
Table 1. Drugs that could be used to modulate T cell migration in AD.
	Drug
	BBB interaction
	T cell effect
	AD effect

	Albumin
	non-saturable passive diffusion [1] [2]
	Albumin functions as an inhibitor of T cell adhesion in vitro[3].
	Improve prognosis [4]

	Avidin
	Receptor mediated [5]
	[bookmark: _GoBack]Activation of specific T cell lines [6]
	 Not clear

	Aβ – binding peptides
	Depending on their lipophilicity, most will diffuse passively, other by active transport or paracellular transport
	Not known
	Inhibition of Aβ aggregation 

	Basic adrenocorticotropic analogue, ebitaride
	[7] Adsorptive-mediated transcytosis
	Not known
	Not known 

	Basic peptide 001-C8
	Adsorptive-mediated transcytosis [8]
	Not known 
	Not known

	Caffeine
	Simple diffusion and saturable, carrier-mediated transport [9] [10].
	Difference between in vivo and in vitro studies [11]
	Improve prognosis [9]

	Chitosan nanoparticles
	Drug-delivery systems- adsorption-mediated endocytosis
	Stimulate proliferation of CD4+ T cells
, promote activation of Th1 and Th2,but when exposed directly to naive CD4 failed to induce T cell polarization 
	Depends on the carried active drug

	CRM197, a non toxic mutant of diphtheria toxin

	Saturable transport [12] putative vaccine 

	Enhanced T cell activation [13]
	Patent pending[14]

	Crocus sativus
	[15]
	Not known
	protective agents 

	Curcumin
	[16]
	Not known
	Not known

	Diamine and polyamines
	[12] Saturable transport
	Not known
	Not known

	DMPC:DMPG: cholesterol
liposomes 
	Not known
	Not known
	Not known

	Donepezil (Aricept)
	organic cation transporter [17]

	Not investigated 
	Improve prognosis

	Ferulic Acid
	[16]
	Not known
	Not known

	Fructus Akebiae
	[18]
	Not known
	Not known

	Galantamine (Razadyne).
	organic cation transporter
	attenuate T cell proliferation, at least in non-obese diabetic mice
	Improve prognosis

	Glatiramer acetate
	Not known
	Affect T cells
	Improve prognosis 

	Ghrelin
	Saturable transport
	Not known
	neuroprotective and palliative[19]

	Glucose
	Glut transporters [20][21]
	Regulates T cell activation [22]
	Improve prognosis [23]

	Green tea
	[16]
	Not known
	Not known

	Hesperidin
	[24]
	Not known
	Not known

	Huperzine A
	[25] transmembrane diffusion
	reduce lymphocyte proliferation and the secretion of pro-inflammatory cytokines
	Choline esterase inhibitor

	Insulin
	Bypass BBB
	Not known
	Improve prognosis [26]

	Ladostigil
	[25] transmembrane diffusion
	reduce lymphocyte proliferation and the secretion of pro-inflammatory cytokines
	a cholinesterase and monoamine oxidase inhibitor

	Latrepirdine
	[25] transmembrane diffusion
	Some AChE inhibitors were shown to 
reduce lymphocyte proliferation and the secretion of pro-inflammatory cytokines 


	inhibitor of cholinesterase and NMDA receptors – no cognitive improvement in AD patients 

	L-DOPA
	Saturable transport
	Not known
	Not known

	Leptin
	Saturable transport
	Not known
	Improve prognosis[27]

	Lipoic acid
	[16]
	Not known
	Not known

	Low density lipoprotein
	Receptor mediated [5]
	Low density lipoprotein promotes human naive T cell differentiation[28]
	Worsen prognosis[29]

	Melanotransferrin
	Saturable transport [12]

	Not known
	Not known

	Memantine
	[30] multiple organic cation transport
	Unresolved [31]
	Approved as AD drug, short term improvement [32]

	Nanoparticles of Nisopropylacrylamide,
vinylpyrrolidone and
acrylic acid
	Drug-delivery systems- Lower molecular weight (less than 400 Da) and size below 100 nm can pass through the BBB through diffusion mechanisms 

	Not known
	Not clear

	Naringin 
	[33]
	Not known
	Not known

	P7C3
	[34]
	Not known
	Not known

	Peptide Nucleic Acids 
	Saturable transport
	Not known
	Improve prognosis [35]

	Peptide Transport System-1
	Saturable transport [36]
	Not known
	Not known

	Phenserine
	[25] transmembrane diffusion
	reduce lymphocyte proliferation and the secretion of pro-inflammatory cytokines
	Choline esterase inhibitor;
potentially benefiting mild to moderate Alzheimer’s disease symptomatically 

	Phosphorothioate Oligonucleotides
	receptor-mediated endocytosis[37]
	rapid induction of the Sp1 transcription factor[38].
	Fewer than 1% of systemically administered oligonucleotides reach the brain[37].

	Polysorbate 80-coated
PBCA nanoparticles
	Drug-delivery systems- Receptor mediated endocytosis 
	Not investigated
	Depends on the carried active drug

	Potassium channel binding Peptides
	Depending on their lipophilicity, most will diffuse passively, other by active transport or paracellular transport
	Potassium Channel KV1.3 peptide blockers selectively supress effective memory T cells (TEM)

	inhibition of Potassium Channel KV1.3 


	Quercetin 
	[39] 
	Immunosuppressive [40]
	Improve prognosis [41]

	Resveratrol
	[16]
	Not known
	Not known

	Rivastigmine (Exelon)
	organic cation transporter
	T cell proliferation and VGF expression in AD patients decreased
	Improve prognosis

	rosmarinic acid
	[42]
	Not known
	Not known

	Rosmarinus officinalis
	[43]
	Not known
	Not known

	Rutin
	[44]
	Not known
	Not known

	Selegeline
	[16]
	Not known
	Not known

	Tacrine
	[30] multiple organic cation transport[45]
	Not known
	Approved as AD drug however does not have a decisive effect [46]

	Trimethylated chitosan
coated PLGA nanoparticles
	adsorption-mediated endocytosis
	Not known
	Depends on the carried active drug

	Triptolide 
	[47]
	Inhibit T cells [48]
	Potential candidate for drug [47]

	Vaccination
	N/A
	First generation vaccines – activation of cytotoxic T cells
Second generation – vaccines – no T cell activation
	Decrease of Aβ plaques load, but without significant clinical improvment

	Vitamin E
	Saturable transport [16]
	enhances T-cell differentiation [49]
	protective agents but need personalization [50]

	Vitamins B
	Saturable transport [20]
	Improves proliferative response to mitogens [51]
	Contradicting results [52][53]

	Wheat germ agglutinin
	receptor-mediated endocytosis[54]
	posses both stimulatory and inhibitory effects on human T lymphocytes [55]
	Improve prognosis [56]

	WY14643
	attenuate BBB breakdown[57] 
	Regulate differentiation [58] 
	Not known

	β-secretase and γ-secretase inhibitors
	Transmembrane diffusion
	Regulate Th17 and Tregs [59]
	Decrease of APP amyloidogenic cleavage, but with significant off target side effects
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