Social media gives researchers an invaluable opportunity to gain insight into different facets of human life.Researchers put a great emphasis on categorizing the socioeconomic status (SES) of individuals to help predict various findings of interest. Forum uses, hashtags and so on are common tools of conversations grouping. On the other hand, crowdsourcing is a concept that involves gathering intelligence to group online user community based on common interest. This paper provides a mechanism to look at writings on social media and group them based on their academic background. We build upon earlier work where we analyzed online forum posts from various geographical regions in the USA and Canada and characterized the readability scores of such users. Specifically, we collected 1000 tweets from the members of the US Senate and computed the Flesch-Kincaid readability score for the Senators. Comparing the Senators’ tweets to the ones from average citizens, we note the following. 1) US Senators’ readability based on their tweets rate is much higher affirming the gap between the academic performance of US Senators and their average citizen, and 2) the immense difference among average citizen’s score compared to those of US Senators is attributed to the wide spectrum of academic attainment.
Keywords:
Subject: Computer Science and Mathematics - Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.