Metal additive manufacturing (AM) has gained much attentions in recent years due to its advantages including geometric freedom and design complexity, appropriate to a wide range of potential industrial applications. However, conventional metal AM methods have high-cost barriers due to the initial cost of the capital equipment, support and maintenance, etc. This study presents a unique low-cost metal material extrusion (MME) technology. The filaments used have polylactic acid (PLA) as the matrix and metal powders (copper, bronze, stainless steel, high carbon iron, and aluminum) as reinforcements. Using the proposed fabrication technology, test specimens were built by extruding polymer/metal composite filaments, which were then sintered in an open-air furnace to produce solid metallic parts. In this research, the mechanical and thermal properties of the built parts are examined using tensile tests, thermogravimetric-, thermomechanical- and microstructural analysis.
Keywords:
Subject: Chemistry and Materials Science - Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.