Preprint
Article

Validity and Reproducibility of Various Linear Sweep Voltammetry Tests of Anode and Cathode Electrodes in Microbial Electrolysis Cells

Altmetrics

Downloads

607

Views

378

Comments

0

Submitted:

28 August 2020

Posted:

30 August 2020

You are already at the latest version

Alerts
Abstract
Electrode is a key component in a microbial electrolysis cell (MEC) and it needs significant improvement for practical implementation of MEC. For effective development of electrode technology, accurate and reproducible analytical methods are very important. Linear sweep voltammetry (LSV) is an essential analytical method for evaluating electrode performance; however, it has not been firmly established yet in the MEC field. In this study, biological brush (BB), abiotic brush (AB), Pt wire (PtW), stainless steel wire (SSW) and mesh (SSM)) were tested to explore the most suitable counter electrode in different medium conditions. Coefficient of variation (CV) for Imax of LSV were comparatively analyzed. In BB-anode LSV, SSW (0.48%) and SSM (2.17%) showed higher reproducibility as a counter electrode. In SSM-cathode LSV, BB (1.76%) and PtW (2.01%) produced more reproducible results. In the Ni-AC-SSM-cathode LSV, PtW (3.54%) and BB (8.81%) produced more reproducible result. It shows electrode used in the operation is an appropriate counter electrode in the acetate-added condition. However, in the absence of acetate, PtW (1.24%) and BB (1.71%) produced more reproducible results in SSM cathode and PtW (0.61%) and SSW (1.21%) did in the Ni-AC-SSM-cathode, showing PtW is an appropriate counter electrode. These results also shows that PtW is an appropriate counter electrode in cathode LSV.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated