

Review

Cybersecurity in Intelligent Transportation Systems

Teodora Mecheva¹, and Nikolay Kakanakov^{2,*}¹ Technical University of Sofia, Plovdiv branch; Teodora.mecheva@tu-plovdiv.bg² Technical University of Sofia, Plovdiv branch; kakanak@tu-plovdiv.bg

* Correspondence: kakanak@tu-plovdiv.bg; Tel.: +359-895-587-568 (N.K.)

Abstract: Intelligent Transportation Systems (ITS) are emerging field characterized by complex data model, dynamics and strict time requirements. Ensuring cybersecurity in ITS is a complex task on which the safety and efficiency of transportation depends. The imposition of standards for a comprehensive architecture, as well as specific security standards, is one of the key steps in the evolution of ITS. The article examines the general outlines of the ITS architecture and security issues. The main focus of security approaches is: configuration and initialization of the devices during manufacturing at perception layer; anonymous authentication of nodes in VANET at network layer; defense of fog-based structures at support layer and description and standardization of the complex model of data and metadata and defense of systems, based on AI at application layer. The article oversees some conventional methods as network segmentation and cryptography that should be adapted in order to be applied in ITS cybersecurity. The focus is on innovative approaches that have been trying to find their place in ITS security strategies recently. The list of innovative approaches includes blockchain, bloom filter, fog computing, artificial intelligence, game theory, and ontologies. In conclusion, a correspondence is made between the commented methods, the problems they solve and the architectural layers in which they are applied.

Keywords: ITS; IoT; VANET; Cybersecurity

1. Introduction

Intelligent Transportation Systems (ITS) are complex multilateral systems aimed at solving problems of transport safety and road traffic efficiency. They are characterized by strict time requirements, dynamics and large volumes of data. Ensuring security in ITS is a complex task on which the safety and efficiency of transportation depends [1].

Vehicular ad-hoc networks (VANET) are a key component of all modern developments for ITS. Nodes (vehicles) in VANET exchange short messages, called beacons, during certain periods. The beacons contain important information about vehicles and the environment, e.g. direction, acceleration, speed, road conditions, weather conditions, etc. Much of the research on ITS cybersecurity focuses on network security. [2 - 5].

[6] indicates the importance to maintain connectivity of nodes with software-configurable security services that ensure protection. This need is dictated by the characteristics of VANET - high dynamics in changes of network topology, uncertain structure, unclear network perimeter, high mobility, enabling and disabling of nodes.

[7] compares the two main technologies for VANET - cellular and based on WiFi and points out that knowing the strengths and weaknesses of each technology is a step towards stable and secure communication in VANET.

In [3] the authors motivate their experiment with the need of an efficient and secure authentication scheme and the privacy of users during the process of authentication.

VANETs are not the only vulnerable component of ITS. Cybersecurity in a system as complex as ITS takes place on all levels. On the other hand, it should be considered that ITS will be part of a larger ecosystem – that of the smart city and even the IoT [8].

In [9] the authors overview the main ITS enabling technologies – smart vehicles, public transportation, IoT devices, networking and summarizes the issues by linking them to the relevant components in ITS.

[10] emphasize the connection between Connected Automated Vehicles (CAVs) and road safety. The authors consider that standardization of procedures, the education of the society and establishing dedicated communication networks for additional security between communicating vehicles are important ways to implement cybersecurity in CAV.

In [11] the focus is on certifications and audits based on standards and regulations developed in cybersecurity for CAVs. The main difficulty is the complexity of the system combining robotic vehicles and vehicles driven by humans, pedestrians, cyclists, etc. Another aspect is social IoT enabling Mobility as a service (MaaS). There are significant unanswered questions concerning privacy and the reliability of the information. The answers to these questions will largely determine what ITS will look like in the future. The authors believe that a very restrictive regulation will slow down CAVs development and real-world deployment, but this is a necessity to prevent safety and security from being sacrificed by commercial interests.

2. ITS cyberattacks.

Heterogeneity of ITS complicates the task of classifying and identifying cyberattacks. This section lists ITS specific attacks, which will later be associated with the architectural layers:

2.1 *VANET man-in-the-middle attack* - intercepting messages between the two vehicles and altering the content (for example, changing temporal or spatial characteristics of the data or modifying emergency information) before forwarding. [9, 12].

2.2 *Routing attacks* - generally exploit the vulnerability in network routing protocols. Black hole attack is an example of a routing attack in which, malicious node silently drops the packets. Gray hole attack are another subtype of routing attack in which dropping is performed only on selective packets [9, 12].

2.3 *Timing attacks* - the attacker node creates a delay in communication by altering time slot of the received packet this way the neighbors of malicious node might not receive sensitive messages on time [12].

2.4 *Spoofing* - attackers broadcast corrupt/malicious data in order to cause invalid reaction in the system. GPS spoofing is an example [9].

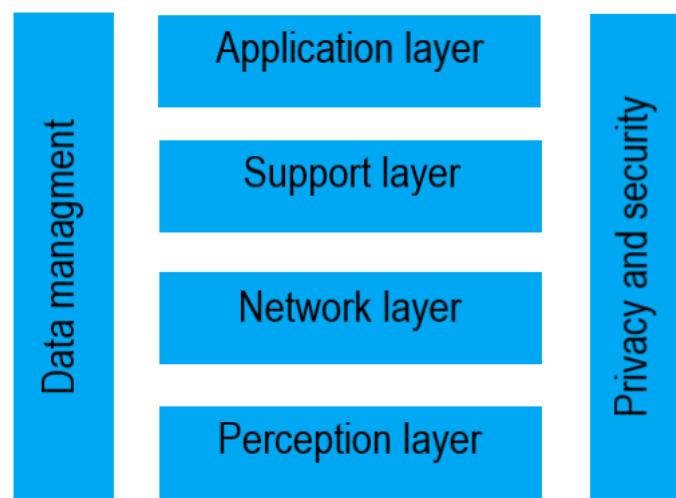
2.5 *Sybil attack* - a malicious actor impersonates as multiple parties within a VANET and injects false broadcast messages into the network [9, 12].

2.6 *Denial-of-service attacks* - affects the availability of the most of the ITS components. This is especially dangerous due to the real-time operational requirements [9, 12].

2.7 *Internal vehicle network attack* - due to the fact that most internal vehicle networks are designed at a time when cars are not connected, they are vulnerable to attacks. Once an attacker has gained access

to the network it can access any critical system (engine control, airbag control, power steering systems etc.) [9].

2.8 *Identity attack* - identity privacy in ITS may refers to the privacy of a driver, passenger, pedestrian etc. The attacking party may try to extract information about personal data, location, actions, habits [9].


2.9 *Eavesdropping* - vehicular networks consist of relays that can be damaged and thus the information can be eavesdropped without disturbing the data transmission process [12].

2.10 *Attack against Fog* – due to their physical characteristics (usually physically accessible) and limited resources in comparison to the Cloud, ITS's Fog components are difficult to protect and can be subject to various types of attacks [5, 9].

2.11 *AI attacks* – the attacks against AI could be related to data manipulation (Data poisoning attack), Environmental Perturbations or Policy manipulation [9, 13].

3. ITS architecture and security challenges

The ITS can be seen as a subtype of IoT and so it can be developed using similar approaches and architectures. The Figure 1 depicts the [architecture](#) contours of most IoT developments. It could also be applied in ITS [8].

Figure 1. IoT architecture outlines [8]

The [presented architecture](#) consists of four layers responsible for different functions of IoT. Applying this outlines in ITS gives each layer a more specific functions.

Perception layer of ITS encompasses users' smartphones, in-vehicles' sensors and infrastructure devices. Many of security issues at perception layer are concerned to configuration and initialization of the devices during manufacturing and [internal vehicular network design](#), as in most cases it is not intended for connected cars [8, 14].

Network layer is a complex alloy of wired and wireless technologies. One of the big cybersecurity questions at this layer is providing authentication in of the nodes in VANET. [Due to the need to protect personal data, authentication needs to be anonymous](#). The limited range of nodes and the strict time requirements introduce additional difficulties [2, 3, 6].

Among the developments for VANET architecture standards, two network technologies are outlined - the family of standards IEEE 1609 (Wireless Access in Vehicular Environment - WAVE),

based on 802.11 and the 3GPP standard (applicable for 4G and 5G LTE-Long Term Evaluation networks called Cellular Vehicle to Everything - C-V2X) [4, 15, 7].

WAVE describes authentication mechanism based on list of hierarchical certificates. It specifies precise requirements for specific cryptographic primitives and does not provide an alternative. The issue here is in dynamic situation and load network the procedure described in standard is not satisfying the time constraints. It require: the elliptic curve digital signature algorithm (ECDSA) and concrete elliptic curves P-256 and P256r1; the maximum size of the private key - 32 bytes; AES-CCM (Advanced Standard Encryption in Counter Mode) – a symmetric encryption algorithm and the hash function SHA-256 [4, 7, 16].

C-V2X technology defines two modes of operation - mode 4 (Unmanaged Mode) and mode 3 (Managed Mode). The standard security mechanisms of LTE standards are applicable in Managed Mode. In Unmanaged Mode, security issues remain unresolved. The standard sets requirements for duplication protection, integrity, confidentiality, and envisage the use of pseudonyms. It outlines the requirements, but does not make recommendations for specific mechanisms [7, 16].

The 5G philosophy is service oriented. Slicing Security as-a-Service or SSaaS, enables operators to provide differentiated and customized security package, including encryption algorithms, encryption parameters, capabilities for blacklist and whitelist configuration, authentication methods, and isolation strength etc [15].

At **support layer** the data is being processed in the Fog or Cloud depending on their temporal and spatial specifics and security considerations. As an emerging technology, Fog-based structures present new security challenges because the operation environments of distributed Fog systems are more difficult to protect than a centralized Cloud. The existing security and privacy measurements for cloud computing cannot be directly applied to the fog computing due to its features, such as mobility, heterogeneity, and large-scale geo-distribution [8, 5].

The **application layer** reflects the final interaction with the user, which can be expressed in information, warning and even activation of a certain system in the vehicle (in the case of unmanned vehicles). Before reaching the user the data acquired in the sensor layer can be processed in multiple locations. Depending on data semantics, security requirements and time constraints calculations can be done locally, in the vehicle itself, in road side units (RSU), at Fog or Cloud. The data in ITS meet all the characteristics of Big data, which is a precondition for applying Artificial Intelligence (AI). Its application into security-critical systems such as ITS must be carefully considered, as it is very vulnerable to a number of cyberattacks [1, 8, 15, 17, 18, 19].

Table 1 summarizes the security issues addressed in this document, their respective architectural layers and the possible cyberattacks.

Table 1. ITS architecture, cybersecurity issues and attacks

Architecture layer	Security issue	Cyberattack
Perception layer	Configuration and initialization of the devices during manufacturing; Internal vehicular network design ;	Denial-of-Service; Spoofing; Internal vehicle network attack ;
Network layer	Anonymous authentication in VANET;	Sybil Attacks; Denial-of-Service; Man-in-the-Middle; Eavesdropping; Routing attacks; Identity attack; Timing attack;
Support layer	Fog defence;	Attack against Fog;
Application layer	Complicated data model; AI defence.	Data poisoning; Environmental Perturbations; Policy manipulation .

4. Conventional methods in ITS cybersecurity

Although ITS are relatively new, many of the technologies they integrate have been tested in practice and the experience gained can be reused. In terms of security, some of the classic approaches will certainly play a key role. The effective approaches of defending support layer are strong authentication, encrypted communication, key management, regular auditing, and private network and secure routing [8, 20, 12, 21].

Cryptographic methods are the heart of cybersecurity. The application of cryptographic techniques in the automotive industry has a history since 90s. Traditional algorithm and encryption standards are not completely suitable for ITS as they cannot meet the requirements of high throughput performance, low latency, and reliability. Lightweight encryption has become a basic requirement in ITS [8, 12].

Network segmentation is another classic approach that improves both network security and efficiency. When talking about ITS network segmentation, it should be taken into account that some of the nodes are mobile, dynamically joining and with anonymity requirements [21].

In [21] authors describe IoT security segmentation pattern. They take into account security level, attack surface, heterogeneity, identity, compliance, threats, and overhead.

5. Innovative approaches in ITS cybersecurity

The introduction of technologies that were not originally designed to serve time-critical areas, as well as introduction of technologies from areas where cybersecurity is not directly related to users' physical security, leads to an increase in the vulnerability to cyberattacks in ITS. Borrowing technologies between different sub-areas in IoT is quite natural. In this section some innovative IoT-specific technologies that have found application in ITS or have found application in similar areas and their application in ITS is yet to be experimented with are presented. Given the multi-faceted nature of ITS, approaches to achieving cybersecurity objectives are multidimensional. Methods discussed in the section 6 relate to the application layer and are holistic in nature, while this section

discusses methods that have a local impact - in the network and perception layer. Blockchain, anonymous authentication in Fog and bloom filter are applicable in resource reduction in anonymous authentication of dynamic nodes in VANET. Security-by-contract and sensor fusion are applied in the sensor layer. Although data fusion can take place in any of the layers in the system, the sensor fusion approach is related to the perception layer, as the closer to the source the information is processed the less security risks exist [2, 3, 6, 8, 14, 22, 23, 24].

5.1. Blockchain

Blockchain is an extremely dynamic technology in recent times. With regard to ITS, one of its main applications is in anonymous authentication solutions in VANET. The use of distributed storage can be very suitable for storing data on the legitimacy of nodes. The nodes decide whether to admit a new participant in the communication based on its reputation. In this way, malicious nodes are discouraged. Another option for applying a blockchain is upper architecture layers as a secure data warehouse. [Although some of the described examples present MANET networks, the simulation results can be considered to be applicable to VANET as a subtype of MANET](#) [6, 22, 23, 24, 25].

The authors of [22] introduce the concept of "shortest, most reputed path" using the Ad hoc On-Demand Distance Vector (AODV) routing protocol for MANETs. They create a simulation, using Matlab, dividing the network into subnets in each of which there are mining nodes that monitor the

actions of the other nodes and add transactions to the blockchain. The blockchain contains information about the reputation of the nodes. The authors claim an approximately 12% improvement in overall packet delivery in the presence of routing attacks, compared to conventional routing algorithms in MANETs.

The authors of [25] discuss the general importance of security in IoT systems, focusing on MANET. They describe a future development (similar to [21]) - blockchain-based OLSR (Optimized Link State Routing Protocol), taking into account not only the node's reputation but also its energy level.

In [24] is presented overview of significant applications of blockchain technology and possible attacks. To analyze the traffic behavior on the network, five virtual clients were created. The authors conclude that the problem of ensuring data security is not completely resolved. They emphasize the possibility of identifying traffic to blockchain technology using behavioral analysis and recommend hiding traffic and preventing the interception of traffic from this technology, including by behavioral analysis.

[23] offers a different application of blockchain for IoT – SEBS (Secure Element Blockchain Stratagem). It applies blockchain in the data layer, combining it with hardware secure elements in the sensor layer. The conclusion is that the proposition can increase the performance of critical security operations by 31 times, all while reducing computational and memory overheads.

[6] introduces blockchain with floating genesis block and its contribution to resolve the issue of continuously growing blockchain within the VANET/MANET networks. The authors offer a comparative analysis with other methods that reduce the time to decide on the connection of new nodes in VANET and conclude that this modification allows resolving the blockchain growth issue completely in case blocks are downloaded from trusted nodes. They note that the modification introduces an element of centralization of the system and make a proposal to mitigate this drawback.

5.2. Anonymous authentication in Fog

As Fog nodes provide precious opportunities to protect the privacy of the consumers before personal sensitive data leave the edge. Fog technology is one of the solutions to the problem of anonymous authentication in VANET [8, 2, 14].

[2] introduces fog computing for anonymous vehicle legitimization. The advantages of this solution are that do not need to authenticate all the RSUs in the driving period, thereby reducing the times of authentications between legitimate vehicles and RSUs. The system model of this study consists of three layers: the cloud layer, the fog layer and vehicles.

5.3. Bloom filter

Bloom filter is another solution to the issue of reducing resources when using changing aliases.

[3] presents validation of pseudonyms in VANET, based on Bloom Filter. Bloom Filter stores all certificates generated for a given period. Instead of requiring a response from a trusted party for each package received, a reference is made to the Bloom Filter, which refreshes over time. The disadvantage is that this method gives false positive results. The authors include auxiliary methods – requesting the trusted party and list of illegitimate participants.

5.4. Security by contract

Security by contract paradigm is based on a description of the relevant features of the application and the relevant interactions with its host platform. This approach is a possible solution to many of the security tasks in the sensor layer, as it is also applicable to devices that are put into operation [14].

In [14] is presented security solution for correctly defining rules in IoT devices applicable by a user, administrator or manufacturer. It consists of security contracts that can be verified against the security policy stored within the Fog node. By real smart home experiment, pseudo-code algorithms and a number of illustrative examples the authors motivate the necessity to develop such system.

5.5. Sensor fusion

Sensor fusion can offset incorrect information from corrupting computations. This technology is already applied in practice in many modern automobiles. [9]

6. An intelligent security in IoT

Due to the complexity of ITS an intelligent and proactive defense approach is a necessity. The methods described in this section relate to the holistic approach of ITS cybersecurity and have been successfully applied in security systems in other areas. In relation to ITS, they are mentioned on many sources as methods that will outline the overall appearance of ITS in the future, but still the experimental results of their application in ITS are not many. This is largely due to the fact that the development of the whole system is not mature enough. This section discusses examples of the application of artificial intelligence, machine learning, ontologies, and game theory in security systems [8, 15, 17].

6.1. Artificial Intelligence.

With the advent of IoT, AI is increasingly used in IDS, due to the increased risk to security and complexity of tasks. AI will definitely find a place in future ITS cybersecurity, due to the need for adaptive solutions to the rapidly changing system and the need for a holistic approach [11, 17].

[13] describes a novel hybrid Deep Learning and Dendritic Cell Algorithm (DeepDCA) in the context of an Intrusion Detection System (IDS). The authors argues that experimentation results show that DeepDCA demonstrate over 98.73% accuracy and low false-positive rate.

6.2. Machine learning.

Machine learning (ML) is the sub set of AI that is most widely used in cybersecurity systems. Its weakness is that it is vulnerable in the training phase, so the training data set must be carefully selected. If a noise is inserted, the whole system can be compromised (Envision Attacks, Poisoning Attacks). It is necessary to create a strong classifier through proactive approaches. Due to this disadvantage, ML techniques are often used as an auxiliary mechanism [15, 26].

[27] presents automatic IP blacklisting applying linear regression techniques. The authors claims that it can reduce the incorrect blacklisting by nearly 90% and improve the time to eliminate malicious IP compared to human agents.

6.3. *Ontology*.

Ontology is a promising tool to address heterogeneous issues, especially for unstructured data. The application of ontology to the IoT security domain is an emerging area [8, 28].

In [28] authors present a data-security ontology for IoT, from the perspective of data. It represents a common vocabulary describing the practical security aspects related to data access and exchange relevant to producers, consumers and intermediaries. Its objective is to provide relevant information about data provision, access and handling, as well as to regulations that may affect it, and certifications and provenance.

6.4. *Game theory*.

Game theory is a powerful mathematical tool that has been successfully applied in the fields of cybersecurity and privacy [8, 29].

In [29] the proposed method combines reputation and game theory-based methods for selfish node detection in MANETs. It consists of several steps that is performed games between nodes in a clustered network when sending or forwarding the node's data packets. Each player independently chooses their own strategy for forwarding or not forwarding. The experimental results have shown that the proposed method can detect selfish and malicious nodes efficiently, decrease the end-to-end delay of the data and consumption of node resources (energy, battery, memory, etc.). The proposed approach gives the malicious and selfish nodes the second opportunity to cooperate with other nodes, and thus improve the network performance.

7. Discussion

ITS is a complex multi-component system that is critical to cybersecurity and vulnerable in all its subsystems. In current document a four-layer model of IoT architecture has been adapted to more clearly differentiate the issues.

At perception layer Spoofing attacks result in incorrect data acquisition. Denial-of-Service can cause failure of any of the systems. The main issue at this layer is configuration and initialization of the devices during manufacturing and internal vehicular network design, which does not comply with the connection of vehicles in dynamic networks.

Security by contract concept is a promising technology at perception layer, especially with regard to issues related to changes and improvements in security strategies. Sensor fusion is successfully applied in practice in order to eliminate inaccurate information.

At network layer numerous of cyberattacks are possible due to dynamic topology of the VANETs. Sometimes the attacking party can act passively, for example eavesdropping. Black and gray hole attacks omit the retransmission of packets and thus disrupt communication. Man-in-the-Middle attack spread modified data. Timing attack delay transmission of the data and this way it damages systems that rely on real-time response. Sybil rely on replacing the identity of a nodes, thus

can cause Jamming or Denial-of-Service. Due to the possibility of Identity attack the authentication of the nodes is necessarily to be anonymous.

Different solutions with regard to anonymous authentication, are being sought to reduce the network and computing resources required for the continuous exchange of pseudonyms in VANET.

One of the fastest growing technologies that is being experimented in this area is blockchain. In addition to anonymous authentication, blockchain in ITS security could find application in upper architecture layers as a secure data warehouse. Another answer to the question of reducing resources in anonymous authentication is Fog computing. Keeping the vulnerable identity information of the nodes at the edge of the system would limit the risk of attacks. The use of several complementary technologies is a possible solution to the issue of resource-effective authentication. A good example of this is a bloom filter as a main method and a blacklist and a request to the legitimate party as an auxiliary methods.

At support layer defense of fog-based structures is the main issue.

Conventional security methods as cryptography and network segmentation are the most appropriate solution for Fog defense. They need to be adapted to the needs of ITS.

At application layer possible attacks are **Data poisoning, Environmental Perturbations and Policy manipulation**. The main issues here are description and standardization of the complex model of data and metadata and defense of systems, based on AI.

Due to the complexity of ITS, an intelligent security strategy is required. AI, machine learning, ontologies, and game theory are tools that have found application in cybersecurity solutions. Their application and adaptation to ITS needs to be studied in detail. Intelligent security often is based on cooperation between cybersecurity specialists and a variety of intelligent security solutions.

An example of collaboration between experts and automated cybersecurity approaches is a system for cyber-risk scenario analysis for connected and automated vehicles (CAV) based on Bayesian Network (BN) presented in [30]. In the initial phase of establishment, BN is constructed based on expert judgment. Quantitative and qualitative information from NVD (National Vulnerability) for 88,438 known vulnerabilities were used to refine BN, using machine learning methods. The performed tests demonstrate nearly 100% prediction accuracy of the quantitative risk score and qualitative risk level. Proposed methodology is applied to CAV GPS systems.

Another example of simulation analysis that can help in developing methodologies to resist or mitigate the effects of the attacks in a CAV platoon, such as intrusion detection, privacy protection, and counteracting control methods anomaly detection is presented in [31]. To understand cyberattack effect propagation the authors use a directed graph model, presented with adjacency matrix. For the simulation is assumed that platoon of 15 CAVs is traveling on a straight road segment without overtaking and lane changing and incorporate the effects of three types of attacks (bogus messages, replay/delay, and collusion attack). It was concluded that cyberattacks could influence vehicles unnecessary delay, extremely small gap, abrupt acceleration/deceleration, and rear-end collisions. The authors propose the cooperative intelligent driver model.

The two described studies are good examples of initial development of ITS cybersecurity methodologies that need to be considered and integrated into a comprehensive system and tested into real vehicles.

Table 2 summarizes the approaches considered for ITS cybersecurity in accordance with the problems they solve, **cyberattacks** and the architectural layer to which they correspond.

Table 2. ITS architecture and cybersecurity issues and approaches

Architecture layer	Security issue	Cyberattack	Security approach
Perception layer	Configuration and initialization of the devices during manufacturing;	Denial-of-Service; Spoofing;	Security by contract; Sensor fusion;
	Internal vehicular network design;		
Network layer	Anonymous authentication in VANET;	Sybil Attacks; Denial-of-Service; Man-in-the-Middle; Eavesdropping; Routing attacks;	Blockchain; Reputation based models; Bloom filter combined with auxiliary methods; Game theory;
Support layer	Fog defence;	Attack against Fog;	Authentication; Encryption; Key management; Regular auditing;
Application layer	Complicated data model; AI defence.	Data poisoning; Environmental Perturbations; Policy manipulation.	Blockchain; AI; Machine learning; Ontology; Game theory.

8. Conclusion and future work

ITS are complex, time-critical systems in which the physical safety of road users and the efficiency of transport services directly depend on the provision of cybersecurity. Although developments for ITS standards exist, the imposition of a comprehensive standard as well as the creation of a security strategy is not yet a fact. The interoperability between the various standards within the ITS and the interaction with the surrounding world (Smart Cities, IoT) needs to be well considered and tested.

Some of the discussed technologies are in the initial stage of research regarding their application in ITS. AI and Machine Learning is mentioned in many sources as an important technology that will determine the vision of ITS. The advantages of utilizing such approaches are greatly publicized, while the security implications of their integration with ITS remain not studied enough. On the other hand, experimental results from the application of these technologies in ITS security systems are needed. Another technology that is expected to be developed under ITS domain is Game theory.

Security-by-Contract is successfully applied in IoT cybersecurity solutions, and is likely to find a place in ITS cybersecurity, due to the need to adapt existing solutions at perception layer.

Author Contributions: Conceptualization, N.K. and T.M.; investigation, T.M.; resources, T.M.; writing—original draft preparation, T.M.; writing—review and editing, N.K.; visualization, T.M.; supervision, N.K.; funding acquisition, N.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the European Regional Development Fund within the OP "Science and Education for Smart Growth 2014 - 2020", Project CoC "Smart Mechatronic, Eco- And Energy Saving Systems And Technologies", № BG05M2OP001-1.002-0023 233

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. P. Coppola; F. Silvestri, Autonomous vehicles and future mobility solutions. In *Autonomous vehicles and Future mobility*, AET series – Elsevier, **2019**.
2. M. Han; S. Liu; S. Ma; A. Wan, Anonymous-authentication scheme based on fog computing for VANET, volume 15(2), *PLoS One*, **2018**
3. H. Jin и P. Papadimitratos, Proactive certificate validation for VANETs, *IEEE Vehicular Networking Conference (VNC)*, **2016**.
4. IEEE, IEEE Standard for Wireless Access in Vehicular Environments--Security Services for Applications and Management Messages, 1609.2-2016 (Revision of IEEE Std 1609.2-2013), pp.1-240, pp.1-240, IEEE Std, **2016**.
5. S. Khan; S. Parkinson; Y. Qin, Fog computing security: a review of current applications and security solutions, *Journal of Cloud Computing: Advances, Systems and Applications*, **2017**.
6. A. Busygin; M. Kalinin; A. Konoplev, Supporting connectivity of VANET/MANET network nodes and elastic software-configurable security services using blockchain with floating genesis block, *SHS Web of Conferences*, **2018**.
7. Z. H. Mir; F. Filali, LTE and IEEE 802.11p for vehicular networking: a performance evaluation, *J Wireless Com Network*, **2014**.
8. L. Cui; G. Xie; Y. Qu; L. Gao; Y. Yang, Security and Privacy in Smart Cities: Challenges and Opportunities, Vol 1 (26), pp. 46134-46145, *IEEE Access*, **2018**.
9. D. A. Hahn; A. Munir; V. Behzadan, Security and Privacy Issues in Intelligent Transportation Systems: Classification and Challenges, *IEEE Intelligent Transportation Systems Magazine*, **2019**.
10. C. Katrakazas; A. Theofilatos; G. Papastefanatos; J. Härri; C. Antoniou, Cyber security and its impact on CAV safety: Overview, policy needs and challenges, *Elsevier*, **2020**.
11. T. Sanguino; J. Domínguez; P. Baptista, Cybersecurity certification and auditing of automotive industry, *Elsevier*, **2020**.
12. A. K. Jadoon; L. Wang; T. Li; M. A. Zia, Lightweight Cryptographic Techniques for Automotive Cybersecurity, Volume 1 (21-15), *Wireless Communications and Mobile Computing*, **2018**.
13. P. Vähäkainu; M. Lehto, Artificial intelligence in the cyber security environment, https://www.researchgate.net/publication/338223306_Artificial_intelligence_in_the_cyber_security_environment: *International Conference on Cyber Warfare and Security ICCWS2019*, **2019**.
14. A. Giaretta; N. Dragoni; F. Massacci, IoT Security Configurability with Security-by-Contract, *Sensors*, **2019**.
15. HUAWEI TECHNOLOGIES CO., LTD., 5G Security Architecture White Paper, **2017**.

16. C. Mandy; I. Mahgoub, Implementation of the WAVE 1609.2 Security Services Standard and Encountered Issues and Challenges, Vols 1 (29). pp. 13-18, *Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)*, 2018.
17. S. Aldhaheri; D. Alghazzawi; L. Cheng; B. Alzahrani; A. Al-Barakati, DeepDCA: Novel Network-Based Detection of IoT Attacks Using Artificial Immune System, Vols 1(6), *Applied Sciences*, 2020.
18. S. Gordaychik; A. Nikolaev; D. Kolegov, Measuring Artificial Intelligence and Machine Learning Implementation Security on the Internet, Project: AI Security, 2019.
19. F. Liang; W. G. Hatcher; W. Liao; W. Gao; W. Yuy, Machine Learning for Security and the Internet of Things: the Good, the Bad, and the Ugly, *IEEE Access*, 2019.
20. M. Mukherjee; R. Matam; L. Shu; L. Maglaras; M. A. Ferrag, N. Choudhury and V. Kumar, Security and Privacy in Fog Computing: Challenges, *IEEE Access*, 2017.
21. E. B. Fernández; H. Washizaki; N. Yoshioka, Abstract and IoT security patterns, *9th Asian Conference on Pattern Languages of Programs (PLoP'19)*, 2019.
22. M. A. A. Careem; A. Dutta, Reputation based Routing in MANET using Blockchain, *International Conference on Communication Systems & NETworkS (COMSNETS)*, 2020, pp. pp. 1-6.
23. V. Deshpande; T. Das; H. Badis; L. George, SEBS: A Secure Element and Blockchain Stratagem, *Global Information Infrastructure and Networking Symposium*, 2019, pp. pp. 1-7.
24. V. Elagin; A. Spirkina; A. Levakov; I. Belozertsev, Blockchain Behavioral Traffic Model as a Tool to Influence Service IT Security, Volume 12 (6)8, *Future Internet*, 2020.
25. N. Mouchfiq; A. Habbani; C. Benjbara, Blockchain Security in MANETs, Volume 13(10), 546 - 550, Open Science Index 154, *International Journal of Computer and Information Engineering*, 2019.
26. N. Rahimi; J. Maynor; B. Gupta, Adversarial Machine Learning: Difficulties in Applying Machine Learning to Existing Cybersecurity Systems, 69, p. p.40-47, *EPiC Series in Computing*, 2020.
27. D. Jeon; B. Tak, BlackEye: automatic IP blacklisting using machine learning from security logs, *Wireless Networks*, 2019.
28. P. Gonzalez-Gil; J. A. Martinez; A. F. Skarmeta, Lightweight Data-Security Ontology for IoT, *Sensors*, 2020.
29. S. Nobahary; H. G. Garakani; A. Khademzadeh; A. M. Rahmani1, Selfish node detection based on hierarchical game theory in IoT, *EURASIP Journal on Wireless Communications and Networking*, 2019.
30. B. Sheehan; F. Murphy; M. Mullins; C. Ryan, Connected and autonomous vehicles: A cyber-risk classification framework, *Transportation Research Part A*, 2019.
31. P. Wang; X. Wu; X. He; Modeling and analyzing cyberattack effects on connected automated vehicular platoons, *Transportation Research Part C*, 2020.