

m Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian (Hg) : -

h i+|/\I(X)
\/2m dx

1
m oy (M = <EB(n+1) )‘5 ( g (M)

1
In[-]= Ye[n_] = (EB[n+1])"(——)*[

5 D[!ﬁB[n+1],X]+W*2ﬁB[n+1])

y (2m)

m Plot of the Eigenfunctions of Hf: -

Plot [Evaluate[Table[y¢[i], {i, 1, 5}11]1, {x, @, 1},
PlotLegends »
LineLegend[ {"Ground state", "1st Excited state", "2nd Excited state", "3rd Excited state",
"4th Excited state"}, LegendLabel -» "label",
LegendFunction - (Framed[ #, Background - LightPink, RoundingRadius - 5] &), LegendMargins - 5] ]

19
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label
— Ground state

1st Excited state
— 2nd Excited state
— 3rd Excited state
— 4th Excited state

(. J

The Analytic Solution of the Partner Hamiltonian
Eigenfunction : -

m Parameter: -

nf-]= L =1;

nf-]= e [n_, x_1] :=\/(L((n+22)"2 _1)) ((n+2)*Cos[(n+2) Ex] - Cot [Ex] * Sin [(n+2) %x])

= Plot of this Eigenfunctions : -

in[-]= Plot [Evaluate[Table[¢f[1i, x], {1, O, 4}]11]1, {X, 0, 1},
PlotLegends -
LineLegend[ {"Ground state", "1st Excited state", "2nd Excited state",
"3rd Excited state", "4th Excited state"}, LegendLabel -» "label",
LegendFunction -
(Framed [ #, Background -» LightBlue, RoundingRadius -» 5] &),
LegendMargins - 5] ]

20



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2020

label
— Ground state

1st Excited state
— 2nd Excited state
— 3rd Excited state
— 4th Excited state

VI. CONCLUSION

In this paper we have discussed about the equivalence of partner Hamiltonian and tensor
product formalism which is an important idea to understand the framework of SUSY 1-
D quantum mechanical systems. The Mathematica code can be used to get the partner
eigenstates for very general 1-D potentials also for which we can get perturbative analytic
solutions only.
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