Preprint
Article

Clustering of Cardiovascular Disease Patients Using Data Mining Techniques with Principal Component Analysis and K-Medoids

Altmetrics

Downloads

666

Views

580

Comments

0

Submitted:

02 August 2020

Posted:

04 August 2020

You are already at the latest version

Alerts
Abstract
Cardiovascular disease is the number one cause of death in the world and Quoting from WHO, around 31% of deaths in the world are caused by cardiovascular diseases and more than 75% of deaths occur in developing countries. The results of patients with cardiovascular disease produce many medical records that can be used for further patient management. This study aims to develop a method of data mining by grouping patients with cardiovascular disease to determine the level of patient complications in the two clusters. The method applied is principal component analysis (PCA) which aims to reduce the dimensions of the large data available and the techniques of data mining in the form of cluster analysis which implements the K-Medoids algorithm. The results of data reduction with PCA resulted in five new components with a cumulative proportion variance of 0.8311. The five new components are implemented for cluster formation using the K-Medoids algorithm which results in the form of two clusters with a silhouette coefficient of 0.35. Combination of techniques of Data reduction by PCA and the application of the K-Medoids clustering algorithm are new ways for grouping data of patients with cardiovascular disease based on the level of patient complications in each cluster of data generated.
Keywords: 
Subject: Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated