Preprint
Review

This version is not peer-reviewed.

Coronavirus Pandemic (COVID-19): A Survey of Analysis, Modeling and Recommendations

Submitted:

21 August 2020

Posted:

24 August 2020

You are already at the latest version

Abstract
COVID-19 has created anxiety not only in individuals but also in health organizations, and countries worldwide. Not a single industry is left un-influenced and loss is being estimated in billions of dollars. The widespread of this pandemic disease has challenged researchers all over the world. Some of the researchers are working to invent its cure while, others are applying computing technologies to stop its spread, by analyzing and identifying patterns for prediction and forecasting. This is by no doubt the hottest area of research for the last 100 years. This survey has targeted the research published in computing sub-domains to combat the pandemic. The survey has clustered the scientific efforts into logical groups: surveillance, metrological effects, social media analytics, image processing and business and economy, analysis and modeling. It will serve as a leading source for the followings: researchers who want to identify what has been achieved in different computing sub-domains, those who need fresh authenticated datasets openly accessible for different research contexts and what are future directions in this area of research. The findings of analysis and modeling can be also useful for government agencies who want to set priorities and formulate policies.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated