Preprint
Article

The MW = 5.6 Kanallaki Earthquake of March 21, 2020 in West Epirus, Greece: Reverse Fault Model From Insar Data and Seismotectonic Implications for Apulia-Eurasia Collision

Altmetrics

Downloads

466

Views

335

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 August 2020

Posted:

27 August 2020

You are already at the latest version

Alerts
Abstract
We identify the source of the Mw = 5.6 earthquake that hit west-central Epirus on March 21, 2020 00:49:52 UTC. We use synthetic aperture radar interferograms tied to one permanent Global Navigation Satellite System (GNSS) station (GARD). We model the source by inverting the INSAR displacement data. The inversion model suggests a shallow source on a low-angle fault (39°) dipping towards east with a centroid depth of 8.5 km. The seismic moment deduced from our model agrees with those of the published seismic moment tensors. This geometry is compatible with the Margariti thrust fault within the collision zone between Apulia and Eurasia. We also processed new GNSS data and estimate a total convergence rate between Apulia and Eurasia of 8.9 mm yr-1 , of which shortening of the crust between the Epirus coastal GNSS stations and station PAXO in the Ionian Sea is equivalent to ~ 50% of it or 4.6 mm yr−1. A 60-km wide deformation zone takes up nearly most of the convergence between Apulia-Eurasia, trending N318°E. Its central axis runs along the southwest coast of Corfu, along the northeast coast of Paxos, heading toward the northern extremity of the Lefkada island.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated