
BRAIN TUMOR DETECTION BASED ON ENSEMBLE

LEARNING

DONGHYUN (ETHAN) KIM

Gyeonggi Suwon International School, 451 YeongTong-Ro, YeongTong-Gu, Suwon-Si,

Gyeonggi-Do, Republic of Korea

Abstract. In this paper, we propose methods for brain tumor detection in

MRI images based on ensemble learning. We build upon prior research on
ensemble methods by testing the concatenation of pre-trained models: features

extracted via transfer learning are merged and segmented by classification

algorithms or a stacked ensemble of those algorithms. The proposed approach
achieved accuracy scores of 0.98 , outperforming a benchmark VGG-16 model.

Considerations to granular computing are given in the paper as well.

1. Introduction

Brain tumors are defined as the growth of abnormal cells in the human brain.
Brain tumors are either benign (non-cancerous) or malignant (cancerous) and are
generally classified based on the afflicted region; common brain tumors include
meningioma, glioma, and pituitary tumors.

Brain tumors pose a major public health issue as according to the American
Cancer Society, the total death count from brain tumors is predicted to be 18,020
in 2020 and 23,890 people are expected to be diagnosed with malignant tumors in
2020.

Treatments for brain tumors include chemotherapy, radiation therapy and surgery.
However, before such treatments can begin, initial evaluation of the tumors must
take place. Typically, the brain is assessed either by Magnetic Resonance Imaging
(MRI) or Computed Tomography (CT) scans.

Though medical images play a crucial role in patient diagnosis and treatment,
analyzing such images is a time-consuming and costly task. As a result, compu-
tational and mathematical methods have been introduced to this field. Notably,
various machine learning methods and techniques such as convolutional neural net-
works and support vector machines have been utilized to analyze medical images. In
this paper, we expand upon past studies by testing the concatenation of pre-trained
models.

First, sections 2,3, and 4 will present relevant background information, including
an overview of algorithms and ensembles. Next, section 5 will present the proposed
approach and sections 6 and 7 will show and discuss its results. Finally, section 8
will conclude the paper.

2. Ensemble Methods

2.1. Bootstrap Aggregation (Bagging) Ensemble Method ([2]). The Boot-
strap Aggregation method, more commonly known as the bagging method, involves

1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202008.0641.v2
http://creativecommons.org/licenses/by/4.0/

2 DONGHYUN (ETHAN) KIM

homogeneous weak learners. The learners are trained in parallel and independently
from one another and the results are aggregated either by voting or averaging to
arrive at a final prediction. Often, the homogeneous learners are base classifiers
fitted on random subsets of the dataset.

Given L bootstrap samples, sL(.) as the model, and w1(.), w2(.), ..., wi(.) as weak
learners, the 2 aggregation methods are given by:

Averaging: sL(.) = 1
L

∑L
l=1 wl(.)

Voting : sL(.) = argmax
k

[card(l|wl(.) = k)]]

2.2. Boosting Ensemble Method ([20], [11], [10]). The Boosting method in-
volves homogeneous weak learners that are trained in a sequential manner. Each
subsequent model attempts to correct the errors from the previous model, hence
reducing the bias of the overall classifier before a prediction is made. There are 2
main types of boosting methods that differ in how shortcomings of weak learners
are identified : adaptive boosting and gradient boosting.

Adaptive boosting identifies such shortcomings by giving higher weight to mis-
classified input data and lower weight to correctly classified input data. On the
other hand, gradient boosting identifies the shortcomings by utilizing gradients to
minimize the loss function.

Given sl(.) as the model, cl as coefficients, wl as weak learners, E(.) as the
fitting error of the model, and e() as the loss/error function, the following are true
for adaptive boosting.

sl(.) = sl−1(.) + cl × wl(.)

(cl, wl(.)) = argmin
c,w(.)

E(sl−1(.) + c×w(.)) = argmin
c,w(.)

N∑
n=1

e(yn, sl−1(xn) + c×w(xn))]

Similarly, given ∇ as the gradient, the following is true for gradient boosting.

sl(.) = sl−1(.)− cl ×∇sl−1
E(sl−1)(.)

2.3. Stacking Ensemble Method ([23]). The Stacking method involves hetero-
geneous weak learners that are trained in parallel and independently from one
another. The results are then aggregated through a meta model that makes a
prediction based on the predictions from weak learners.

The meta model for classification tasks is usually logistic regression and for
regression tasks, it is usually linear regression. Their respective equations are given
below.

Linear Regression: y = a+ bx
Logistic Regression: p = 1

1+e−(a+bx)

3. Classification Algorithms

Classification algorithms are supervised machine learning techniques that maps
given input to categorical target variables.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

BRAIN TUMOR DETECTION BASED ON ENSEMBLE LEARNING 3

3.1. Support Vector Machines ([7]). A support vector machine is a classifier
that constructs a hyperplane in the feature space to separate the data (input) into
classes. The classifier aims to maximize the distance between the hyperplane and
the nearest data-point of any class.

If the data set is not linearly separable, it can be projected to higher dimensions
through a kernel function.

There are 4 main types of kernel functions–linear, polynomial, radial basis func-
tion (RBF), and sigmoid–and their equations are given below.

Linear Kernel Function: k(X,Y) = (X · Y)
Polynomial Kernel Function: k(X,Y) = (γ(X · Y) + C)d

RBF kernel function: k(X,Y) = −γ||X − Y ||2
Sigmoid Function: K(X,Y) = tanh(γX · Y + C)

(where γ, d, and C are kernel parameters and ||X − Y ||2 is the square euclidean
distance)

The regularization parameter (often referred to as the C parameter) controls
the extent to which mis-classification should be avoided. On the other hand, the
gamma parameter (γ) defines the extent of influence of a single data point when
calculating the hyperplane.

3.2. K-Nearest Neighbors ([8]). K-Nearest Neighbors is a classifier that sepa-
rates the data into classes by examining the distance between data points and the
current given point. The algorithm selects k closest data points and classifies the
given point based on votes.

There are several distance functions available: Euclidean, Manhattan, and Minkowski.

Euclidean Function:√√√√ k∑
i=1

(xi − yi)2

Manhattan Function:

k∑
i=1

|xi − yi|

Minkowski Function:

(

k∑
i=1

|xi − yi|q)
1
q

Furthermore, note that cross-validation is often used to select the value k.

3.3. Random Forest ([3]). The Random Forest classifier is a bootstrap aggrega-
tion (boosting) ensemble of decision tree classifiers. The decision trees are fitted on
random subsets of the dataset and are aggregated either by voting or averaging.

There are a number of heuristics (known as attribute selection measures) that
are used to define how data points on certain levels of the tree will be split. 2
heuristics are given below.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

4 DONGHYUN (ETHAN) KIM

Information gain (entropy): Info(D) = −
∑n

i=1 pi log2(pi)
Gini Index: Gini(D) = 1−

∑n
i=1 p

2
i

(where pi is the probability that an arbitrary tuple in D belongs to a class Ci)

3.4. XGBoost ([6]). XGBoost is an ensemble of gradient boosted decision trees.
A key aspect of XGBoost is that it uses more regularized model formalization in
order to control overfitting.

4. Convolutional Neural Networks

Convolutional neural networks (CNN) are a class of deep learning neural net-
works, often used to analyze and classify images. A CNN works by extracting
features from an input image (array of pixels). The image passes through a series
of layers (usually consisting of convolutional, ReLU, and Pooling layers) before the
final fully connected layer classifies the image based on ”voting”.

4.1. Convolutional Layer ([16]). A convolutional layer uses filters to extract
features from previous layers while preserving corresponding spatial information.

A feature map Os is calculated as shown below.

Os = bs +
∑

rWsr ∗Xr

(where bs is the bias term, Wsr is the sub-filter for this feature map, ∗ is the
convolution operation, and Xr is the rth inputted feature map)

4.2. Activation Functions ([12],[4]). Activation functions define the output of
neurons given a set of inputs. The function introduces non-linear properties into
the network by calculating the ‘weighted sum’ of inputs before determining which
neurons will push forward values into the next layer.

Some common activation functions are given below.

Sigmoid: f(x) = 1
1+e−x , f

′(x) = f(x)(1− f(x))

Tanh: f(x) = ex+e−x

ex+e−x , f
′(x) = 1− f(x)2

ReLU: f(x) =

{
0 if x < 0

x if x ≥ 0
, f’(x) =

{
0 if x < 0

1 if x ≥ 0

Softmax: f(xj) = exj∑d
k=1 exk

,
∂f(xj)
∂xi

= f(xj)(δij − f(xi))

4.3. Pooling Layers ([19], [17]). Pooling layers reduce the spatial size of activa-
tion maps while maintaining important structural elements (without unnecessary
detail). The 2 most common methods are max pooling and average pooling and
they are given below.

Max Pooling: yil+1,jl+1,d = max{0≤i<H,0≤j<W} x
l
il+1 ×H + i, jl+1 ×W + j, d

Average Pooling: yil+1,jl+1,d = 1
HW

∑
{0≤i<H,0≤j<W} x

l
il+1×H+i, jl+1×W+j, d

(where x is the input to the layer, y is the output of the l-th layer, and H l ×
W l ×Dl is the size of the l-th layer)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

BRAIN TUMOR DETECTION BASED ON ENSEMBLE LEARNING 5

4.4. Transfer Learning. In the field of deep learning, transfer learning is a tech-
nique in which pre-trained models are selected and applied on a different but re-
lated problem. This technique is often used because these models have already
been trained on huge data-sets like imageNet.

4.4.1. VGG-16 ([21]). VGG-16 is a 16 layer convolutional neural network model
introduced by K. Simonyan and A. Zisserman in the paper “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition”. The model consists of several
convolutional and max-pooling layers and the ReLU activation function. VGG-
16 improved upon prior models by replacing large kernel-sized filters (11 in the
first convolutional layer and 5 in the second convolutional layer) with multiple 3×3
kernel-sized filters in a serialized fashion. This model achieved 92.7% accuracy
on the ImageNet dataset (a dataset containing over 14 million images and 1000
classes).

4.4.2. Resnet-50 ([15]). Resnet-50 is a 50 layer residual neural network model intro-
duced by Kaiming He et al at Microsoft Research. The model consists of shortcut
(skip) connections that contain nonlinearities (ReLU) and batch normalization. As
a result of shortcut connections, the model has lower complexity when compared
to VGG models.

4.4.3. Inception-v3 ([22]). Inception-v3 is a 48 layer convolutional neural network
model introduced by the Google Brain Team. The model consists of batch normal-
ization, image distortions, RMSprop and utilizes numerous small convolutions to
greatly decrease the number of parameters.

4.5. Granular Computing ([18]). The model proposed in this paper is an ap-
plication of the granular computing paradigm. Granular computing is concerned
with the processing of information units or information granules. These informa-
tion granules are collections of entities that are arranged together based on similar
aspects. In the context of machine learning and ensemble learners, each ensemble
can be thought of as a granule because they combine multiple learning algorithms.
The proposed model and ensemble consists of multiple levels, where each level cor-
responds to a distinct level of granularity. For example, in a stacked ensemble,
the collection of base level classifiers is at the bottom level of granularity and the
entire ensemble (including both base level classifiers and the meta classifier) is at
the highest level of granularity.

Two granular computing concepts–granulation and organization–can be applied
to the proposed model as well. Granulation involves the process of decomposing an
object into parts and organization involves the process of integrating certain parts
into a complete object. The extraction of feature vectors with convolutional neural
networks is essentially granulation, and combining different classifiers and learners
through a stacking ensemble is organization.

Granular computing concepts can be applied to the random forest classifier as
well. The bootstrap aggregation technique (bagging ensemble) found in a random
forest classifier involves integrating numerous decision trees into 1 ensemble; it
involves the organization concept.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

6 DONGHYUN (ETHAN) KIM

5. Proposed Method

5.1. Dataset. The proposed method was tested on the ”Brain MRI Images for
Brain Tumor Detection dataset”, which contains a total of 253 images: 155 of the
images contain tumors and 98 do not. Before the images were used to train and
test the model, the dataset was pre-processed and augmented.

The dataset was created by Navoneel Chakrabarty and it can be found here:
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection/

data([5]),

5.2. Data Pre-processing. Data Pre-processing involved 3 main steps: splitting
the dataset, cropping the images, and resizing the images.

5.2.1. Dataset Splitting. The dataset was split up into 3 distinct sets: the training
set, validation set, and test set. The training set is used to train and fit the
model, the validation set provides both an unbiased evaluation of the trained model
and tunes the model’s hyper-parameters, and the test set provides an unbiased
evaluation of the final model. The ratio used to split the training, validation, and
test set was 60/20/20 respectively, resulting in 152 images in the training set, 50
images in the validation set, and 51 images in the test set.

5.2.2. Cropping. The brain was cropped out of the MRI images through a 3 step
method. The method finds the largest contour of the brain, finds extreme points
along the contour, and crops the image. An example is given below in Figure 1.

Figure 1. Cropping

5.2.3. Resizing and additional pre-processing. Because the dataset contains images
of differing dimensions and aspect ratios, they were resized to match the input size
of the pre-trained models (dimensions 224 × 224 × 3). Additional pre-processing
(including interpolation and subtracting the mean RGB channels of the data-set)
was done to prepare the images for the pre-trained model as well.

5.3. Data Augmentation. To increase the size of the datasets, the data was aug-
mented through numerous random transformations. Through data augmentation,
possibilities of over-fitting were reduced and the model was able to generalize bet-
ter. Chosen augmentation options include a range of rotation of 15 degrees, width
and height translation range of 0.1, shearing transformation range of 0.1, brightness
range between 0.5 and 1.5, and horizontal and vertical flips. An example of data
augmentation is given below in Figure 2.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection/data
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection/data
https://doi.org/10.20944/preprints202008.0641.v2

BRAIN TUMOR DETECTION BASED ON ENSEMBLE LEARNING 7

Figure 2. Augmented Images

5.4. Architecture. The proposed model consists of 2 distinct levels. First, mod-
ified pre-trained convolutional neural network models are used to extract features
from the pre-processed MRI images. The extracted feature tensors are then merged
and segmented either by classification algorithms or a combination of those algo-
rithms (ensemble methods).

5.4.1. Modified Pre-trained convolutional neural network models. 3 different pre-
trained convolutional neural network models are used in the model: VGG-16,
Inception-v3, and Resnet-50.

Because segmentation is done by separate classifiers, the final fully connected
layers of the pre-trained models are not included. Instead, a custom flatten layer,
dropout layer, and dense layer with the sigmoid activation function are added at
the end of the models to prepare the tensors for the merging step.

5.4.2. Merging extracted features. The feature vectors extracted from the pre-trained
convolutional neural network models are merged via concatenation. Concatenation
was chosen instead of other merging options (eg. average, add) to ensure that none
of the input was discarded. The feature vectors are merged to utilize the distinct
features extracted from different models and to improve classification.

Once the features vectors have been merged, the resulting vector passes through
another dense layer with the sigmoid activation function.

The merging of pre-trained models takes place with the following combina-
tions: VGG16 + Resnet-50, VGG16 + Inception-v3, Resnet-50 + Inception-v3,
and VGG16 + Resnet-50 + Inception-v3.

5.4.3. Classification Algorithms. The classification algorithms that are used in the
model include support vector machines, k-nearest neighbors, random forest classi-
fiers, XGBOOST, and a fully connected dense layer (with the sigmoid activation
function). Before classification takes place, the hyper parameters of all these algo-
rithms (including choice of kernel for support vector machines) are selected using
grid search with cross-validation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

8 DONGHYUN (ETHAN) KIM

5.4.4. Ensemble. The ensemble method used to combine the heterogeneous collec-
tion of classification algorithms is model stacking. Through model stacking, the
predictions of various models can be combined to potentially obtain better predic-
tive performance.

The structure of the proposed model with Resnet-50 and Inception-v3 as the
feature extractors and a fully connected dense layer (with the sigmoid activation
function) as the classifier is shown below in Figure 3.

For other variations of the model, different combinations of feature extractors
(pre-trained models) are used and the final dense layer is simply switched with a
classification algorithm or a stacked ensemble of classifiers.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

BRAIN TUMOR DETECTION BASED ON ENSEMBLE LEARNING 9

Figure 3. Proposed model with Resnet-50 and Inception-v3 as
the feature extractors and a fully connected dense layer (with the
sigmoid activation function) as the classifier

A similar model with Resnet-50, Inception-v3 and VGG-16 as the feature ex-
tractors and a fully connected dense layer (with the sigmoid activation function) as
the classifier is shown below in Figure 4.

Figure 4. Proposed model with Resnet-50, Inception-v3, and
VGG-16 as the feature extractors and a fully connected dense layer
(with the sigmoid activation function) as the classifier

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

10 DONGHYUN (ETHAN) KIM

The structure of an ensemble classifier stacking a XGBoost classifier, a support
vector machine, k nearest neighbors classifier, and a random forest classifier is
shown below in Figure 5.

Figure 5. Stacked Ensemble combining XGBoost, Support Vec-
tor Machines, K nearest neighbors, and Random Forest.

6. Results

All experiments were conducted via Google Colaboratory and the results are
presented in this section.

Early stopping was used when training the models to avoid overfitting and se-
lected parameters include monitoring for validation accuracy in ’max’ mode with a
minimum of 10 epochs.

Note that a GPU was used during model training.

A benchmark VGG-16 model will be tested to compare results as well. The
benchmark VGG-16 model consists of the pre-trained VGG-16 model without the
final fully connected layers. Instead, a dropout layer, flatten layer, another dropout
layer, and a dense layer with the sigmoid activation function are added in that
order.

Training Accuracy Validation Accuracy Test Accuracy

0.993 0.88 0.843

Table 1. Table of Model Accuracy for the Benchmark VGG-16 model

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

BRAIN TUMOR DETECTION BASED ON ENSEMBLE LEARNING 11

Classifier Training Accuracy Validation Accuracy Test Accuracy

Sigmoid 0.947 0.9 0.922
SVM 0.987 0.88 0.961
KNN 0.980 0.86 0.961
XGBOOST 1.0 0.84 0.941
Random Forest 0.993 0.84 0.941
SVM + KNN 0.987 0.86 0.961
SVM + XGBOOST 0.993 0.84 0.941
SVM + Random Forest 0.993 0.86 0.941
KNN + XGBOST 1.0 0.84 0.961
KNN + Random Forest 0.987 0.84 0.961
XGBOOST + Random Forest 1.0 0.84 0.941
SVM + KNN + XGBOOST 0.993 0.86 0.961
SVM + KNN + Random Forest 0.993 0.86 0.961
SVM + XGBOOST + Random Forest 0.993 0.84 0.941
KNN + XGBOOST + Random Forest 0.993 0.84 0.961
SVM + KNN + XGBOOST + Random Forest 0.993 0.84 0.961

Table 2. Table of Model Accuracy with Resnet-50 and Inception-
v3 as the feature extractors

Classifier Training Accuracy Validation Accuracy Test Accuracy

Sigmoid 0.974 0.88 0.863
SVM 1.0 0.9 0.98
KNN 0.987 0.9 0.961
XGBOOST 1.0 0.88 0.922
Random Forest 1.0 0.9 0.98
SVM + KNN 1.0 0.9 0.98
SVM + XGBOOST 1.0 0.9 0.98
SVM + Random Forest 1.0 0.9 0.98
KNN + XGBOST 1.0 0.88 0.922
KNN + Random Forest 0.993 0.9 0.98
XGBOOST + Random Forest 1.0 0.88 0.922
SVM + KNN + XGBOOST 1.0 0.9 0.98
SVM + KNN + Random Forest 1.0 0.9 0.98
SVM + XGBOOST + Random Forest 1.0 0.9 0.98
KNN + XGBOOST + Random Forest 1.0 0.9 0.941
SVM + KNN + XGBOOST + Random Forest 1.0 0.9 0.98

Table 3. Table of Model Accuracy with Resnet-50 and VGG-16
as the feature extractors

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

12 DONGHYUN (ETHAN) KIM

Classifier Training Accuracy Validation Accuracy Test Accuracy

Sigmoid 0.98 0.9 0.824
SVM 0.974 0.92 0.843
KNN 0.98 0.88 0.804
XGBOOST 1.0 0.9 0.882
Random Forest 1.0 0.9 0.863
SVM + KNN 0.98 0.88 0.804
SVM + XGBOOST 0.993 0.9 0.882
SVM + Random Forest 0.993 0.9 0.863
KNN + XGBOST 0.993 0.9 0.863
KNN + Random Forest 0.993 0.88 0.824
XGBOOST + Random Forest 1.0 0.9 0.863
SVM + KNN + XGBOOST 0.993 0.9 0.863
SVM + KNN + Random Forest 0.98 0.88 0.804
SVM + XGBOOST + Random Forest 0.993 0.9 0.863
KNN + XGBOOST + Random Forest 1.0 0.9 0.863
SVM + KNN + XGBOOST + Random Forest 0.993 0.9 0.863

Table 4. Table of Model Accuracy with VGG-16 and Inception-
v3 as the feature extractors

Classifier Training Accuracy Validation Accuracy Test Accuracy

Sigmoid 0.987 0.9 0.863
SVM 0.993 0.86 0.882
KNN 0.993 0.9 0.882
XGBOOST 1.0 0.86 0.902
Random Forest 1.0 0.86 0.863
SVM + KNN 0.993 0.9 0.882
SVM + XGBOOST 1.0 0.86 0.902
SVM + Random Forest 1.0 0.88 0.863
KNN + XGBOST 1.0 0.86 0.902
KNN + Random Forest 0.993 0.86 0.863
XGBOOST + Random Forest 1.0 0.86 0.902
SVM + KNN + XGBOOST 1.0 0.86 0.882
SVM + KNN + Random Forest 0.993 0.86 0.863
SVM + XGBOOST + Random Forest 1.0 0.86 0.882
KNN + XGBOOST + Random Forest 1.0 0.86 0.882
SVM + KNN + XGBOOST + Random Forest 1.0 0.86 0.882

Table 5. Table of Model Accuracy with Resnet-50, Inception-v3,
and VGG-16 as the feature extractors

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

BRAIN TUMOR DETECTION BASED ON ENSEMBLE LEARNING 13

7. Discussion

From the results, we see that the proposed models achieved high accuracy scores
in segmenting the MRI images. Though exceptions did exist, accuracy greater than
0.85 for the test data-set was achieved for all combinations of feature extractors. In
particular, the model that combined VGG-16 and Resnet-50 achieved test accuracy
of 0.98 for most of its classifiers/ensembles.

Moreover, most of the proposed models achieved higher accuracy scores when
compared to the benchmark VGG-16 model which achieved an accuracy rate of
0.843 for the test dataset.

8. Conclusion

In this paper, methods based on ensemble learning were proposed for detecting
brain tumors in MRI images. The proposed models were successful in the given
task, reaching scores of 0.98 in the case of the stacked ensemble model combining
VGG-16 and Resnet-50. Though exceptions did exist, most of the proposed models
in this paper outperformed the benchmark VGG-16 model.

The author hopes that research into merging model outputs and stacking en-
sembles continues, especially in the context of medical research.

Python programs used for data pre-processing and experimentation can be found
in this Github repository: https://github.com/ethank11k/Brain-Tumor-Detection-Models/.

References

1. Braverman, M. (2011). Poly-logarithmic independence fools bounded-depth boolean circuits.
Communications of the ACM, 54 (4), 108-115.

2. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

3. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
4. Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network out-

puts, with relationships to statistical pattern recognition. In Neurocomputing (pp. 227-236).

Springer, Berlin, Heidelberg.
5. Chakrabarty, Navoneel. (2019). Brain MRI Images for Brain Tumor Detection. Retrieved

from Kaggle: https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
6. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and

data mining (pp. 785-794).

7. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
8. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on

information theory, 13(1), 21-27.
9. Delalleau, O., & Bengio, Y. (2011). Shallow vs. deep sum-product networks. In Advances in

neural information processing systems (pp. 666-674).

10. Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780), 1612.

11. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals

of statistics, 1189-1232.
12. Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000).

Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature,

405(6789), 947-951.
13. Hastad, J. (1986, November). Almost optimal lower bounds for small depth circuits. In Pro-

ceedings of the eighteenth annual ACM symposium on Theory of computing (pp. 6-20).

14. Hastad, J., & Goldmann, M. (1991). On the power of small-depth threshold circuits. Compu-
tational Complexity, 1(2), 113-129.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://github.com/ethank11k/Brain-Tumor-Detection-Models/
https://doi.org/10.20944/preprints202008.0641.v2

14 DONGHYUN (ETHAN) KIM

15. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

16. LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E.,
& Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In

Advances in neural information processing systems (pp. 396-404).

17. Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.
18. Pedrycz, W., Skowron, A., & Kreinovich, V. (Eds.). (2008). Handbook of granular computing.

John Wiley & Sons.

19. Ranzato, M. A., Huang, F. J., Boureau, Y. L., & LeCun, Y. (2007, June). Unsupervised
learning of invariant feature hierarchies with applications to object recognition. In 2007 IEEE

conference on computer vision and pattern recognition (pp. 1-8). IEEE.

20. Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2), 197-227.
21. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv :1409.1556.
22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception

architecture for computer vision. In Proceedings of the IEEE conference on computer vision

and pattern recognition (pp. 2818-2826).
23. Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259.

24. Yao, A. C. C. (1985, October). Separating the polynomial-time hierarchy by oracles. In 26th

Annual Symposium on Foundations of Computer Science (sfcs 1985) (pp. 1-10). IEEE.

Gyeonggi Suwon International School, 451 YeongTong-Ro, YeongTong-Gu, Suwon-
Si, Gyeonggi-Do, Republic of Korea

Email address: ethank11k@gmail.com

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202008.0641.v2

https://doi.org/10.20944/preprints202008.0641.v2

