

1 MINI-REVIEW

2 **The Boggarts of Biology: How non-genetic changes influence the genotype**

3 Laasya Samhita

4 National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore,
5 India

6 Correspondence:
7 Laasya Samhita (laasya2@gmail.com, laasyas@ncbs.res.in)

8

9 **Abstract**

10 The notion that there is a one to one mapping from genotype to phenotype was overturned a
11 long time ago. Along with genotype and environment, 'non-genetic changes' orchestrated by
12 altered RNA and protein molecules also guide the development of phenotype. The idea that
13 there is a route through which changes in phenotype can lead to changes in genotype
14 impinges on several phenomena of molecular, developmental, evolutionary and applied
15 interest. Phenotypic changes that do not alter the underlying DNA sequence have been
16 studied across model systems (eg: DNA and histone modifications, RNA editing, prion
17 formation) and are known to play an important role in short term adaptation. However,
18 because of their transient nature and unstable inheritance, the role of such changes in long
19 term evolution has remained controversial. I classify and review three ways in which non-
20 genetic changes can influence genotype and impact cellular fitness across generations, with
21 an emphasis on the enticing idea that they may act as stepping stones for genetic adaptation. I
22 focus on work from microbial systems and attempt to highlight recent experiments and
23 models that bear on this idea. Overall, I review evidence which suggests that non-genetic
24 changes can impact phenotype via their influence on the genotype, and thus play a role in
25 evolutionary change.

26 **Keywords**

27 Non-genetic change, translation errors, phenotypic variability, adaptation, evolution

28 **Introduction**

29 Heritable phenotypic variability, i.e, phenotypic changes that are faithfully passed on from
30 generation to generation, lies at the heart of Darwinian evolution. Typically, heritable

31 variation stems from differences in the genetic material (usually DNA) of the organism. In
32 contrast to this, recent findings show that non-DNA based changes can also lead to
33 phenotypic variability, impact fitness, and be inherited (reviewed in Bonduriansky and Day
34 2009; Jablonka and Raz 2009; Charlesworth et al. 2017) Many terms have been coined to
35 refer to non-DNA based change; in fact the whole field of ‘epigenetics’ is devoted to their
36 study. Perhaps the most familiar examples under this category are those of DNA and histone
37 modifications. These topics, along with RNA editing, have been extensively reviewed
38 elsewhere (Gott and Emeson 2000; Jablonka and Raz 2009; Charlesworth et al. 2017). For
39 the purpose of this article and to avoid confusion, I use the term ‘non-genetic changes’ to
40 mean changes that impact phenotype without altering the primary DNA sequence. At a
41 molecular level, RNA and protein alterations underlie nearly all such changes. Unlike DNA,
42 for the most part, RNA and protein molecules cannot be used as templates to generate more
43 copies of themselves (For exceptions, see True and Lindquist 2000; de Farias et al. 2017).
44 Changes in these molecules are therefore typically short lived, often dictated by changes in
45 the external environment; and thought to have a limited impact across generations. In
46 addition, historically, the idea that a short lived non-genetic change (often triggered by the
47 environment) can have trans-generational impacts carries a Lamarckian flavour, and as such
48 has faced opposition (Jablonka and Lamb 2005b; Nanjundiah 2020). As a result, while it is
49 clear that non-genetic changes can increase phenotypic variability and affect adaptation in the
50 short term, their role in long term evolutionary processes has remained controversial.

51 Even when such a role is discussed, it is usually limited to the sub-set of non-genetic changes
52 that can be inherited (reviewed in Bonduriansky and Day 2009; Jablonka and Raz 2009).
53 (Box 1 and Fig. 1), and therefore directly influence phenotype across generations (See Box 1
54 for indirect influence on the genotype). One way in which phenotypic changes can achieve
55 lasting trans-generational influence is by influencing changes in DNA sequence. Such an idea
56 has been discussed previously but its development has been limited by lack of experimental
57 evidence (West-Eberhard 2003; Jablonka and Lamb 2005a). I propose in this review that one
58 major way in which both heritable and non-heritable non-genetic changes can influence
59 evolution is by indirectly affecting the genotype. Non-genetic changes co-exist with genetic
60 change in all cells and have mutual influence. However, their effects are often considered
61 separately, and their impact on phenotypic variation is also viewed through this lens. Here, I
62 discuss the various ways in which non-genetic changes can influence the genotype (and

63 therefore evolution), with a focus on molecular mechanisms. I begin with a brief background,
64 go on to classify examples, and finally highlight some open questions.

65 **Background**

66 ***Non-genetic changes can impact phenotype in multiple ways***

67 Boggarts are mythical creatures popularized by J.K Rowling. They are shape-shifters with a
68 temporary existence. Like them, non-genetic changes too come in various flavours, and are
69 characterized by rapid response to a new stimulus (reviewed in Fox et al. 2019) (Tyedmers et
70 al. 2008; Tadrowski et al. 2018). They can also help organisms navigate changing
71 environments via ‘phenotypic switching’, i.e. by switching to one of two or more possible
72 stable phenotypes within the same genotype (reviewed in Fox et al. 2019; Stajic and Bank
73 2020). From a molecular point of view, quantitative or qualitative differences in RNA and
74 protein molecules (leading to altered transcription and translation) underlie nearly all non-
75 genetic changes that alter phenotype. In general, such changes could either be triggered by
76 variation in the external environment or be independent of the external environment
77 (reviewed in Nanjundiah 2020).

78 For example, an increase in temperature (environmental change) leads to the loss of a histone
79 modification (non-genetic change) in the germline of *C. elegans* embryos (Klosin et al.
80 2017). In turn, this results in the activation of several normally silenced genes for over 10
81 generations, after which the original pattern of modification is re-set. Non-genetic changes
82 that are independent of the environment are usually associated with stochastic differences in
83 the level and composition of intracellular molecules (reviewed in Krishna and Laxman 2020;
84 Nanjundiah 2020). For example, Novick and Weiner showed that after prior exposure to
85 different amounts of lactose, clonal *E. coli* cells in the same environment could be
86 transcriptionally ‘induced’ or ‘uninduced’ for lactose utilization depending on stochastic
87 variation in the levels of the lactose transporter protein (galactoside permease) they carried
88 (Novick and Weiner 1957). Cells previously exposed to high lactose remained induced, while
89 those exposed to low lactose were not induced; the states of gene expression persisted stably
90 for several generations. However, environment independent non-genetic changes need not
91 arise only from stochastic events. For instance, alternate decoding of the genetic code via
92 frameshifting and stop codon readthrough can affect expression of the genotype (Farabaugh
93 1996; Ivanova et al. 2014; Fan et al. 2017). Recently, a rare +1 frameshift mutation in the
94 essential *rpoB* gene (encoding RNA polymerase) in *E. coli* was identified in a screen for

95 resistance to the antibiotic rifampicin (Huseby et al. 2020). Surprisingly, although they
96 showed no additional mutations, mutant cells continued to retain viability (for which
97 functional RNA polymerase is essential) as well as rifampicin resistance. Further
98 investigation revealed that the frameshift mutation was suppressed by a second phenotypic
99 frameshift downstream ~5% of the time. This non-genetic change restored the original
100 reading frame with just one amino acid change. In addition, translation was upregulated in
101 response to RpoB depletion, resulting in ~70% functional protein being formed (Huseby et
102 al. 2020), and minimising the cost of antibiotic resistance.

103 Therefore, non-genetic changes can be either induced by the environment or independent of
104 the environment; they can arise from stochastic processes or be part of a stable gene
105 regulatory network. Overall, non-genetic changes can influence phenotype via multiple routes
106 (reviewed in Ackermann 2015; Ling et al. 2015; Stajic and Bank 2020).

107 ***Limits to the impact of non-genetic changes: Heritability and Penetrance***

108 Since RNA and protein regulatory changes underlie most non-genetic changes, a substantial
109 proportion of the population can respond immediately and simultaneously to an external
110 stimulus. In contrast, genetic change is slow. Even when a beneficial mutation or gene
111 combination arises, it takes a while (several generations) for such a change to spread across a
112 substantial proportion of the population. Just like genetic change, non-genetic changes can be
113 deleterious, beneficial, or neutral with no apparent fitness related effect on the phenotype in a
114 given environment (Goldsmith and Tawfik 2009; Bullwinkle et al. 2014; Bodi et al. 2017;
115 Carey et al. 2018). The precise distribution of such effects is not well worked out, and is
116 likely to differ depending on the mechanism by which the non-genetic change operates, as
117 well as the linked genotype and environment (Klironomos et al. 2013). Whatever their
118 distributions, the rate at which non-genetic changes occur as well as the number of distinct
119 processes feeding into such changes (transcription, translation, secondary modifications and
120 protein folding, to name a few) likely outnumber those associated with DNA mutations
121 (Drummond and Wilke 2009; Gout et al. 2013; Mordret et al. 2018). Although high in
122 number, two factors have been seen as a limit to their impact:

123 (i) Lack of heritability: As discussed already, many non-genetic changes occur in conjunction
124 with an environmental change, and may not last once the environment changes again. This is
125 often seen as a limit to their long-term impact. However, experiments over the years have

126 uncovered heritable non-genetic changes across model systems, reducing the strength of this
127 argument (See Box 1).

128 (ii) Low penetrance of the phenotype: Non-genetic changes may mediate phenotypic change
129 in a sub-population of cells, or alter a sub-population of intracellular RNA or protein in all
130 cells. For instance, stable transcriptional regulation (guided by environmental cues) ensures
131 100% penetrance of one of two phenotypes in clonal cells. A *Bacillus subtilis* cell is either a
132 dormant endospore or an actively growing cell (Tan and Ramamurthi 2014), *Caulobacter*
133 *crescentus* cells are either stalked or swarmers (Tsokos and Laub 2012). On the other hand,
134 phenotypic changes that arise from errors in transcription, translation and protein folding are
135 unpredictable, and the altered molecules form only a small percentage of the total population
136 (Drummond and Wilke 2009). In turn, any phenotypic change associated with such an altered
137 molecule will have much less visibility than a mutation that leads to the same change.

138 Although this remains a factor in considering the impact of non-genetic changes, experiments
139 have shown that even seemingly small contributions from altered tRNAs and proteins can
140 impact phenotype and short-term adaptation. For example, 5% of altered RNA polymerase
141 molecules are sufficient to confer resistance to low amounts of rifampicin (Javid et al. 2014);
142 a ~1% misacylation of tRNAs is sufficient for *E. coli* cells to show a growth advantage
143 under oxidative stress as compared with unmodified cells (Schwartz et al. 2016). Therefore,
144 experimental evidence suggests that low penetrance need not be a barrier for non-genetic
145 changes to impact phenotype and fitness. In addition, the many examples discussed later in
146 this article strengthen this view.

147 **Ways in which non-genetic changes can lead to genetic change**

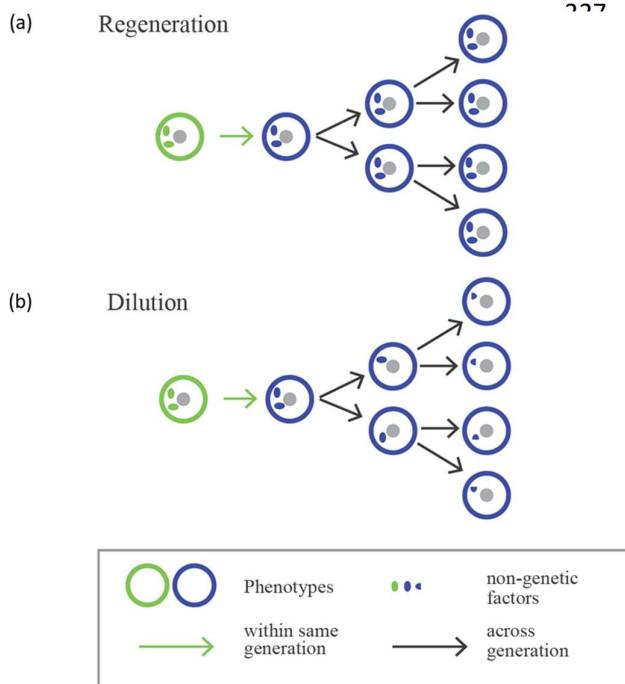
148 As mentioned previously, the role of non-genetic changes in evolution has remained
149 controversial; partly due to the paucity of experimental evidence in support of such a
150 contribution. Recent experiments have shown that non-genetic changes can influence long
151 term adaptation as well as the future path of genetic change (discussed in the sections below).
152 By doing so, they assume relevance for evolution. We could visualize the overall phenotype
153 as a body whose skeleton is determined by the underlying genotype, with the flesh and blood
154 supplied by a combination of genetic and non-genetic changes in a given environment (Fig.
155 2). In the section below, I categorise three ways in which non-genetic changes can impact the
156 genotype (Fig. 3), and discuss evidence for each with a focus on the molecular mechanisms. I
157 review specific examples within each category where non-genetic change either precedes or

158 succeeds genetic change in shaping phenotype. Finally, I discuss the limited experimental
 159 evidence available for phenotypic changes that act as stepping stones for genetic change. I
 160 review this in light of our recent finding that mistranslation increases early survival under
 161 DNA damage in *E. coli* cells (non-genetic change) followed by beneficial mutations in the
 162 gene *gyrA* (genetic change) (Samhita et al. 2020a). Overall, I present evidence suggesting that
 163 non-genetic changes can have a significant impact on evolution via their impact on the
 164 genotype.

165 **Box 1**

166 **Direct inheritance:** The simplest way for non-genetic change to be perpetuated is to directly
 167 pass on from one generation to the next, much like DNA does (Fig. 1). There are two ways in
 168 which this can happen. One, where the non-genetic change is generated or established afresh
 169 every generation from a template (Fig. 1a). Second, where the same factor is propagated
 170 directly and diluted over time (Fig. 1b)

171 DNA and histone modifications fall under the first category, and have been extensively
 172 reviewed elsewhere (reviewed in Moazed 2011). Typically, progeny inherit ‘directions’ to
 173 regenerate a given pattern. For example, when a cell carrying DNA methylations on both
 174 strands divides, one methylated DNA strand inherited from the parent cell orients the
 175 molecular machinery in the daughter cells and enables methylation on the complementary
 176 strand. In addition, such modifications can cause changes in local mutation rate. For example,
 177 methylated cytosine converts to thymidine at a higher rate than the unmethylated version
 178 (Ehrlich et al. 1986). Lack of methylation can also increase DNA transposition events
 179 (Kakutani et al. 1995). Similarly, in human cancer cell lines, variation of lysine methylation
 180 on histone H3 accounts for ~40% of the mutation rate variation in the local genomic region
 181 (Schuster-Bockler and Lehner 2012; Stajic and Bank 2020). Therefore, DNA and histone
 182 modifications can influence phenotype both directly by the altered function they confer, as
 183 well as by altering the genotype. Of all examples that fall under direct inheritance, prions are
 184 perhaps the most unique. A prion (proteinaceous infectious particle- (Prusiner 1982)) arises
 185 spontaneously as an alternately folded version of a normal cellular protein (with a probability
 186 ranging from 10^{-2} to 10^{-7} , depending on the prion- (Tuite 2020)) with the added ability of
 187 converting the normal form into the prion form by assisted folding. Prion based inheritance is
 188 best studied in laboratory strains of *Saccharomyces cerevisiae* where they can be stably
 189 maintained and propagated across several generations (Halfmann et al. 2012). However, there


190 is at least one example of a natural prion that is propagated in a fungus and even serves a
191 critical cellular function: the [Het-s] prion in *Podospora anserina* (Debets et al. 2012). The
192 prion version (but not the normal form) mediates heterokaryon incompatibility (a form of self
193 versus non-self recognition between fungal hyphae (Glass and Kaneko 2003), where
194 genetically different nuclei are prevented from co-existing in one cytoplasm). The prion
195 ensures that vegetative mixing cannot happen, a result that is also thought to keep the spread
196 of cytoplasmic infections at bay (Debets et al. 2012). There is no genetic basis for this
197 change, it is passed on as a dominant trait through the cytoplasm. Recent work suggests that
198 in addition to prions, a large body of intrinsically disordered proteins (IDPs- (Uversky 2019))
199 may also contribute to non-genetic inheritance. IDPs are proteins that have stretches of amino
200 acids which confer a dynamic structure to the protein, and often result in multi-functionality
201 (Uversky 2019). A study by Chakrabortee et al found that these proteins can also behave in a
202 prion-like manner and show protein-only inheritance in *S. cerevisiae* (Chakrabortee et al.
203 2016), for as much as~ 100 generations. More work is needed to understand how these IDPs
204 are inherited, and what their adaptive value might be. Till date, however, we do not have
205 evidence for these protein variants influencing the genotype.
206 A second way to carry over a non-genetic change into the next generation is through direct
207 transfer without regeneration (Fig. 1b). This occurs when the factor causing the non-genetic
208 change (often altered protein) remains stable across generations. Such a factor could either be
209 diluted at every cell division and be inherited by both daughter cells, or be asymmetrically
210 inherited by only one of two daughter cells. By tracking fluorescently tagged LacY proteins,
211 Lambert and Kussell found that *E. coli* cells retain a ‘phenotypic memory’ of past exposure to
212 lactose by retaining stable LacY from cytoplasmically inherited protein for ~10 generations
213 (Lambert and Kussell 2014). In turn, this reduces the time taken to re-start exponential
214 growth (lag phase) when cells are moved from glucose to lactose as the carbon source. In
215 contrast to even distribution among daughter cells, protein aggregates that arise from heat
216 shock are asymmetrically inherited by one daughter cell for several generations in *E. coli*
217 (Govers et al. 2018). These cells go on to show higher heat shock tolerance although they
218 have no history of exposure to high temperature. In most of these cases (with the exception of
219 prions which show dominant cytoplasmic inheritance (Halfmann et al. 2012; reviewed in
220 Tuite 2020)), the inheritance is unstable and often does not last beyond a few generations.
221 Therefore, although they are fascinating and clearly impact short term adaptation, it is not
222 clear to what extent this last category of inheritance can impact long term evolution

223

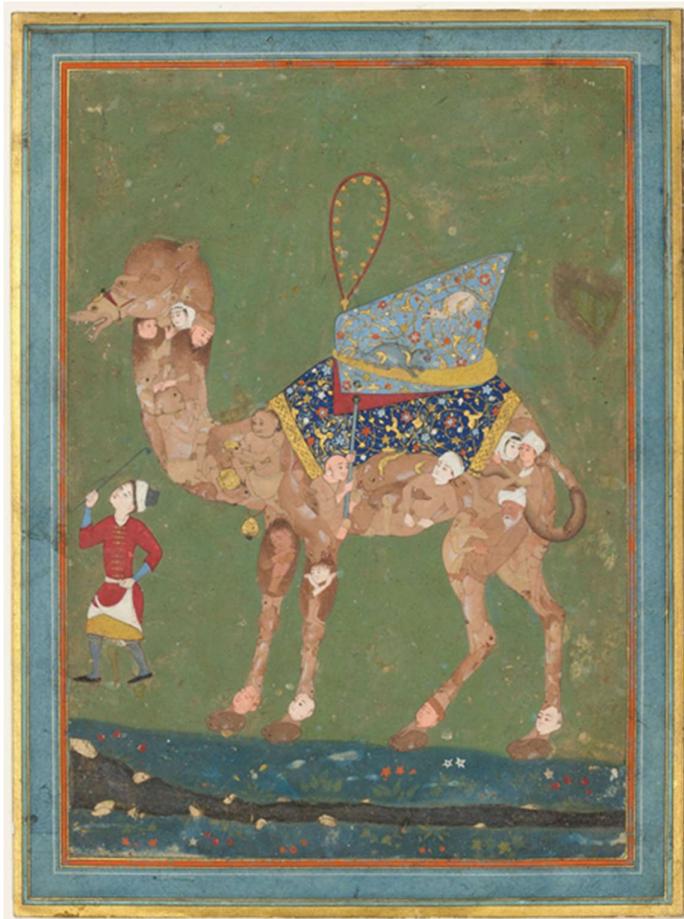
224

225 **Figure 1**

226

237

238


239 **Direct inheritance:** Non-genetic changes can be passed on by direct inheritance of altered
 240 factors (altered DNA, RNA or protein). In this representation, an altered phenotype (green to
 241 blue) occurs within a generation without any change in the genotype. It is then transmitted
 242 across generations either by (a) regeneration of the factor or by (b) dilution of the factor every
 243 generation, with the genotype still remaining intact.

244

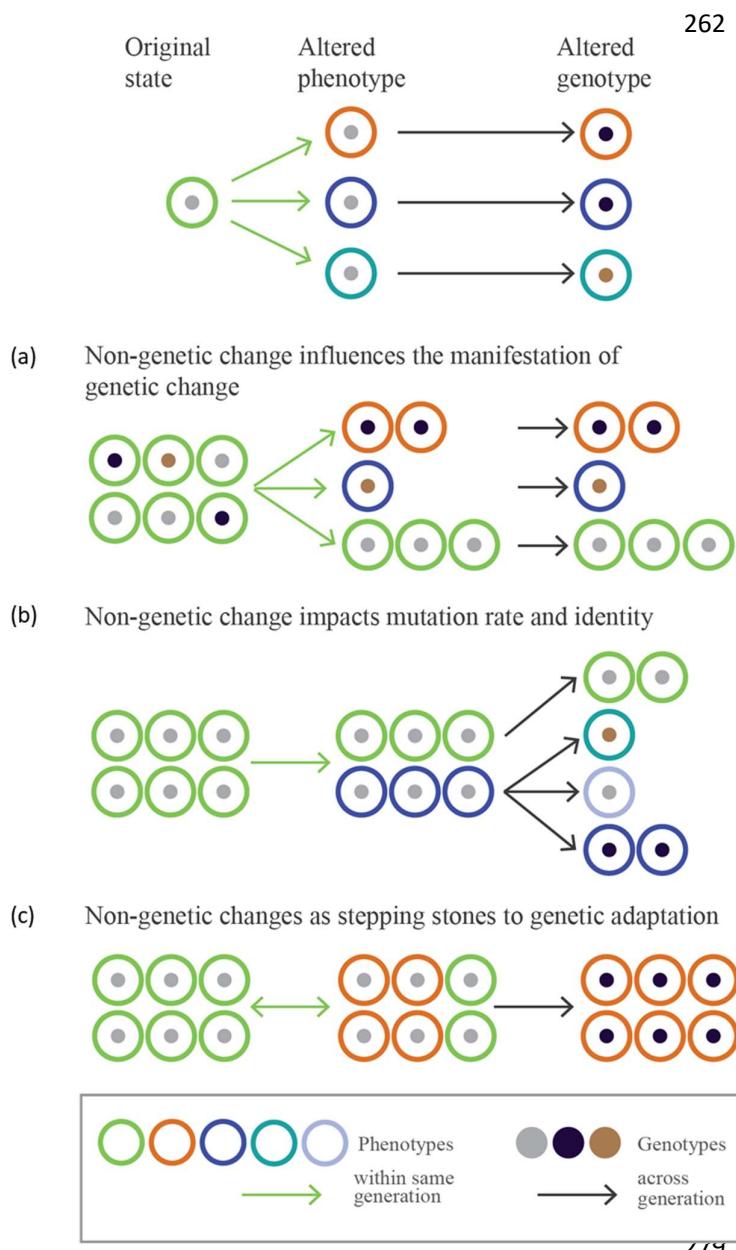
245

246

247 **Figure 2**

248

249


250 **Phenotype is a composite of genetic and non-genetic changes:** The figure shows a Persian
251 watercolour sketch of a composite camel (~1500 A.D). Several animals (analogous to many
252 non-genetic changes) form the body of the camel and co-exist within it, each with their own
253 thoughts and impulses. The camel's body provides a broad shape and structure within which
254 these exist (analogous to the genotype). External factors such as the man (environment) guide
255 and can change the direction in which the overall body moves. *Image source:* Online
256 repository of open access images from the Metropolitan Museum of Art.

257

258

259

260

261 **Figure 3**

280 **Non-genetic changes influence genetic change:** (Summary) Altered phenotypes can lead to
 281 altered genotypes in various ways (a-d) Four ways in which non-genetic changes can impact
 282 the genotype are shown here. A non-genetic change is represented by a change in phenotype
 283 while the genotype remains the same (a) Non-genetic changes can expose pre-existing
 284 genetic variation, uncovering diverse phenotypes (b) Non-genetic changes can alter the nature
 285 and rate of mutations, leading to genotypic change (c) Adaptive non-genetic changes can help
 286 cells tide over a challenging environment, while paving the way for genetic change.

287 **Non-genetic change influences the manifestation of genetic change**

288 Non-genetic changes can expose, suppress or enhance already existing genetic variation in a
289 population (Fig. 3a). Variation in the untranslated 3' region of genes can be exposed by stop
290 codon read-through during translation and also impact the evolution of protein coding genes
291 (Kosinski and Masel 2020). The yeast prion [PSI^+] provides a good example of an altered
292 protein that uncovers already existing genetic variation. [PSI^+] is an alternately folded
293 version of the translation termination protein eRF3. eRF3 normally promotes the disassembly
294 of translation termination complexes after a protein chain is terminated at a stop codon. In
295 prion plus cells, eRF3 is sequestered into prion aggregates, thereby leading to a loss of
296 function phenotype and increased stop codon read-through (Chernoff et al. 1993; True and
297 Lindquist 2000). Extended proteins are made across cellular mRNAs, exposing cryptic
298 genetic variation in normally untranslated regions and leading to diverse phenotypes across
299 different carbon sources and antibiotics (True et al. 2004).

300 Classic experiments by Waddington demonstrated the power of non-genetic change in
301 controlling the penetrance of genetic variation (Waddington 1942). Waddington exposed
302 *Drosophila melanogaster* to heat shock or ether (neither is mutagenic), and showed that
303 exposure to these stimuli led to two effects: (a) They generated new phenotypes
304 (crossveinless and bithorax-like, respectively) and (b) These phenotypes became
305 independent of the stimulus after ~20 generations of repeated exposure to heat or ether and
306 selection for crossveinless and bithorax-like flies, respectively (reviewed in Crispo 2007).
307 Many years later, experiments with heterozygous *D. melanogaster* mutants of the gene
308 HSP90 encoding a chaperone recapitulated the same findings under heat shock, leading to the
309 hypothesis that differences in HSP90 may underlie Waddington's observations (reviewed in
310 Zabinsky et al. 2019).

311 Given that protein structure and folding is sensitive to a range of environmental stresses, it is
312 perhaps not surprising that a chaperone that aids in the correct folding of other proteins has
313 emerged as a central molecule in uncovering diverse phenotypes (corresponding to diverse
314 genotypes) that are otherwise 'canalized' or invisible to selection. Inhibition of Hsp90
315 function leads to a plethora of new morphologies and fitness related diversity across several
316 model systems (reviewed in Zabinsky et al. 2019). Although Hsp90 is upregulated at high
317 temperature, it is also functionally compromised and unable to aid in the correct folding of all
318 its client proteins (Queitsch et al. 2002). A loss of function phenotype of Hsp90 can lead to

319 client proteins (signal transducers, transcription factors and members of multi protein
 320 complexes) that are degraded, misfolded or alternately folded (Rutherford and Lindquist
 321 1998; Queitsch et al. 2002), and expose phenotypes associated with previously buffered
 322 mutations. All of these outcomes can lead to the manifestation of otherwise hidden (cryptic)
 323 genetic variation.

324 For example, the influence of Hsp90 on the transcription factor Ste12 was studied using *S.*
 325 *cerevisiae* as a model system. Ste12 regulates the choice between mating and invasion of host
 326 tissue in many fungi (Dorrity et al. 2018); it is not an Hsp90 client protein. However, several
 327 mutant variants of this factor are chaperoned by Hsp90 under normal conditions in *S.*
 328 *cerevisiae*, masking the mutant phenotype. When exposed to high temperature, Hsp90 is
 329 unable to maintain the buffering. Cells carrying the Ste12 variants lose the ability to mate and
 330 demonstrate a dominant hyperinvasive phenotype, unmasking the cryptic variation (Dorrity et
 331 al. 2018). Conversely, Hsp90 can also allow new mutations to have immediate phenotypic
 332 consequences. The tyrosine kinase c-Src interacts poorly with Hsp90. However, a mutated
 333 oncogenic variant of this protein called v-Src is stabilized by Hsp90, activating its
 334 promiscuous kinase activity and capacity for oncogenesis (Boczek et al. 2015).

335 Other chaperones such as GroEL in bacteria have also shown similar though not quite such
 336 far ranging effects (Sabater-Munoz et al. 2015), suggesting that chaperones in general are
 337 good candidates to act as a conduit between genotype, environment and phenotype.

338 ***Non-genetic change impacts mutation rate and identity***

339 Altered transcription and translation can indirectly impact mutation rates via the generation of
 340 novel transcripts and proteins, and interestingly, even by altering the degree and timing of
 341 gene expression. In particular, several examples of translation errors affecting the nature of
 342 mutations have surfaced in the past decade. In one example, genes evolved in a translation
 343 error prone background showed different sets of mutations as compared with those evolved in
 344 a wild type background. Bratulic and co-workers propagated a plasmid borne antibiotic
 345 resistance gene (TEM-1 beta lactamase) through multiple rounds of mutation and selection in
 346 the bacterium *E. coli*, selecting for resistance against a different class of antibiotic
 347 (cefotaxime) (Bratulic et al. 2017). The antibiotic resistance gene was propagated in either
 348 wild type or translation error prone genetic backgrounds. After four rounds of experimental
 349 evolution, resistance genes from the two backgrounds showed distinct mutations. Deleterious
 350 mutations were more effectively purged in the error prone background, likely due to the

351 increased cost of such mutations in an error prone background, and selection on destabilizing
352 protein sequences (Bratulic et al. 2015).

353 Translation errors can also impact global mutation rate, both via an overall increase in
354 mistranslation (Krisko and Radman 2013) and by specific amino acid changes (Humayun
355 1998; Bacher and Schimmel 2007). In general, mistranslated proteins tend to misfold and
356 aggregate (Drummond and Wilke 2008), and so are typically unable to carry out their normal
357 cellular functions efficiently. When such dysfunctional proteins are involved in DNA
358 replication and repair, they can introduce mutations. Studies carried out over 20 years ago
359 isolated an *E. coli* mutant carrying a mutation in the anticodon of a glycine tRNA gene,
360 resulting in increased substitutions of glycine in place of aspartate in cellular proteins. Such
361 cells also showed an increase in mutagenesis (Slupska et al. 1996). Recently, it was found
362 that DNA polymerase III (Pol III) isolated from these cells showed significantly higher error
363 prone replication *in vitro* as compared with those isolated from WT cells (Al Mamun et al.
364 2006). Given that Pol III is the chief replicating polymerase in bacteria and also responsible
365 for correction of mismatches post replication (reviewed in Sutton and Walker 2001), it is
366 reasonable to hypothesize that heterogeneity in DNA Pol III sequence contributed to the
367 increased mutagenesis.

368 In addition to acting via altered proteins, mistranslation can trigger stress responses and in
369 turn briefly elevate the basal mutation rate. For example, global mistranslation (Samhita et al.
370 2020a) as well as mistranslation induced by a defective alanyl tRNA synthetase (Bacher and
371 Schimmel 2007) trigger a DNA damage response (SOS response) which can be mutagenic
372 (Baharoglu and Mazel 2014). Overall, both mutation rate and identity can be impacted in
373 multiple ways by non-genetic changes (Fig. 3b) such as translation errors.

374 Changes in transcription can also affect mutagenesis. An elegant experimental system set up
375 in clonal yeast cells recently showed that changing the amount of transcription from a gene
376 can impact not just the degree of adaptation, but also the kinds of mutations sampled by the
377 organism (Stajic et al. 2019). Stajic and Banks inserted a reporter gene URA3 (required for
378 uracil biosynthesis) at different chromosomal positions associated with different degrees of
379 transcriptional silencing. URA3 expression is toxic in the presence of 5-Fluoro-orotic acid (5-
380 FOA); the authors grew three versions of the silenced yeasts corresponding to how much the
381 gene was silenced (high-H, low-L and intermediate-M) in the presence of 5-FOA and
382 selected for resistant strains. Interestingly, the M lines (intermediate silencing) adapted

383 fastest, with the rapid appearance and spread of several mutants where URA3 expression was
 384 abrogated. In addition, both M and L lines showed mutations in genes other than URA3,
 385 whereas the H lines only showed resistant mutations in URA3. While the mutation rates
 386 remained unchanged across the three lines, the kinds of mutations sampled and the rate of
 387 adaptation were clearly influenced by the degree of gene expression. This work also helped to
 388 disentangle the genetic from non-genetic contributions in a given phenotype, something that
 389 has been a challenge for experimentalists.

390 Lastly, cancer biologists often see an intermingling of genetic and non-genetic changes
 391 during development of the cancer as well as in its response to drugs (Baylin and Jones 2016).
 392 In most cases, the two effects are studied in parallel and it is difficult to assign causality;
 393 however some strong correlations have been established. For example, hypomethylation of
 394 the MLH1 gene (encodes a DNA mismatch repair enzyme) can lead to cancer due to loss of
 395 DNA repair functions and is correlated with increased mutagenesis (Gazzoli et al. 2002)
 396 In summary, experiments across model systems indicate that both mutation rates and specific
 397 mutational paths can be influenced by non-genetic changes (Fig. 3b).

398 ***Non-genetic changes as stepping stones to genetic adaptation***

399 Perhaps the most exciting aspect of non-genetic changes has been the speculation that when
 400 beneficial, they may ‘buy time’ for genetic change, thus linking short term adaptation to long
 401 term evolutionary change (Fig. 3c and Fig. 4). The hypothesis has been laid out in several
 402 forms over the years, but experimental evidence remains extremely limited. A specific case
 403 of this situation where the beneficial non-genetic change is induced by the environment, was
 404 proposed by Baldwin (Baldwin 1896). He postulated that an organism acquired adaptive
 405 phenotypic changes as a consequence of its interaction with the environment. With time,
 406 ‘heritable characters’ that produced the same changes would be favoured by natural selection
 407 and spread in the population (reviewed in Crispo 2007). Multiple theoretical models have
 408 shown that this can happen, both with environmentally induced change and with environment
 409 independent changes such as alterations in RNA and protein sequence or protein folding
 410 (Hinton and Nowlan 1987; Whitehead et al. 2008; Bonduriansky and Day 2009; Klironomos
 411 et al. 2013).

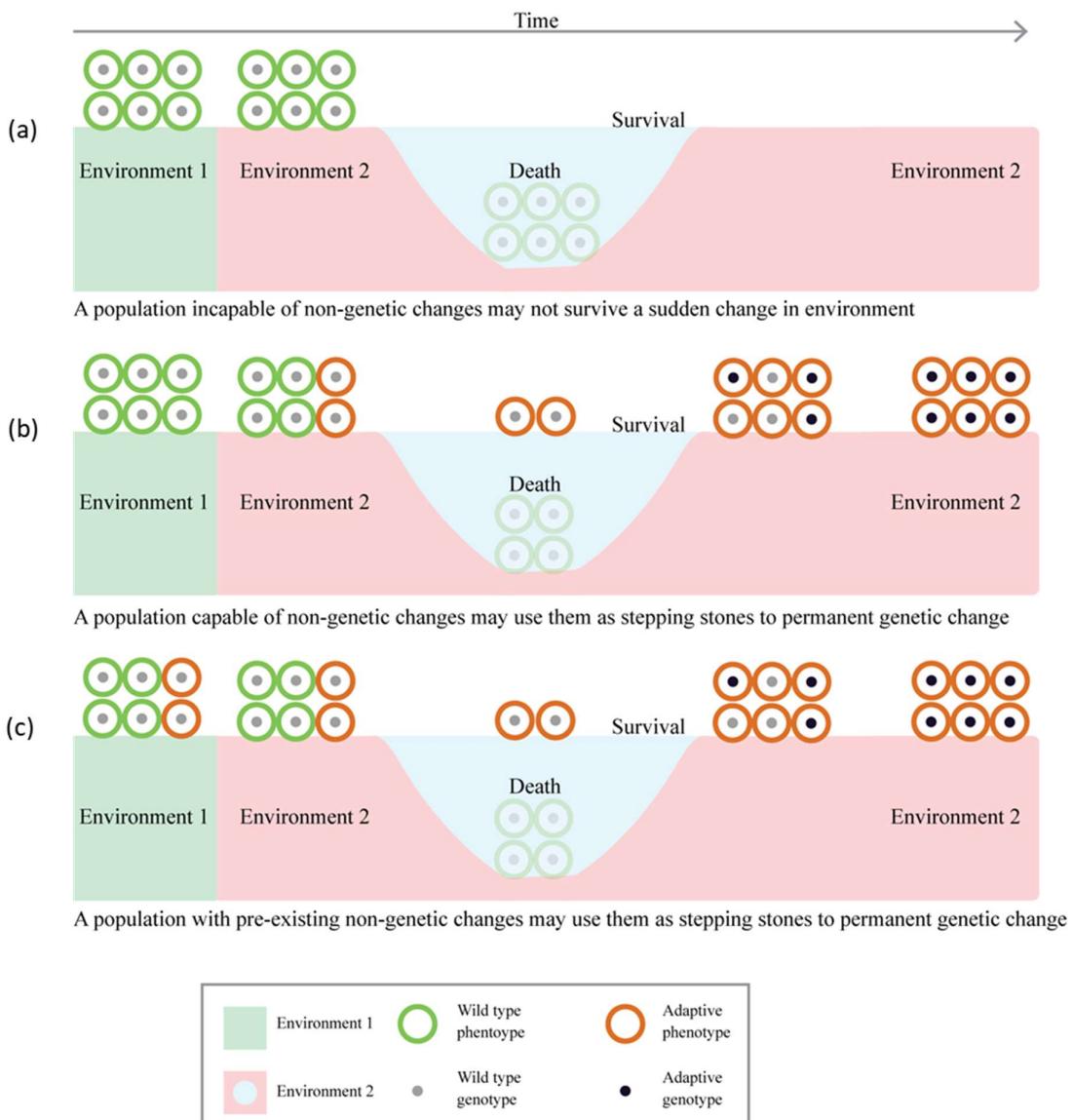
412 For example, the ‘look- ahead’ effect postulates that when a beneficial trait requires two
 413 mutations, cells that acquire one mutation can use protein synthesis errors to phenocopy the
 414 effect of both mutations together, and thus reach the fitness peak fast (Whitehead et al. 2008).

415 This model explores the specific case where the first mutation is neutral or mildly deleterious,
416 and so cannot spread rapidly in the population on its own. In this scenario, the phenotypic
417 impact of translation errors in addition to the first mutation can give the cell an adaptive edge,
418 allowing the corresponding genotype to spread in the population. Experimental evidence for
419 the first step exists; i.e, protein synthesis errors can lead to a fitness advantage in a specific
420 genetic background (Kramer and Farabaugh 2007; Javid et al. 2014; Fan et al. 2015). Clear
421 evidence for the second step (second beneficial mutation) has been elusive for some time.
422 However, recent work with antibiotic tolerant cells offers one instance where a beneficial
423 phenotype is achieved through two independently beneficial mutations; where the first can
424 potentially be substituted for, or enhanced by, a phenotypic change. Liu and co-workers
425 examined clinical samples of *Staphylococcus aureus* from patients under treatment in a multi
426 drug regime (Liu et al. 2020). They found that, as per previous predictions and observations
427 (Levin-Reisman et al. 2017) , mutations leading to antibiotic tolerance (slower killing of the
428 population) preceded the appearance of resistant mutants. In addition, the presence of
429 mutations that conferred tolerance (first beneficial mutation) enhanced resistance in the
430 multi-drug regime, when compared with cells that only carried resistance mutations (second
431 beneficial mutation). Tolerance can also be achieved by non-genetic means (Levin and Rozen
432 2006; Cohen et al. 2013); however, the current study mapped all tolerant phenotypes to
433 mutations. The pattern of antibiotic resistance evolution was also duplicated in laboratory
434 experiments (Liu et al. 2020), suggesting that the evolution of antibiotic resistance in *S.*
435 *aureus* and other bacteria might occur through this two-step process.

436 Klironomos et al modelled a population where both genetic and non-genetic changes occur
437 independently (Klironomos et al. 2013). Non-genetic changes were assigned a higher rate of
438 appearance than genetic change (mutations). In addition, non-genetic changes could revert to
439 the original state at a given probability. The authors found that populations with options for
440 both kinds of change adapted faster than those that relied only on mutations, a finding that is
441 broadly supported by both earlier (Hinton and Nowlan 1987; Behera and Nanjundiah 2004)
442 and later work (Kronholm et al. 2017). In addition, because non-genetic changes are fast, they
443 rapidly lead to a fitness peak. In such populations, non-genetic changes do ‘buy time’ for
444 adaptive genetic change, however, mutations can accumulate neutrally in the meantime. This
445 leads to increased standing genetic variation; another way in which non-genetic changes can
446 indirectly impact the supply of genetic variants. The model also highlights the fact that

447 current mutations observed in populations could well have been preceded at one time by non-
448 genetic change, creating a stepping stone to the current phenotype.

449 Excitingly, we have evidence that at least in one case, something like this may have
450 happened. Versions of the essential metabolic protein isocitrate dehydrogenase (IDP) are
451 found in the mitochondria (IDP1), cytoplasm (IDP2), and peroxisomes (IDP3) of *S.*
452 *cerevisiae*; the peroxisomal version is evolutionarily the most recent. Yanagida and co-
453 workers (Yanagida et al. 2015) found that an ancestral IDP2 gene taken from distantly related
454 yeast strains such as *Ashbya gossypii* carries possible signals for peroxisomal targeting
455 beyond the stop codon, but they are in a +1 translational reading frame, and therefore cryptic.
456 When the *A. gossypii* IDP2 was expressed in *S. cerevisiae*, ~30% of the total protein product
457 could be detected in the peroxisome. Further, a protein with size corresponding to the
458 frameshifted product was detected by mass spectrometry, showing that frameshifting must
459 have taken place and made the peroxisomal targeting signal effective. The authors also
460 mutagenized another ancestral IDP2 (from *Kluyveromyces waltii*) in the region around the
461 stop codon, followed by selection on petroselinate containing medium (peroxisomal IDP is
462 essential for growth on petroselinate). This led to the rapid selection of mutant proteins
463 carrying genetic single base deletions (one per mutant) that brought the peroxisomal targeting
464 signal in frame. Therefore, the ability to generate an alternate protein product may have
465 served as a stepping stone for mutations that fixed novel cellular localization for this protein
466 (c). However, although this is a novel finding that highlights the role of translational errors in
467 adaptation, it still involves some speculation about past evolution. That is, it falls short of a
468 demonstration that adaptive non-genetic change can be a precursor to genetic change.


469 Recently, we showed that generalized (non-directed) mistranslation can increase survival
470 when *E. coli* cells are treated with the DNA damaging antibiotic ciprofloxacin (Samhita et al.
471 2020a). Irrespective of the non-genetic route by which basal mistranslation in *E. coli* is
472 elevated, there is a common consequence: the level of the protease Lon, a key player in
473 degrading misfolded proteins, also goes up. Increased Lon leads to an increase in the levels of
474 RecA, a protein that is essential for DNA repair and recombination. As a consequence, when
475 faced with DNA damage from ciprofloxacin (cip), mistranslating cells are already closer to
476 the threshold for activation of the DNA repair response (the SOS response) than wild-type
477 (WT) cells that retain a basal (high) translational fidelity and constitute the control
478 population. Therefore, they begin DNA repair earlier, and display ~4-fold higher survival

479 than the WT. At this point (~2 hours post exposure to ciprofloxacin), mistranslating cells are
480 genetically identical to the WT (excluding the genetically altered mistranslating strain,
481 Samhita et al. 2020a). However, 24 hours later, both WT and mistranslating cells carry point
482 mutations known to confer resistance to cip, in the gene *gyrA*. Thus, the increased early
483 survival of mistranslating cells (Fig. 4c) relative to the WT (Fig. 4a) occurs via a relatively
484 higher population size for subsequent mutations to occur in. This finding provides a direct
485 experimental example for the stepping stone effect: A non-genetic change (elevated
486 translation errors) provides a temporary survival advantage via an altered phenotype
487 (resistance to ciprofloxacin), and the same phenotype is subsequently fixed by genetic change
488 (Fig. 4c). Interestingly, *reducing* the basal level of mistranslation in the wild-type
489 concomitantly lowered its resistance to ciprofloxacin, suggesting that translation error and
490 DNA damage repair remain relevant even in the wild-type under normal conditions, and
491 perhaps giving a broader context to the stepping stone effect.

492 Among the ways in which a non-genetic change induced by stress can act as a stepping stone,
493 two broad mechanisms deserve attention. They are (a) an elevated population size, which
494 increases the number of cells within which a favourable mutation can take place, and (b) an
495 elevated mutation rate, which increases the probability per cell of a favourable mutation
496 taking place. Experiments and modelling work with persister cells (metabolically inactive
497 non-dividing cells that survive antibiotic treatment) in *E. coli* suggests that both methods may
498 be at play in moving from persistence to antibiotic resistance (Windels et al. 2019). Persisters
499 could be a pre-existing part of the population (Fig. 4c) (Cohen et al. 2013), or be generated by
500 exposure to the antibiotic itself (Fig. 4b) (Dorr et al. 2010). Persister numbers are strongly
501 correlated with the number of resistant cells that arise later; and genetic mutants that show a
502 constitutively high level of persistence also show a higher mutation rate (Windels et al.
503 2019), which may help in the generation and establishment of resistant mutations. However,
504 more work is needed to establish a direct link here from an adaptive phenotype, to genotypic
505 change.

506 The idea that short lived phenotypic changes can pave the way for specific genetic change is
507 conceptually different from the other ways in which non-genetic changes can impact the
508 genotype (discussed above: uncovering cryptic change and altering mutation supply or
509 identity). In some ways, it is the simplest category, merely requiring a phenotypic change that
510 can provide a short-term survival benefit. Mutations will then occur over time irrespective of

511 the nature of the change as long as the population has a reservoir of viable cells; and some of
512 these mutations will be beneficial. Why then do we not see more examples of such
513 phenomena? One possibility is that experimental designs have failed to capture situations
514 where this might occur. Alternately, perhaps evolution does not often take this path. If the
515 former is true, more experiments particularly with microbial systems (where it is relatively
516 easy to track both kinds of changes) should produce further examples. If the latter is true, it
517 opens up the question of what sorts of constraints may be operating against such a strategy.
518 Overall, although experimental examples of these phenomena remain tantalisingly few, a
519 case can be made for non-genetic changes to act as stepping stones for genetic adaptation
520 (Fig. 4).

521 **Figure 4**

522

523 **Non-genetic changes act as stepping stones to genetic adaptation:** Non-genetic changes
 524 can lead to increased survival in a new stressful environment, relative to the wild type. (a)
 525 Populations incapable of mounting a short term advantageous non-genetic change (green
 526 cells) may perish under the stress (b) Populations capable of mounting a beneficial non-
 527 genetic change (green to orange transition) in response to environmental change survive (c)
 528 Populations that carry a pre-existing beneficial change also survive (b) and (c) lead to
 529 survival and allow time for spontaneous beneficial mutations to appear, thereby 'fixing' the
 530 beneficial phenotype.

531

532 **Perspective:** The Central Dogma of molecular biology states that “The transfer of
533 information from nucleic acid to nucleic acid, or from nucleic acid to protein may be
534 possible, but transfer from protein to protein, or from protein to nucleic acid is
535 impossible”(Crick 1958). In this review, I have discussed evidence to show that non-genetic
536 changes can alter mutational trajectories, uncover cryptic genetic diversity, and influence the
537 direction of future genetic change. In other words, we now know that protein and RNA
538 changes can feed back into the genotype, and indirectly impact evolutionary change. Further
539 work is needed to show whether the feedback is repeatable and can be predicted; such a
540 finding would change our fundamental understanding of the flow of information in biological
541 systems. The experimental evidence I have reviewed in this article has several implications.
542 First, when tracing the history of a current genetic change, it is useful to be aware that its path
543 may have been influenced by non-genetic changes. As Klironomos et al point out
544 (Klironomos et al. 2013), dating of an adaptive event based purely on genetic information in
545 a system where non-genetic changes have played a role will likely lead to incorrect estimates.
546 Current methods may not allow us to track this (yet), but it is useful to keep in mind
547 particularly while inferring causality. Second, the examples reviewed above suggest that the
548 behaviour of RNA and protein molecules can impact standing genetic variation, i.e, the
549 available pool of genetic variants in a population. This has clear consequences for population
550 genetics and evolution. Third, even noise in cellular processes like transcription and
551 translation can have trans-generational impacts on cellular phenotype; not only by
552 determining metabolite levels (Novick and Weiner 1957; Krishna and Laxman 2020) but also
553 by altering the genotype.

554 In addition, non-genetic changes can influence long-term adaptation in ways that do not fit
555 into the main theme of this article.. For instance, in some studies, although the genotype was
556 not impacted, the ability of the organism to acquire DNA via horizontal transfer was affected.
557 In others, a direct impact of the non-genetic change on the genotype could not be
558 experimentally determined; nonetheless the speed of adaptation was affected. For example,
559 some microorganisms show deviations from the universal genetic code (Ling et al. 2015), and
560 decode the same codon differently depending on environmental cues (Prat et al. 2012). Jing
561 Ma and Isaacs (Ma and Isaacs 2016) found that a ‘recoded’ *E. coli* strain in which the
562 standard stop codon UAG was re-assigned to UAA (Lajoie et al. 2013), was resistant to

563 several viruses. A reversal of this genome wide recoding from UAA back to UAG restored
564 viral infectivity. Interestingly, after just five days of propagation in recoded *E. coli*,
565 bacteriophage MS2 regained the ability to infect the strain via mutations in two genes; one
566 mutation altered its own UAG stop codon to UAA, while the other created a new premature
567 stop codon in lieu of UAG (Ma and Isaacs 2016). In addition, the recoded *E. coli* strain was
568 unable to take up conjugative plasmids, potentially altering future genotypic change through
569 horizontal gene transfer. Therefore, re-assignment of even one stop codon to another stop
570 codon (UAG to UAA) can have consequences on host genotype as well as the genotype of
571 co-evolving organisms.

572 Other non-genetic changes have been demonstrated to impact long term adaptation even
573 though they are neither directly inherited nor impact DNA sequence (the two broad
574 categories discussed in this review). For example, Bodi et al constructed two gene expression
575 systems for a gene encoding a multidrug transporter pump in *S. cerevisiae*. One involved a
576 positive feedback loop, the other did not (Bodi et al. 2017). During selection for drug
577 resistance, the one with the positive feedback loop — which also showed greater variance in
578 gene expression —adapted faster. There was no difference in mutation rate between the two
579 evolving sets. While phenotypic heterogeneity arising from increased variance in gene
580 expression levels can seemingly contribute to adaptation under stress (Carey et al. 2018), it
581 also extracts a cost during normal conditions (Bodi et al. 2017), creating a trade-off.
582 Recently, we found that mistranslating *E. coli* cells show greater variability than the WT in
583 cell size and division time (Samhita et al. 2020b). Again, this is correlated with higher
584 survival under some stresses. We do not know if specific protein variants consistently dictate
585 the survival advantage under specific environments, nor in what manner these may go on to
586 influence genetic change. As is clear from the examples discussed in this article, in recent
587 years, translation errors have emerged as important contributors to altered phenotype and
588 adaptation. DNA remains the primary code of life. Like with all codes though, the key that
589 decodes it can conceal or reveal it to different degrees. How much of the genetic change that
590 we measure today was preceded by non-genetic changes? Do cells employ errors in
591 translation and transcription as strategies to generate variation? Have cells evolved to rely
592 more on genetic change in some environments and more on non-genetic changes in others?
593 These and several other open questions remain, as experiments broaden our knowledge of
594 non-genetic changes and the transfer of information in biology.

595 **ACKNOWLEDGEMENTS**

596 I thank Vidyanand Nanjundiah, Deepa Agashe, Sunil Laxman, Asha Joseph and members of
 597 Deepa's lab for critical comments and suggestions on this review. I acknowledge Ipsa Jain
 598 for figures 1, 3 and 4. I acknowledge funding and support from the DBT/Wellcome trust
 599 India Alliance (grant IA/E/14/1/501771), and support from the National Centre for Biological
 600 Sciences.

601 **REFERENCES**

602 Ackermann M. 2015. A functional perspective on phenotypic heterogeneity in
 603 microorganisms. *Nat Rev Microbiol* 13:497-508.

604 Al Mamun AAM, Gautam S, Humayun MZ. 2006. Hypermutagenesis in mutA cells is
 605 mediated by mistranslational corruption of polymerase, and is accompanied by replication
 606 fork collapse. *Molecular Microbiology* 62:1752-1763.

607 Bacher JM, Schimmel P. 2007. An editing-defective aminoacyl-tRNA synthetase is
 608 mutagenic in aging bacteria via the SOS response. *Proc Natl Acad Sci U S A* 104:1907-1912.

609 Baharoglu Z, Mazel D. 2014. SOS, the formidable strategy of bacteria against aggressions.
 610 *FEMS Microbiol Rev* 38:1126-1145.

611 Baldwin MJ. 1896. A New Factor in Evolution. *The American Naturalist* 30:441-451.

612 Baylin SB, Jones PA. 2016. Epigenetic Determinants of Cancer. *Cold Spring Harb Perspect
 613 Biol* 8.

614 Behera N, Nanjundiah V. 2004. Phenotypic plasticity can potentiate rapid evolutionary
 615 change. *J Theor Biol* 226:177-184.

616 Boczek EE, Reefschlager LG, Dehling M, Struller TJ, Hausler E, Seidl A, Kaila VR, Buchner
 617 J. 2015. Conformational processing of oncogenic v-Src kinase by the molecular chaperone
 618 Hsp90. *Proc Natl Acad Sci U S A* 112:E3189-3198.

619 Bodi Z, Farkas Z, Nevozhay D, Kalapis D, Lazar V, Csorgo B, Nyerges A, Szamecz B,
 620 Fekete G, Papp B, et al. 2017. Phenotypic heterogeneity promotes adaptive evolution. *PLoS
 621 Biol* 15:e2000644.

622 Bonduriansky R, Day T. 2009. Nongenetic Inheritance and Its Evolutionary Implications.
 623 *Annual Review of Ecology, Evolution, and Systematics* 40:103-125.

624 Bratulic S, Gerber F, Wagner A. 2015. Mistranslation drives the evolution of robustness in
 625 TEM-1 beta-lactamase. *Proc Natl Acad Sci U S A* 112:12758-12763.

626 Bratulic S, Toll-Riera M, Wagner A. 2017. Mistranslation can enhance fitness through
 627 purging of deleterious mutations. *Nat Commun* 8:15410.

628 Bullwinkle TJ, Reynolds NM, Raina M, Moghal A, Matsa E, Rajkovic A, Kayadibi H,
 629 Fazlollahi F, Ryan C, Howitz N, et al. 2014. Oxidation of cellular amino acid pools leads to
 630 cytotoxic mistranslation of the genetic code. *Elife* 3.

631 Carey JN, Mettert EL, Roggiani M, Myers KS, Kiley PJ, Goulian M. 2018. Regulated
 632 Stochasticity in a Bacterial Signaling Network Permits Tolerance to a Rapid Environmental
 633 Change. *Cell* 173:196-207 e114.

634 Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B,
 635 Lindquist S, et al. 2016. Intrinsically Disordered Proteins Drive Emergence and Inheritance
 636 of Biological Traits. *Cell* 167:369-381 e312.

637 Charlesworth D, Barton NH, Charlesworth B. 2017. The sources of adaptive variation. *Proc
 638 Biol Sci* 284.

639 Chernoff YO, Derkach IL, Inge-Vechtomov SG. 1993. Multicopy SUP35 gene induces de-
 640 novo appearance of psi-like factors in the yeast *Saccharomyces cerevisiae*. *Curr Genet*
 641 24:268-270.

642 Cohen NR, Lobritz MA, Collins JJ. 2013. Microbial persistence and the road to drug
 643 resistance. *Cell Host Microbe* 13:632-642.

644 Crick FH. 1958. On protein synthesis. *Symp Soc Exp Biol* 12:138-163.

645 Crispo E. 2007. The Baldwin effect and genetic assimilation: revisiting two mechanisms of
 646 evolutionary change mediated by phenotypic plasticity. *Evolution* 61:2469-2479.

647 de Farias ST, Dos Santos Junior AP, Rego TG, Jose MV. 2017. Origin and Evolution of
 648 RNA-Dependent RNA Polymerase. *Front Genet* 8:125.

649 Debets AJ, Dalstra HJ, Slakhorst M, Koopmanschap B, Hoekstra RF, Saupe SJ. 2012. High
 650 natural prevalence of a fungal prion. *Proc Natl Acad Sci U S A* 109:10432-10437.

651 Dorr T, Vulic M, Lewis K. 2010. Ciprofloxacin causes persister formation by inducing the
 652 TisB toxin in *Escherichia coli*. *PLoS Biol* 8:e1000317.

653 Dorrity MW, Cuperus JT, Carlisle JA, Fields S, Queitsch C. 2018. Preferences in a trait
 654 decision determined by transcription factor variants. *Proc Natl Acad Sci U S A* 115:E7997-
 655 E8006.

656 Drummond DA, Wilke CO. 2009. The evolutionary consequences of erroneous protein
 657 synthesis. *Nat Rev Genet* 10:715-724.

658 Drummond DA, Wilke CO. 2008. Mistranslation-induced protein misfolding as a dominant
 659 constraint on coding-sequence evolution. *Cell* 134:341-352.

660 Ehrlich M, Norris KF, Wang RY, Kuo KC, Gehrke CW. 1986. DNA cytosine methylation
 661 and heat-induced deamination. *Biosci Rep* 6:387-393.

662 Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart J,
 663 Ling J. 2017. Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and
 664 Implications for Population Fitness. *Mol Cell* 67:826-836 e825.

665 Fan Y, Wu J, Ung MH, De Lay N, Cheng C, Ling J. 2015. Protein mistranslation protects
 666 bacteria against oxidative stress. *Nucleic Acids Res* 43:1740-1748.

667 Farabaugh PJ. 1996. Programmed translational frameshifting. *Microbiol Rev* 60:103-134.

668 Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitan-Espitia JD. 2019. Beyond buying time:
 669 the role of plasticity in phenotypic adaptation to rapid environmental change. *Philos Trans R
 670 Soc Lond B Biol Sci* 374:20180174.

671 Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD. 2002. A hereditary nonpolyposis
 672 colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal
 673 tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite
 674 instability-high tumor. *Cancer Res* 62:3925-3928.

675 Glass NL, Kaneko I. 2003. Fatal attraction: nonself recognition and heterokaryon
 676 incompatibility in filamentous fungi. *Eukaryot Cell* 2:1-8.

677 Goldsmith M, Tawfik DS. 2009. Potential role of phenotypic mutations in the evolution of
 678 protein expression and stability. *Proc Natl Acad Sci U S A* 106:6197-6202.

679 Gott JM, Emeson RB. 2000. Functions and mechanisms of RNA editing. *Annu Rev Genet*
 680 34:499-531.

681 Gout JF, Thomas WK, Smith Z, Okamoto K, Lynch M. 2013. Large-scale detection of in
 682 vivo transcription errors. *Proc Natl Acad Sci U S A* 110:18584-18589.

683 Govers SK, Mortier J, Adam A, Aertsen A. 2018. Protein aggregates encode epigenetic
 684 memory of stressful encounters in individual *Escherichia coli* cells. *PLoS Biol* 16:e2003853.

685 Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. 2012. Prions are a
 686 common mechanism for phenotypic inheritance in wild yeasts. *Nature* 482:363-368.

687 Hinton GE, Nowlan SJ. 1987. How Learning Can Guide Evolution. *Complex Systems* 1:495-
688 502.

689 Humayun MZ. 1998. SOS and Mayday: multiple inducible mutagenic pathways in
690 *Escherichia coli*. *Mol Microbiol* 30:905-910.

691 Huseby DL, Brandis G, Praski Alzrigat L, Hughes D. 2020. Antibiotic resistance by high-
692 level intrinsic suppression of a frameshift mutation in an essential gene. *Proc Natl Acad Sci U*
693 *S A* 117:3185-3191.

694 Ivanova NN, Schwientek P, Tripp HJ, Rinke C, Pati A, Huntemann M, Visel A, Woyke T,
695 Kyrpides NC, Rubin EM. 2014. Stop codon reassessments in the wild. *Science* 344:909-913.

696 Jablonka E, Lamb MJ. 2005a. Evolution in Four Dimensions: Genetic, Epigenetic,
697 Behavioral, and Symbolic Variation in the History of Life. In: Sterelny K, Wilson RA,
698 editors: MIT Press. p. 245-283.

699 Jablonka E, Lamb MJ. 2005b. Evolution in Four Dimensions: Genetic, Epigenetic,
700 Behavioral, and Symbolic Variation in the History of Life. In: Sterelny K, Wilson RA,
701 editors: MIT Press. p. 102-107.

702 Jablonka E, Raz G. 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms,
703 and implications for the study of heredity and evolution. *Q Rev Biol* 84:131-176.

704 Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT, Jain N, Pan M, Deighan P, Rubin
705 EJ. 2014. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic
706 resistance. *Proc Natl Acad Sci U S A* 111:1132-1137.

707 Kakutani T, Jeddelloh JA, Richards EJ. 1995. Characterization of an *Arabidopsis thaliana*
708 DNA hypomethylation mutant. *Nucleic Acids Res* 23:130-137.

709 Klironomos FD, Berg J, Collins S. 2013. How epigenetic mutations can affect genetic
710 evolution: model and mechanism. *Bioessays* 35:571-578.

711 Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B. 2017. Transgenerational
712 transmission of environmental information in *C. elegans*. *Science* 356:320-323.

713 Kosinski LJ, Masel J. 2020. Readthrough Errors Purge deleterious Cryptic Sequences,
714 Facilitating the Birth of Coding Sequences. *Mol Biol Evol* 37:1761-1774.

715 Kramer EB, Farabaugh PJ. 2007. The frequency of translational misreading errors in *E. coli*
716 is largely determined by tRNA competition. *RNA* 13:87-96.

717 Krishna S, Laxman S. 2020. Phenotypic switching: Implications in Biology and Medicine. In:
718 Levine H, Jolly MK, Kulkarni P, Nanjundiah V, editors: Academic Press. p. 335-358.

719 Krisko A, Radman M. 2013. Phenotypic and genetic consequences of protein damage. *PLoS*
720 *Genet* 9:e1003810.

721 Kronholm I, Bassett A, Baulcombe D, Collins S. 2017. Epigenetic and Genetic Contributions
722 to Adaptation in *Chlamydomonas*. *Mol Biol Evol* 34:2285-2306.

723 Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA,
724 Wang HH, Carr PA, Mosberg JA, et al. 2013. Genomically recoded organisms expand
725 biological functions. *Science* 342:357-360.

726 Lambert G, Kussell E. 2014. Memory and fitness optimization of bacteria under fluctuating
727 environments. *PLoS Genet* 10:e1004556.

728 Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shores N, Balaban NQ. 2017. Antibiotic
729 tolerance facilitates the evolution of resistance. *Science* 355:826-830.

730 Levin BR, Rozen DE. 2006. Non-inherited antibiotic resistance. *Nat Rev Microbiol* 4:556-
731 562.

732 Ling J, O'Donoghue P, Soll D. 2015. Genetic code flexibility in microorganisms: novel
733 mechanisms and impact on physiology. *Nat Rev Microbiol* 13:707-721.

734 Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ. 2020. Effect of tolerance on the evolution
735 of antibiotic resistance under drug combinations. *Science* 367:200-204.

736 Ma NJ, Isaacs FJ. 2016. Genomic Recoding Broadly Obstructs the Propagation of
 737 Horizontally Transferred Genetic Elements. *Cell Syst* 3:199-207.

738 Moazed D. 2011. Mechanisms for the inheritance of chromatin states. *Cell* 146:510-518.

739 Mordret E, Yehonadav A, Barnabas GD, Cox J, Dahan O, Geiger T, Lindner AB, Pilpel Y.
 740 2018. Systematic detection of amino acid substitutions in proteome reveals a mechanistic
 741 basis of ribosome errors. *bioRxiv*.

742 Nanjundiah V. 2020. Phenotypic switching: Implications in Biology and Medicine. In:
 743 Levine H, Jolly MK, Kulkarni P, Nanjundiah V, editors: Academic Press. p. xxiii-xxx.

744 Novick A, Weiner M. 1957. Enzyme Induction as an All-or-None Phenomenon. *Proc Natl
 745 Acad Sci U S A* 43:553-566.

746 Prat L, Heinemann IU, Aerni HR, Rinehart J, O'Donoghue P, Soll D. 2012. Carbon source-
 747 dependent expansion of the genetic code in bacteria. *Proc Natl Acad Sci U S A* 109:21070-
 748 21075.

749 Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. *Science* 216:136-
 750 144.

751 Queitsch C, Sangster TA, Lindquist S. 2002. Hsp90 as a capacitor of phenotypic variation.
 752 *Nature* 417:618-624.

753 Ribas de Pouplana L, Santos MA, Zhu JH, Farabaugh PJ, Javid B. 2014. Protein
 754 mistranslation: friend or foe? *Trends Biochem Sci* 39:355-362.

755 Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological evolution. *Nature*
 756 396:336-342.

757 Sabater-Munoz B, Prats-Escríche M, Montagud-Martínez R, Lopez-Cerdan A, Toft C,
 758 Aguilar-Rodríguez J, Wagner A, Fares MA. 2015. Fitness Trade-Offs Determine the Role of
 759 the Molecular Chaperonin GroEL in Buffering Mutations. *Mol Biol Evol* 32:2681-2693.

760 Samhita L, Raval PK, Agashe D. 2020a. Global mistranslation increases cell survival under
 761 stress in *Escherichia coli*. *PLoS Genet* 16:e1008654.

762 Samhita L, Raval PK, Stephenson G, Thutupalli S, Agashe D. 2020b. The impact of
 763 mistranslation on phenotypic variability and fitness. *bioRxiv*.

764 Schuster-Bockler B, Lehner B. 2012. Chromatin organization is a major influence on regional
 765 mutation rates in human cancer cells. *Nature* 488:504-507.

766 Schwartz MH, Waldbauer JR, Zhang L, Pan T. 2016. Global tRNA misacylation induced by
 767 anaerobiosis and antibiotic exposure broadly increases stress resistance in *Escherichia coli*.
 768 *Nucleic Acids Res*.

769 Slupska MM, Baikalov C, Lloyd R, Miller JH. 1996. Mutator tRNAs are encoded by the
 770 *Escherichia coli* mutator genes mutA and mutC: a novel pathway for mutagenesis. *Proc Natl
 771 Acad Sci U S A* 93:4380-4385.

772 Stajic D, Bank C. 2020. Phenotypic switching: Implications in Biology and Medicine. In:
 773 Levine H, Jolly MK, Kulkarni P, Nanjundiah V, editors: Academic Press. p. 281-301.

774 Stajic D, Perfeito L, Jansen LET. 2019. Epigenetic gene silencing alters the mechanisms and
 775 rate of evolutionary adaptation. *Nat Ecol Evol* 3:491-498.

776 Sutton MD, Walker GC. 2001. Managing DNA polymerases: coordinating DNA replication,
 777 DNA repair, and DNA recombination. *Proc Natl Acad Sci U S A* 98:8342-8349.

778 Tadrowski AC, Evans MR, Waclaw B. 2018. Phenotypic Switching Can Speed up Microbial
 779 Evolution. *Sci Rep* 8:8941.

780 Tan IS, Ramamurthi KS. 2014. Spore formation in *Bacillus subtilis*. *Environ Microbiol Rep*
 781 6:212-225.

782 True HL, Berlin I, Lindquist SL. 2004. Epigenetic regulation of translation reveals hidden
 783 genetic variation to produce complex traits. *Nature* 431:184-187.

784 True HL, Lindquist SL. 2000. A yeast prion provides a mechanism for genetic variation and
785 phenotypic diversity. *Nature* 407:477-483.

786 Tsokos CG, Laub MT. 2012. Polarity and cell fate asymmetry in *Caulobacter crescentus*.
787 *Curr Opin Microbiol* 15:744-750.

788 Tuite F, Mick. 2020. Phenotypic switching: Implications in Biology and Medicine. In:
789 Levine H, Jolly MK, Kulkarni P, Nanjundiah V, editors: Academic Press. p. 105-123.

790 Tyedmers J, Madariaga ML, Lindquist S. 2008. Prion switching in response to environmental
791 stress. *PLoS Biol* 6:e294.

792 Uversky VN. 2019. Protein intrinsic disorder and structure-function continuum. *Prog Mol
793 Biol Transl Sci* 166:1-17.

794 Waddington CH. 1942. Canalization of development and the inheritance of acquired
795 characters. *Nature* 160:563-565.

796 West-Eberhard MJ. 2003. Developmental Plasticity and Evolution: Oxford University Press.

797 Whitehead DJ, Wilke CO, Vernazobres D, Bornberg-Bauer E. 2008. The look-ahead effect of
798 phenotypic mutations. *Biol Direct* 3:18.

799 Windels EM, Michiels JE, Fauvert M, Wenseleers T, Van den Bergh B, Michiels J. 2019.
800 Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival
801 and mutation rates. *ISME J* 13:1239-1251.

802 Yanagida H, Gispan A, Kadouri N, Rozen S, Sharon M, Barkai N, Tawfik DS. 2015. The
803 Evolutionary Potential of Phenotypic Mutations. *PLoS Genet* 11:e1005445.

804 Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. 2019. It's not magic - Hsp90 and its effects
805 on genetic and epigenetic variation. *Semin Cell Dev Biol* 88:21-35.

806