Preprint
Article

Evaluation of the Four-dimensional Ensemble-Variational Hybrid Data Assimilation with Self-consistent Regional Background Error Covariance for Improved Hurricane Intensity Forecasts

Altmetrics

Downloads

263

Views

209

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

11 August 2020

Posted:

13 August 2020

You are already at the latest version

Alerts
Abstract
The feasibility of a hurricane initialization framework based on the GSI-4DEnVar data assimilation system for the HWRF model is evaluated in this study. The system considers the temporal evolution of error covariances via the use of four-dimensional ensemble perturbations that are provided by high-resolution, self-consistent HWRF ensemble forecasts. It is different from the configuration of the GSI-3DEnVar data assimilation system, similar to that used in the operational HWRF, which employs background error covariances provided by coarser-resolution global ensembles from the NCEP GFS ensemble Kalman filtering data assimilation system. Data assimilation and numerical simulation experiments for Hurricanes Joaquin (2015), Patricia (2015), and Matthew (2016) are conducted during their intensity changes. The impacts of two initialization frameworks on the HWRF analyses and forecasts are compared. It is found that GSI-4DEnVar leads to a reduction in track, MSLP, and MSW forecast errors in all of the HWRF simulations, compared with the GSI-3DEnVar initialization framework. Further diagnoses with Hurricane Joaquin indicate that GSI-4DEnVar can significantly alleviate the imbalances in the initial conditions and enhance the performance of the data assimilation and subsequent hurricane intensity and precipitation forecasts.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated