Technologies around the world produce and interact with geospatial data instantaneously, from mobile web applications to satellite imagery that is collected and processed across the globe daily. Big raster data allows researchers to integrate and uncover new knowledge about geospatial patterns and processes. However, we are also at a critical moment, as we have an ever-growing number of big data platforms that are being co-opted to support spatial analysis. A gap in the literature is the lack of a robust framework to assess the capabilities of geospatial analysis on big data platforms. This research begins to address this issue by establishing a geospatial benchmark that employs freely accessible datasets to provide a comprehensive comparison across big data platforms. The benchmark is a critical for evaluating the performance of spatial operations on big data platforms. It provides a common framework to compare existing platforms as well as evaluate new platforms. The benchmark is applied to three big data platforms and reports computing times and performance bottlenecks so that GIScientists can make informed choices regarding the performance of each platform. Each platform is evaluated for five raster operations: pixel count, reclassification, raster add, focal averaging, and zonal statistics using three different datasets.
Keywords:
Subject:
Computer Science and Mathematics - Information Systems
supplementary.docx (32.40KB )
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.