Preprint
Article

Quantitative Explanation of Basic Compound Retention Mechanisms in Reversed-Phase Mode Liquid Chromatography

Altmetrics

Downloads

264

Views

143

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

01 September 2020

Posted:

02 September 2020

You are already at the latest version

Alerts
Abstract
Abstract: The quantitative analysis of the chromatographic behavior of basic compounds was performed in silico. The liquid chromatography (LC) data measured with pentyl-, hexenyl-, and octyl-bonded silica gels were analyzed in silico employing model phases. The main retention force was the van der Waals (VW) interaction, and the main desorption force was an electrostatic (ES) interaction. The contribution of hydrogen bonding (HB) was weak compared to that for acidic compounds. The quantitative explanation was achieved utilizing the calculated VW, HB, and ES energy values obtained from a molecular mechanics program. The electron localization was observed at the molecular interaction-site calculated MOPAC program. This fundamental approach was like that of explaining chemical reactions. The difference was electron localization in chromatography or electron transfer in a chemical reaction.
Keywords: 
Subject: Chemistry and Materials Science  -   Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated