Preprint
Article

Conceptual DFT-based Computational Peptidology of Marine Natural Compounds: Discodermins A–H

Altmetrics

Downloads

219

Views

172

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 August 2020

Posted:

17 August 2020

You are already at the latest version

Alerts
Abstract
A methodology based on the concepts that arise from Density Functional Theory named Conceptual Density Functional Theory (CDFT) was chosen for the calculation of some global and local reactivity descriptors of the Discodermins A-H family of marine peptides through the consideration of the KID (Koopmans in DFT) technique that was successfully used in previous studies of this kind of molecular systems. The determination of active sites of the studied molecules for different kind of reactivities was achieved by resorting to some CDFT-based descriptors like the Fukui functions as well as the Parr functions derived from Molecular Electron Density Theory (MEDT). A few properties identified with their ability to behave as a drug and the bioactivity of the peptides considered in this examination were acquired by depending on a homology model by studying the correlation with the known bioactivity of related molecules in their interaction with various biological receptors. With the further object of analyzing their bioactivity some parameters of usefulness for future QSAR studies, their predicted biological targets and the the ADME (Absorption, Distribution, Metabolism, and Excretion) parameters related to the Discodermins A-H pharmacokinetics are also reported.
Keywords: 
Subject: Chemistry and Materials Science  -   Theoretical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated