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Abstract

We discuss methods for calculation of critical indices and ampli-
tudes from the perturbative expansions. Several important examples
of the Stokes flow through 2D and 3D channels are brought up. Power
series for the permeability derived for small values of amplitude are
employed to calculation of various critical exponents in the regime of
large amplitudes. Special nonlinear approximations valid for arbitrary
values of the wave amplitude are derived from the expansions.

The technique developed for critical phenomena is applied then
for relaxation phenomena. The concept of time-translation invari-
ance is discussed, its spontaneous violation and restoration consid-
ered. Emerging probabilistic patterns correspond to a local break-
down of time-translation invariance. Their evolution leads to the time-
translation symmetry complete (or partial) restoration. We estimate
typical time extent, amplitude and direction for such restorative pro-
cess. The new technique is based on explicit introduction of origin
in time. After some transformations we come to the exponential and
generalized, exponential-type solution with explicit finite time scale,
which was only implicit in initial parametrization with polynomial ap-
proximation. The concept of crash as a relaxation phenomenon, con-
sisting of time-translation invariance breaking and restoration, is put
forward. COVID-19 related mini-crash in the time series for Shanghai
Composite is discussed as an illustration.

1 Introduction

Let the function ®(z) of a real variable z € [0,00) be defined by some
complicated problem. Such problem does not allow for an explicit solution
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to the function form. The variable > 0 can represent, e.g., a coupling
constant or concentration. And let as assume some kind of perturbation
theory is possible to develop, so that it generates asymptotic expansions
about the point z = zy = 0,

O(x) ~ ch:v”. (1)

Our task is to recast the divergent series into convergent expressions by means
of analytical constructs, the so-called approximants.

One can always extrapolate the perturbative results by means of the
Padé approximants P, ,, (z) [1]. Unfortunately, solutions to many problems
exhibit irrational functional behavior. It cannot be properly described by
Padé approximants. Sometimes they are are not applicable at all. But it
would be highly desirable to modify somehow the familiar technique of Padé
approximants. Such modification can be performed by separating the sought
replacement into two factors [2]. One factor is to be expressed as iterated
root approximant or factor approximant [3, 9], is particularly designed to take
care of the irrational part of the solution. The other factor is simply a Padé
approximant, is supposed to take care of the rational part of the solution. We
arrive thus to the corrected Padé approximants. They appear to be applicable
to a larger class of problems, even when the standard Padé technique is not
applicable [3]. Many more applications of the Padé approximants and their
modifications could be found in [4].

The Padé approximants Py can be understood simply as ratio of the
two polynomials Py (x) and Qy(x) of the order M and N, respectively. The
diagonal Padé approximant of order N corresponds to the case of M = N.
Conventionally, Qx(0) = 1. The coefficients of the polynomials are derived
directly from the asymptotic equivalence with the given power series for the
sought function ®(z). The notation for Padé approximants used in the paper
is conventional. Sometimes, when there is a need to stress the role of ®(x),
we are going to write Pade Approximant [®[z], n, m].

A Padé approximant might posses a pole associated with a finite critical
point, but can only produce an integer critical index. While usually critical
indices are not integers. The same concerns the large-variable behavior where
the power of x produced from extrapolation with some form of Padé approx-
imants is always an integer. Two-point Padé are applied for interpolation,
when in addition to the expansion about xy = 0, given by (1), an additional
information is available and contained in the expansion about x = oc.
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There are four main technical approaches to constructing approximants
with the goal to optimize their performance. The first approach is con-
ventional, also called accuracy-through order, and is based on progressive
improvement of quality with adding new information with the approximants
becoming more and more complex. It is exemplified in construction of Pad’e
and Euler super-exponential approximants, factor, root and additive approx-
imants [3].

Second approach leads to corrected approximants. The idea is to en-
sure the correct form of the solution already in the starting approximation
with some initial parameters. The initial parameters should be corrected by
asymptotically matching with the truncated series/regressions in increasing
orders. So, instead of increasing the order of approximation, one can correct
the parameters of the initial approximation [3, 9]. So, the form of the solu-
tion is not getting more complex, but the parameters take more and more
complex form with increasing order. Corrected approximants will comple-
ment the third approach, when there are no solutions within the framework
of the third approach.

In the third approach predominantly adopted in Section 4, we keep the
form and order of approximants the same in all orders, but let the se-
ries/regressions evolve into higher orders. Independent on the order of re-
gression, we construct the same approximant, based only on the first order
terms, only with parameters changing with increasing order of regression.
In the framework of effective first order theories, we employ exponential ap-
proximants.

In the fourth approach the critical index is treated as vital part of op-
timization procedure. It plays the role of a control parameter, sometimes
even of a control function, to be determined from optimization procedure de-
scribed in the Section 2.2, following [50]. Some other optimization techniques
based on introduction of an additional control parameters, were proposed in
[51, 52].

2 Critical index and relaxation time

We are going to speak about the critical behavior with a critical index «, at
a finite critical point x., when

O(x) ~ Az, —x)*, asx — x.— 0. (2)
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The definition covers the case of negative index when function can tend to
infinity, or the sought function can tend to zero if the index is positive.
Sometimes, the values of critical index and critical point are known from
some sources, and the problem consists in finding the critical amplitude A,
as extensively exemplified in [3].

The case when critical behavior occur at infinity,

O(x) ~ Ax®, as x — o0, (3)

can be analyzed similarly. It can be understood as the particular case with
the critical point positioned at infinity.

Critical phenomena are ubiquitous [50], ranging from the field theory to
hydrodynamics. And it is vital to explain related critical indices theoretically.
Regrettably, for realistic physical systems one can as a rule learn only its
behavior at small variable,

O(x) ~ Py(x), asx — 0. (4)

Thus the function is approximated by an expansion

k

Op(z) =1+ cpa”. (5)

n=1

Such expansions are usually asymptotic. They strongly diverge and their use
is permitted only at some small values of the variable.

The critical exponents can be found by using definition of the critical
index. One can express the critical index directly, and find it as the limit
of explicitly expressed approximants. For instance, critical index can be
estimated from a standard representation as following derivative

—«

B, (z) = 0, log (®(x)) ~

(6)

To— 2

as © — ., thus defining critical index as the residue in the corresponding
single pole. The pole corresponds to the critical point x.. The critical index
corresponds to the residue

a= lim (z — z.)B, (z).

To the D Log-transformed series one is bound to apply the Padé approxima-
tion. Moreover, the whole table of Padé approximants can be constructed

4


https://doi.org/10.20944/preprints202009.0141.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2020 d0i:10.20944/preprints202009.0141.v2

[1]. Le. the DLog Padé method does not lead to a unique algorithm for
finding critical indices. procedure. Basically different values are produced
by different Padé approximants. Then it is not clear which of these quan-
tities to prefer. Standard approach consists in applying a diagonal Padé
approximants.

When a function, at asymptotically large variable, behaves as in (3),
then the critical exponent can be defined similarly, by means of the D Log
transformation. It is represented by the limit

a= lim zB, (z) . (7)

T—00

Assume that the small-variable expansion for the function B, (z) is given.
In order that the critical index be finite it is necessary to take the asymp-
totically equivalent approximants behaving as 7! as x — oo. It leaves us
no choice but to select the non-diagonal Padé P, ,.1(x) approximants, so
that the corresponding approximation a,, is finite. One can also apply, in
place of Padé, some different approximants. To this end one should apply

the transformation,
x 2T
z = & T = 8
T, — T z+1 (8)

to the original series and reduce the problem of finding critical index to the
previous case.

To simplify and standardize calculations different, and more powerful
approximants, called self-similar factor approximants have been introduced
in Refs. [6]. The k-th order self-similar factor approximant reads as

Ny,
Fi@)=co [J (1 +P)™ | (9)
=1
where
Ne=% k=24,...; Ny=EL k=35, (10)

and the parameters P; and m; are defined typically from the asymptotic
equivalence complemented with additional constraints on the sought func-
tion. For even order, the above procedure uniquely defines all kK = 2p param-
eters. In odd case k = 2p + 1, one is obliged to impose some extra condition
motivated by the problem, and uniquely defining all other parameters. The
singular solutions emerging from factor approximants correspond to critical
points and phase transitions [6], including also the case of singularity located
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at co. It is very difficult to improve factor approximants when the series are
short, unless some additional asymptotic (or point-wise) information on the
critical point is available. Some suggestions on such improvement were ad-
vanced on [9]. When the series are long one would expect that the accuracy is
going to improve with increasing number of terms. Sometimes, an optimum
is achieved for some finite number of terms. reflecting on the asymptotic
nature of the underlying series.

2.1 Relaxation time

Consider the case of relaxation behavior when a function at asymptotically
large variable decays as

t
O(t) ~ Aexp(—) (t — o0), (11)
T
with negative 7. Formally, the relaxation time is —7. It can be found as the
limit ) p
- = tliglo 7 In®(¢) . (12)

Just as in the case of critical behavior considered above, the small-variable
expansion for the function is given by the sum ®(¢). The effective relaxation
time can be expressed in terms of the small-variable expansion as follows,

%(t) _ % In By (£) . (13)

It can be expanded in powers of ¢, leading to

k() = Z b, t™ . (14)

The coefficients b,, are easily expressed through ¢, of the original series (1).
Let us apply to the obtained expansion the self-similar or Padé approximants.
Le., we have to derive an approximant 7;(¢) whose limit

Tr(t) — const (t — o0),

gives the relaxation time
—00
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In such approach the amplitude A does not enter the consideration. In prac-
tice one can indeed construct the approximants with such required behavior.
The complete approximant for the sought function ®(¢) denoted below as
E(t,r), can be constructed as well. Even some ad hoc forms satisfying some
general symmetry requirements can be suggested, as in the Section 4.

As an illustration, let us find 7(¢) in explicit form under some simple
assumptions concerning its asymptotic behaviors. Assume simply that there
are two distinct exponential behaviors for short and long times with two
different 7y, 75, and the transition from short to long time behavior also
occur at the duration of some third characteristic time 73 = —35*. The
characteristic times can be found from the short-time expansion. The simple
approximation to the effective relaxation time expressed in second order of
(15), can be written down in the spirit of [7] as follows,

725 (1) = Ba+ (B1 — o) exp (Bst), (16)

so that for negative 83 we have 75(0)~! = 3y, 75(c0)™! = B,. In the theory
of reliability the failure(hazard) rate or mortality force [8], are analogous to
the inverse effective relaxation time, and the model of the type of formula
(16) is known as Gompertz-Makeham law of mortality.

The complete approximant corresponding to (16) is reconstructed after
elementary integration

F(0) = dexp () 200

Bs

with all unknown constituents of (16) expressed explictly, from the asymp-
totic equivalence with the power-series,

+ ﬁﬂ) , (17)

9 3
(Cl 72C002) ﬁ _a ﬁ — 6c02010374c02022726061202+014
4(30020373coclcg+013)2 ) 1 co’ 2 2¢0(3co2c3—3cocica+tcid) )
2(300203—3600102+013)
ﬁ?’ - co(2coca—c1?)

A:coexp<

(18)
Most interesting, as Sy = 0, we arrive in different notations to the Gompertz

function (99),
3

employed in calculations of [28]. In this case we have the effective relaxation
time decaying exponentially with time. In the Section 4 we apply this method
of finding the effective relaxation time for time series.

(19)
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2.2 Critical index as control parameter. Optimization
technique

The function’s critical behavior follows from extrapolating the asymptotic
expansion (1) to finite or large values of the variable. Such an extrapolation
can be accomplished by means of a direct techniques just discussed above.
But their successful application requires knowledge of a large number of terms
in the expansion. But it is also possible to obtain rather good estimates for
the critical indices from a small number of terms in the asymptotic expansion
[50]. To this end we can employ the self-similar root approximants given
by (20). The external power my is to be determined here from additional
conditions.
The self-similar root approximant has the following general form

In principle, all the parameters may be found from asymptotic equivalence
with given power series.

The large-variable power « in equation (3) could be compared with the
large-variable behavior of the root approximant (20),

where

A = (((lel + PQ)m2 + Pg)m3 + ...+ Pk)mk . (22)

This comparison yields the relation km; = «, defining the external power
my, = %, when a is known. This way of defining the external power is used
when the root approximants are applied for interpolation.

Consider an exceptionally difficult situation: the large-variable behavior
of the function is not known and « is not given. In addition, the critical
behavior can happen at a finite value x. of the variable x. The method for
calculating the critical index a by employing the self-similar root approxi-
mants was developed in [50].

In such approach we construct several root approximants Rj(z, my), and
the external power my plays the role of a control function. The sequence
of approximants is considered as a trajectory of a dynamical system. The
approximation order k plays the role of discrete time. A discrete-time dy-
namical system or the approximation cascade, consists of the sequence of
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approximants. The cascade velocity is defined by Euler discretization for-
mula [53, 54, 55]

0

Vie(w, mi) = Ry (2, mi) — R (2, my) + (M1 — my)
The effective limit of the sequence of approximants corresponds to the fixed
point of the cascade. Based on just a few approximants, the cascade velocity
has to decrease. In such sense the sequence appears to be convergent. And
the control functions my = my(z), have to minimize the absolute value of
the cascade velocity

Vi, mi(2))] = min [Vi(z, )| - (24)

A finite critical point xf, in the k-th approximation, is to be obtained from
the equation
(R (28, myg) Y™ =0 (0 <z}, < 00). (25)

Its finite solution is denoted as x§ = x{(my).
The critical index in the k-th approximation is given by the limit

ag = lim mg(z).
Ty,
In the case of the critical behavior at infinity, when as x. ~ 0o, the critical
index is

a =k lim my(z), as x. ~ 00 . (26)
Tr—00

Thus, to find the critical indices, the control functions my(x) have to be
found. The minimization of the cascade velocity (96) is complicated. The
equation (24) contains two control functions, my, 1 and my. Nevertheless the
problem can be resolved.

The first constructive approach notices that my.; should be close to m,.
Then we arrive to to the minimal difference condition

Iz?llikn (R (2, mu) — Ry (x, my,)| (k=1,2,...). (27)

One should typically find a solution my = my(x) of the simpler equation

Rip 1 (e me) = Ri(a,my) = 0. (28)
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The control functions my, characterizing the critical behavior of ®(x) become
the numbers my(z.). We simply write my = my(x.).
In the vicinity of a finite critical point, the function R} behaves as

mpy
Rp(x, my) ~ <1— i) , as x — xy, — 0. (29)

Ty,
The condition (28)is expressed as follows,
xgq (my) — 2 (mg) =0 (0 < zj <0). (30)

For the critical behavior at infinity, it is expedient to introduce the control
function

S = k:mk . (31)

And the large-variable behavior reads as
Ry (x,s5) ~ Ap(sg)z™, as © — o0 . (32)
As a result, the minimal difference condition is reduced to the equation
Agi1(sk) — Ai(sk) =0, as xj, ~ 00 . (33)

The alternative equation for the control functions also follows from the min-
imal velocity condition (24), and is called the minimal derivative condition

o .
min o Ry (z,my) (k=1,2,...), (34)
In practice we have to solve the equation
9 .
— Ry(z,my) =0. (35)
8mk

To apply this condition, we have first to extract from the function its non-
divergent parts. If the critical point is finite, one can study the residue of
the function 0log R} /0my, expressed as

S . Oy
xlg;lz(xk — ) o log Ry (x, myg) = my (‘?m]; .
Thus, from equation (35), we arrive to the condition
O0xf .
ami =0 (0<a§<o0). (36)
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When the critical behavior occurs at infinity, then we can consider the
limiting form of the amplitude and reduce the equation (35) to the form
(9Ak (Sk)
————= =0, as x}, ~ . 37
ask k ( )
Let us consider as example the case of the two-dimensional channel bounded
by the surfaces z = £b (1 + ecosz) . Here € is termed waviness. The perme-
ability behaves critically [11]. Le., it tends to zero as

K(e) ~ (e.—€)*, ase — €. —0, (38)

with e, =1, = g . The permeability as a function of the waviness can be
derived in the form of an expansion in powers of € [11, 13]. In the particular
case of b = 0.5, the permeability can be found explicitly as

K(e) ~ 1 —3.14963 ¢* + 4.08109 ¢*, as ¢ — 0 . (39)

€2

By setting €. = 1, and changing the variable y = =~ , one can move the
critical point to infinity. The critical index is calculated as explained above
and in [50]. From the minimal-difference condition we find s = 2.184, with
an error 12.6%. From the minimal derivative condition we obtain s, = 2.559,
with an error 2.37%. The final answer »* is given by the average of two
solutions »* = 2.372 + 0.19.

In another particular case, for b = 0.25, the permeability expands as

follows,
K(€) ~1—3.03748 € 4 3.54570 €*, as e — 0. (40)

Setting ¢ = 1, and using the same technique as above the approximations
for critical index are found, so that s = 2.342, and s, = 2.743. Finally,
»x* =2.543+0.2.

Let us also consider some examples of the numerical convergence of root
approximants in high-orders. The technique is applied again for calculating
critical index . It seems instructive to consider the same two cases of
permeability K (€), but with higher-order terms, up to 16th order inclusively.

The numerical form of the corresponding expansions can be found in
Section 3, see expansion (56), and expansion (65). Concretely, we construct
the iterated root approximants

4/3 a/k
RZ(y) = ((((1 + Ply)2 -+ P2y2)3/2 —+ P3y3> + ...+ Pkyk) . (41)

11
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The parameters P; have to be found from the asymptotic equivalence with
the expansions. The permeability has the required critical asymptotic forms

R;(y) ~ Ary®, as y — oo . (42)

And the amplitudes Ay = Ag(ay) are found explicitly as

a/k
Ay = (((7712+P2)3/2 +7>3)4/3+...+7>k) . (43)

To define the critical index «y, we analyze the differences
Apn(ar) = Ag(ar) — An(ag) - (44)

From the sequences Ay, = 0, we find the related sequences of approximate
values qy, for the critical indices.

Although it is possible to investigate different sequences of the conditions
Ak, = 0, the most natural from is presented by the sequences of Ay 41 =0
and of Ag =0, with £ =1,2,3,4,5,6,7.

The results for b = %, are shown in Table 1. We observe good numerical
convergence of the approximations oy = ¢, to the value » = g

Similar results, presented in Table 2 (for b = }1), again demonstrate rather
good numerical convergence of the approximate critical indices to the value
=5,

The critical index does not depend on parameter b. The DLog Padé
method appears to bring convergent sequences and consistent expressions
for permeability as well. Further details to be found in the Section 3.

Consider yet different case of permeability K (€), see Section 3, subsection
3.1.3. For the parallel sinusoidal two-dimensional channel the walls would not
touch. The permeability remains finite. It is expected to decay as a power-

law as € becomes large,
K(e) ~ €, as e = oo,

with negative index v.

In the expansion of K (¢) in small parameter €* we retain the same num-
ber of terms as in previous two examples. The numerical values of the corre-
sponding coefficients can be found in Section 3, see expansion (68) on page
24. Results of calculations are presented in Table 3 (for b = %), and show
good numerical convergence, especially in the last column, to the value —4.
The sequence, based on the DLog Padé method, is convergent as well, see

Section 3, subsection 3.1.3.
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Ay, Ak+1(%k> =0 Akg(%k) =0
P2l 2.18445 2.39678
o 2.68311 2.52028
3 2.48138 2.49208
y 2.49096 2.49692
PG 2.5012 2.49982
P 2.49935 2.499

7 2.49861 2.49861

Table 1: Wall can touch (b=1/2). Critical indices for the permeability sz
obtained from the optimization found from the optimization conditions (44).
There is rather good numerical convergence to the theoretical number s =

5/2.

s | Dpgp1(0a) =0 | Ags(og) = 0
4 2.34165 2.452

o 2.52463 2.50542
3 2.4976 2.49933
P 2.49941 2.50004
M5 2.50028 2.50033
Mg 2.50032 2.50036
22 2.50041 2.50041

Table 2: Walls can touch (b=1/4). Critical indices 74 found from the op-
timization conditions (44). There is a good numerical convergence of the
sequences to the theoretical value » = 5/2.

13


https://doi.org/10.20944/preprints202009.0141.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2020 d0i:10.20944/preprints202009.0141.v2

Ve | App1(vr) =0 | Aps(vi) =0
1241 -6 -4.36
Vo -4.04 -4.1
V3 n.a. -4.13
Vy -4.09 -4.05
Us -3.97 -4.03
Vg n.a. -4.08
vy -3.94 -3.94

Table 3: Walls can not touch. Case of b=1/2. Critical indices for the per-
meability for the problem of Section 3, subsection 3.1.3, obtained from the
optimization conditions Ay, (1) = 0. The sequences demonstrate reasonably
good numerical convergence to the value v = —4.

3 Critical permeability

Critical behavior of permeability of certain models of Darcy flow in porous
media, treatable with power-series, is studied in this section. Permeability
of spatially periodic arrays of cylinders was analyzed and found in analytical
form in [9]. Transverse flow past hexagonal and square arrays of cylinders was
studied as well, based on expansions for small concentrations and lubrication
approximation for high concentrations of cylinders [9]. 3D periodic arrays of
spherical obstacles are discussed in [9] as well. Formulas for the drag force ex-
erted by various lattices of obstacles were derived from the low-concentration
expansions.

Below, the important for applications problem of Stokes flow through a
2D and 3D channels enclosed by two wavy walls is studied. It is considered
by means of the approach combining analytical and numerical approach to
derivation of expansions and approximants. Compact formulas for the per-
meability are derived in the form of approximants for all required values of
amplitude. Various power-laws are found by extrapolation in the regime of
large amplitudes, based only on expansions at small amplitudes. Despite
of the popular lubrication approximation breakdown, it is still possible to
obtain accurate formulas for the effective permeability for arbitrary values
of the wave amplitude. In principle, only are the expansions for small am-
plitudes are involved. But they have to be complemented by some general
knowledge on the critical point position, and about existence of the critical
index for permeability.
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This section deals exclusively with constructive analytical solutions. In
other words with approximate analytical solutions, when the resulting for-
mulas contain the main physical and geometrical parameters. The available
truncated series are considered as polynomials. They remember their infi-
nite expansions, so that with a help of some specially crafted resummation
procedure one can extrapolate to the whole series by means of carefully de-
rived approximants. The approximants are asymptotically equivalent to the
truncated series. The approximants are more inclusive than polynomials,
because they encompass various asymptotic regimes. And they generate an
additional, infinite number of the coefficients in expansion.

For low Reynolds numbers R, the flow of a viscous fluid through a channel
is described by the well-known Darcy’s law. The Darcy law describes a linear
relation between the pressure gradient Vp and the average velocity @ along
the pressure gradient [11]. Tt is given as follows,

Vpl = . (45)

where K stands for the permeability and n is the dynamic viscosity of the
fluid. The definition of permeability simply characterizes the amount of
viscous fluid flow through a porous medium per unit time and unit area
when a unit macroscopic pressure gradient is applied to the system [9]. The
classical Poiseuille flow is a classic example, which yields the Darcy’s law. It
unfolds in the channel bounded by two parallel planes separated by a distance
20, generated by an average pressure gradient Vp. The flow profile is known
to be parabolic when the Reynolds number R is small.

When the channel is “wavy”, i.e., not straight and when the Reynolds
number is not negligible, additional terms appear in this relation [13, 12].
Yet Darcy law holds in the interesting case of the Stokes flow through a
channel with three-dimensional wavy walls. The enclosing wavy walls are
described by the analytical expressions, including the amplitude of waviness.
The amplitude is proportional to the mean clearance of the channel and is
multiplied by the small dimensionless parameter e.

Darcy low also is also considered for percolation models, used to model,
both theoretically and experimentally, the critical behavior of the fluid per-
meability. A simple network of randomly distributed random pipes network
serves as generic model of percolation. It is considered to be equivalent to
a random resistor network. Among its various applications one subject does
stand alone. The percolation model is applied to simulate fluid flow in the
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case of a sea ice, vitally important for climate studies [14, 15].

The problems of permeability and conductivity belong to two different
classes [10]. For small and moderate volume fractions mathematical struc-
ture of the permeability and conductivity problems is alike and Laplacian.
Therefore, they both can be addressed by the same methodology. In the
case of high volume fractions, such analogy does not apply. It is found that
permeability and conductivity are characterized by different critical expo-
nents [10], see also [9] for more detailed discussion of the criticality models
in porous media.

An existing estimate for the fluid permeability critical exponent s for sea
ice, strongly suggests the value of about 2.5 [14]. We conclude here by noting
that the classical hydrodynamic models to be discussed below, also demon-
strate power-law behavior, around their corresponding thresholds, with the
same value of the critical exponent for permeability. Thus, reality implores
us to study critical phenomena directly from the hydrodynamic equations,
and to calculate permeability via homogenization procedure. In the cases
considered below in this section we deal with a unique theoretical oppor-
tunity to attack the problem of critical exponent and criticality in general,
directly from the solution of Stokes problem, much like the problem of phase
transitions is attacked directly from a concrete microscopic models [49].

3.1 Permeability in wavy-walled channels. General in-
formation

We completeness, we follow below the main steps of the derivation leading
to the expansions for permeability, as obtained by Mityushev, Malevich and
Adler. In Ref.[13] a general asymptotic analysis was applied to a Stokes flow
in curvilinear three-dimensional channel. It is bounded by walls of rather
general shape described as follows

2= 8"z, 1) = b(1+ €T (z1,22)), (46)
2 =05 (z1,22) = —b(1 + eB(z1,22)). (47)
In what follows, the formally small dimensionless parameter € > 0 is consid-
ered. It is introduced in such a way to allow the general form (46), to be

recast as the geometric perturbation. The expansion is accomplished around
the straight channel considered as zero-approximation.

16


https://doi.org/10.20944/preprints202009.0141.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2020 d0i:10.20944/preprints202009.0141.v2

Such approach builds on an original work by Pozrikidis [17], on two-
dimensional case. This approach could be extended to the gravity driven
Stokesian flow past the wavy bottom [18, 19], as well to wavy tubes [20]. It
can work also for the more complete hydrodynamics of Navier-Stokes equa-
tions [12, 21]. The applications to the stationary heat conduction [22], and
to electrokinetic phenomena in two-dimensional channels [23], are available
as well.

In [13] an arbitrary profiles S*(zy,x5) were explored. It was assumed
only that they satisfy some natural conditions, such as

|T(z1,29)] <1 and |B(xy,z9)| < 1. (48)

The infinite differentiability is assumed for the functions T'(z1, x2) and B(z1, x3).
Such assumption was made in order to calculate velocities and permeability,
and to solve an emerging cascade of boundary value problems for the Stokes
equations in a straight channel [13]. Influence of the curvilinear edges on flow

is of significant theoretical interest. It illustrates the mechanism of viscous
flow under different geometrical conditions. But the flow through curvilinear
channels also finds applications in porous media [11, 24].

To make our paper self-consistent we bring below some general infor-
mation about the mathematical formulation of the problem and some per-
meability definitions. Let u = u(zy,z9,x3) be the velocity vector, and
p = p(x1, x2, x3) the pressure. The flow of a viscous fluid through a channel is
considered under condition that the Reynolds number is small and the Stokes
flow approximation is valid. The fluid is governed by the Stokes equations

V?u = Vp,
pv-ua p (49)
V.-u=0,
with the boundary conditions
u=0 on S*. (50)

The solution u of (49)—(50) is sought within the class of functions periodic
with period 2L both in variables x; and x».

Let also u be the z-component of u. Let also an overall external gradient
pressure Vp to be applied along the z1-direction. It corresponds to a constant
jump 2LVp along the z;-axis of the periodic cell. Then the permeability of
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the channel in the z;-direction is defined as the result of integration,

L L S (9617362)
K, (e) = __H //dxl dxs / u(wy, T9, 3) drs . (51)
Vp T
SL-L

S (z1,32)

Here |7| stands for the volume of the unit cell @ of the channel,

+
(x1,22)

L L
7] ://dxl dxo / das . (52)
“L-L

S (z1,x2)

The sought K, (¢) in (51) is going to be expressed explicitly as a function
in e. More precisely, the ratio K = K(¢€) of the dimensional permeability for
the curvilinear channel and of the Poiseuille flow

K, (6)
Ko=%. 0

is going to be considered. In the case of € = 0 we return to the familiar
Poiseuille flow. For such flow the definition (51) gives the transparent ex-
pression for permeability

(53)

b2

I. e., we return to the classical Poiseuille flow in the channel bounded by two

parallel planes which arises when a pressure gradient is applied, and the flow
profile obeys the parabolic law.

Most important for our methodology, the formula of [13] determines the

coefficients of a Taylor expansion for the permeability

(54)

o0

K(e) = Z Cme™.

m=0

with the normalization (53) used to find K. In practical computations K (¢)
is approximated by the truncation, leading to Taylor polynomial of order N

N
= E Cme€™.
m=0

The domain of application of this formula appears to be restricted. And the
corresponding Taylor series are divergent for larger e.
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3.1.1 Symmetric sinusoidal two-dimensional channel. Walls can
touch

Mityushev, Malevich and Adler in [13], considered the following, bounded
two-dimensional channel

z2=0b(1+¢€cosx) , z=—b(l+ecosx). (55)

The expansion for permeability was found up to O(e*?), and for b = 0.5.
This example is popular among the researchers, as is documented in [13].
The following truncated polynomial for the permeability as the function of
"waviness” parameter € was presented,

Kgo(ﬁ) =

1 — 3.14963€2 + 4.08109¢* — 3.48479¢5 + 2.93797€8 — 2.5677110+

2.21983¢!2 — 1.93018¢!* + 1.67294¢'6 — 1.45302¢!® + 1.26017¢20—

1.09411€22 + 0.949113€%* — 0.823912€%0 + 0.714804€2® — 0.620463¢*°

+0(e%?).

(56)

On the other hand, for larger €, a lubrication approximation was discussed in
[11]. It is motivated by the solution in the case of two cylinders of different
radii that are almost in contact with one another along a line. For equal radii
a, the flow rate g per unit length is proportional to the pressure variation Ap

K
g=——"A2p, (57)
1
where K is given by
2 /&
K =—4/—
"“orV a (58)

and J is the gap between the cylinders. For the channel (55), if € is close
to unity, the aperture at * = —m is close to zero. Most important, one can
apply (58) to the local channel with 6 = 2b(1 —¢) and a = be. Ase — €. =1,
simply confronts the following power-law

N 8\/5\/()_4(6 — 1)5/2
~ o .

It has the general critical form with the critical index for permeability » =
5/2. The critical amplitude can be extracted as well, so that A = 8‘9[—72:’2. In
the case under consideration we calculate A = 0.100035.

K

(59)
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The reasons for failure of lubrication approximation are explained [11,
13] and also in [9]. In a nutshell, the main assumption of the lubrication
approximation is that the velocity has a parabolic profile. Even for the plane
channels [13], the lubrication approximation gives correct results only for
channels in which the mean surface is sufficiently close to a plane and for
small value of e.

In what follows we completely avoid the lubrication approximation. The
technique of approximants allows to approach the critical region, when the
walls nearly touch, only based on the expansion (56). Mind that the problem
of interest can be formulated mathematically just as in section 2.

In the concrete case we have the polynomial approximation (56) of the
function K (¢). And we intend to to calculate critical index and amplitude(s)
of the asymptotically equivalent approximants in the vicinity of the threshold
e = €. = 1. When such extrapolation problem is solved, one can proceed
with an interpolation problem. In the latter case assuming that the critical
behavior is known in advance, and derive the compact formula for all e.

Let us calculate the index and amplitude for the critical behavior written
in general form

K(e)~ A(e. —€)”, ase — €6, — 0. (60)
We proceed routinely, in accord with section 2. Let us first apply the
transformation,
z
z = & e=—7-,
1—e€ z+1

to the series (56). The transformation makes technical application of the
different approximants more convenient.

To such transformed series M;(z) let us apply the DLog transformation
and obtain the transformed series M (z). In terms of M(z) one can readily
obtain the sequence of Padé approximations sz, for the critical index »¢.
Namely, we obtain the sequence of values

My, = — ZILIEO(ZPadeApproa:imant[M[z], n,n+ 1]). (61)

The approximations for the critical index generated by the sequence of
Padé approximants, corresponding to their order increasing, converge nicely
to the value 5/2, as shown below,

s = 2.57T972, 30y = 2.30995, s = 247451, 3¢, = 2.49689,
5 = 24959, 35 = 249791, 3¢, = 2.49923, g5 = 2.50113,
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2y = 2.50028, 2219 = 2.49783, 2011 = 2.49778, 319 = 2.49829, 5115 = 2.49836.

If B,(z) = PadeApproximant[M|[z],n,n + 1], then one can also find the
approximation for permeability

K% (€) = exp ( /0 U Ba(2) dz) : (62)

and eventually compute the corresponding amplitude

A, = gLIil(Ec —€) K (e). (63)
There is typical value of amplitude, found e.g., with Ay = 3.7758. It appears
to be by order of magnitude larger than the value deduced from the lubri-
cation approximation. Now, let us fix the critical index to the obtained in
extrapolation value 5/2. Now, one can calculate A using the standard Padé
technique, finding the value of 3.77188. The latter turns out to be very close
to the value just found above from the extrapolation.
The permeability can be expressed rather compactly, in terms of factor
approximant, asymptotically equivalent to (56) up to 16th order inclusively,

K* ( ) (1—52)25(0,23931162—}—1)0-591597
1/2\€) = (1—0.722851¢2)0-00840612 (1 _() 260764¢2)0-27054% (0.867799¢24-1)1:00004 -

(64)

From (64) we again find the amplitude A = 3.77177, and again it turns out
to be in line with our estimates.

Still, there are some higher order coefficients, not used in construction of
the approximant (64). From the formula (64) one can readily evaluate the
higher-order coefficients (56), not employed in the final formula,

c1s = —1.453, c90 = 1.26014, c9o = —1.09408, coq = 0.949078,
cos = —0.823874, o5 = 0.714764, c39 = —0.620422.

Formula (64) appears to be exceptionally successful in reproducing the “un-
employed” coefficients in the expansion (56). The maximal error appears in
reproducing the 30th order, and it equals just 0.0066%.

We illustrate below how lubrication approximation breaks down even in a
close vicinity of €. In figure 1 formula (64) is compared with both available
analytical expression for the asymptotic regimes.
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~0.02}

~0.04]

Figure 1: Formula for the factor approximant (64) (solid) is compared with
the truncated power series (dotted) and lubrication approximation (dashed)

3.1.2 Symmetric sinusoidal two-dimensional channel. Example 2

Let us again consider the channel bounded by the surfaces (55), but with
different parameter, b = 0.25. The truncated polynomial K (¢) was obtained
in [13] as well,

K(e) =

1 — 3.03748¢2 + 3.54570€* — 2.33505€5 + 1.35447¢3 — 0.83303¢!°
+0.49762¢? — 0.30350€ 4 0.18185¢1¢ — 0.11083¢'® + 0.06636¢° (65)
—0.04051€** + 0.02419¢%50.00880¢2® — 0.00544€30+

O(e%?).

Again, just like in previous example, there is an excellent convergence within
the approximations for the critical index. They were generated by the se-
quence of Padé approximants using formula (61),

s = 2.64456, 0y = 2.41346, 3¢5 = 2.49488, ¢4 = 2.49992,

s = 249991, 3¢5 = 2.50026, s, = 2.50068, 5 = 2.50087,
g = 2.50086, 10 = 2.50063, 3¢ = 2.50063, 312 = 2.50086,
sz = 2.50087, 314 = 2.50068, 15 = 2.50026.
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Evidently this sequence leads to the same value for the index, s = 5/2. The
value of amplitude is estimated as well, as A5 = 3.77362. Both amplitude
and index appear to be independent on b, suggesting an universal regime in
the vicinity of €.

Interpolating with the known critical index, one can calculate the ampli-
tude A, using standard Padé technique, finding again the very close value
of A~ 3.77316. As above, the permeability can be expressed compactly as
factor approximant,

K* . (1 _ 62)2.5
A (1 - 0.043714162)1'37166 (060674562 + 1)0.984665 .

The amplitude can be calculated as A = 3.77062. And once again, it appears
to be by orders of magnitude larger than the value 0.02501, estimated from
the lubrication theory. From the crossover formula (66) one can readily
obtain the higher-order coefficients (65), not employed in the derivation.
Formula (64) appears to be accurate enough in reproducing the coefficients
in the expansion (56), not employed in its construction. The maximal error
is in reproducing csg, and it is equal to 2.147%.

In figure 2, the formula (66) is compared with analytical expressions avail-
able in both asymptotic regimes. The amplitude and overall behavior of per-
meability in the vicinity of €., practically does not depend on the parameter b.
One can think that some universal (not dependent on b) mechanism is at work
here. The chief suspect to be approached is celebrated similarity-solutions
with complex exponent, known as viscous Moffat eddies [26]. Obviously they
are not covered by the lubrication theory [25]. Eddies manifest themselves
as reversed-flow regions near the walls. Onset of eddies is expected in the
vicinity of €., corresponding to zero of the polynomial approximations (64),
(66). The onset of eddies would lead to a total disappearance of permeability.
We believe it to be an artifact, being corrected by a detailed consideration
of the region € ~ 1 with a power-law ansatz. As the value of b decreases, the
value of €, moves closer to €.

(66)

3.1.3 Parallel sinusoidal two-dimensional channel. Walls not touch-
ing

Let us proceed with the case principally different from the two cases just

studied. Consider the channel bounded by the surfaces

z=0b(14+c¢€cosz), z=—b(1l—e€cosx), (67)
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0.010
0.005 -

Figure 2: Formula (66) (solid) is compared with the truncated polynomial
(dotted) and lubrication formula (dashed)

with b = 0.5 [13]. There is no possibility of the walls touching and permeabil-
ity remains finite but expected to decay as a power-law as € becomes large.
Instead of a critical transition from permeable to non-permeable phase, we
have a non-critical transition, or crossover as defined in [27]. The crossover is
from high-to low permeability, and unravels with increasing parameter €. The
crossover can be still characterized by the power-law, as one can study cor-
responding critical index at large €. Eddies are not expected in such channel
even for very large € [13]. But for large b eddies are not excluded [13]
The truncated series for permeability is calculated up to O(e3?),

Kgo(E) =

1 —2.53686x 107 e? + 4.28907 x 10~ 2¢? — 5.46188 x 10~ 3¢°

+4.54695x 10~ %% + 9.0656 x 107 %¢'® — 1.41572x 107°¢'? + 3.76584 x 1004
—6.72021 x 107 7€'6 + 7.58331 x 1078¢'® + 2.34495x 107 9€** — 4.59993 x 109

d0i:10.20944/preprints202009.0141.v2

+1.88446 x 107 %€ — 8.6005x 10711626 + 3.34156 x 107%¢2® + 1.63748 x 1079,

(68)

In this case it is well understood, that the velocity is analytic in € in the disk
le| < €o. Therefore, one can deduce that (68) is valid for € < €y, where € is of
order &, with x being the maximal wave number of T'(x1, x2) and B(x1, z5).
Still, in order to extend K (¢) for € > €y, one can apply Padé approxima-
tion to the polynomial (68), which agrees with it up to O(e*?). The Padé
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approximant of the order (10,20) was first developed in [13],

_ PlO(E)
on(ﬁ),

Ki0,20(€) (69)

where

Pro(e) = 1 — 3.14215¢ + 6.59346¢* + 34.7591¢0 + 13.3065¢® + 1.53446¢1°,

Qao(€) = 1 — 2.88846¢% + 5.81781e* + 36.3643€5 + 22.2659¢® + 5.65641€1°
+0.675967€¢'? + 0.033858¢'* 4+ 0.000131€'6 — 0.000010€'® + 0.000001€%°.

(70)

This approximant finds that Kjg20(€) ~ ¢ 'Y, as e — oo.

In such spirit, one can think that the permeability decays as K(e) ~ €,

as € — 00, The index v can be obtained as the limit

) d
v= elggloe o log K (e) . (71)
as explained in the section 2.

Assuming that the small-variable expansion for the function is given by
the truncated sum Ki.(€), as in (68), we have the corresponding small-
variable expression N(e¢) for the effective critical exponent which equals
€ % log Ky-(€). By applying to the obtained series N(e) the method of
Padé approximants, as has been discussed above, the sought approximate

expression for the critical exponent is obtained,
v, = lim €Py 11 (€) , (72)
[Sdee]

dependent on the approximation order k. Application of the method to the
truncated series (68), is straightforward and suggests strongly the value of
v = —4, as can be seen from Figure 3. The amplitude B, corresponding to
k = 14, is equal to 44.5872. Assume now that v = —4, and construct the
sequence of Padé approximants P, ,14, which lead to such index by design.
There is a convergence in the approximation sequence for the amplitude B.
One can safely assume that it converges to the value of 43.2. The sequence
is shown in Fig. 4.

based on the behavior of the amplitude, for the permeability we suggest
the Padé approximant of the order (12, 16),

(73)
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Figure 3: The index v at infinity, is shown dependent on approximation
number k. The values found by computing (72), are shown with black circles.
They are compared with the most plausible value of -4 (shown with gray
circles).
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Figure 4: The amplitude B dependence on approximation number £ is shown
with black circles. One can see the convergence to the value of 43.2, shown
with squares.
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Figure 5: The two different Padé approximants for permeability, K¢ 29 (dot-
dashed) and K216 (solid) are compared.

where

Ppy(€) = 1 — 5.86404¢? — 3.84897¢* + 1.12295¢% + 0.867771%+
0.151922¢' + 0.00735283¢'2,

Q16(€) =1 — 5.61035¢% — 5.31512¢* + 0.0206681¢® + 1.06989¢5+
+0.395962¢'% + 0.0645092¢'? + 0.0051812¢™* + 0.000170141€.

(74)

The two Padé approximants are presented, and the effect of arising from the
different estimates for the index, could be seen in Fig.5. The permeability
can be interpolated also by means of the factor approximant of low order,
which “consumes” asymptotic terms only up to the 14th order,

Fiule) =

(1 + (0.0925028 — 0.0501527)€2)

(1 + (0.0925028 + 0.05015277)¢2) 720901383270 (75)
(1 + (0.218267 — 0.1010217)¢2) ~042T1H00T98880

(1+ (0.218267 4 0.1010217)€?) " **

—0.957209—-0.738327¢

.042791—0.0798889i

It appears to be very close to K216, giving a testimony on the high-quality
of the original series. The factor approximant (75) may be considered as
“smart”. It means that it can predict three more coefficients, aiq, ais, as,
with average accuracy better than 1%. From (75) one can evaluate the
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amplitude B = 43.3. The value appears to be in agreement with other
estimates found above. Mind that the condition ¥ = —4 was imposed in
the course if derivation of the factor approximant (75). Alternatively, one
van try to evaluate the index with factor approximant. To this end one can
input one more term from the expansion. After some calculations one finds
the index with rather good estimated index, v ~ —4.02.

3.2 Symmetric sinusoidal three-dimensional channel.
Estimates for the two-fluid model

Following [13] let us consider the three-dimensional channel restricted by the
surfaces

1
z= ib(l + §e(cos(3: +y) + cos(x — y))), (76)
with b = 0.3. The permeability is calculated up to O(e'?)

Kii(€) = 1 — 0.465674¢? + 0.329218¢* — 0.261666¢5 — 0.004467¢5—

0.0386987¢10 — 0.0177808¢!2 — 0.0239319¢14. (77)

The case appears to be different from all two-dimensional examples studied
above in great detail. For e = ¢, = 1, the surfaces (76) start touching but the
permeability remains finite at €.. The truncated series for permeability (77)
is obtained with numerical precision of 1073 for values of € up to 0.61. The
permeability at €. is remains quite significant, Ki4(e.) = 0.517, as is simply
estimated from the series (77).

One can simply apply the diagonal Padé approximants to the polynomial
(77). The Padeé approximants bring the following close results

PG,G(EC) = 051277, P&g(EC) = 0.490636.

The higher order Padé approximants are readily obtained as well,

Py () = —0.272534€%40.22825¢%—0.657553¢2+1 .

6,6 —0.0363255¢6—0.1903214—0.191879¢2+1° (78)
Psg(e) = —0.266547¢%—0.131478¢%—0.363105¢*+0.256413¢2+1

8,8 —0.0832011¢8—0.273346¢6 —0.356065¢2+0.722087€2+1

One can deduce a reasonable bounds for the solution, such as the upper and
lower Padé bounds for Psg(e) [1]. They are are given by the non-diagonal
Padé approximants [1],

Psa(e) = —0.25985€5+0.27733¢* —0.664548€¢2+1 .

6,4 —0.144498¢%—0.198874€2+ 1 ’ (79)
) (6) _ —0.354713¢%+0.280003¢* —0.721617¢2 +1

6,8 —0.0476736€5—0.0872062¢6—0.168401¢%—0.255943€2+1 *
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With such guidance we can construct and evaluate the two factor approx-
imants. The first one, F},(¢), is completely standard, while the second,
Fiys(€), is “shifted”. The shift also can calculated and employed to estimate
the sought value,

0.474676
X

Fiy(e) = (1 — 0.867964¢2)
(1+ (0.0821614 + 0.533783)¢2) 2785 +0-2988220 o
(1+ (0.0821614 — 0.533783i)¢2)" #7485 ~0-298822¢.

(80)
Fiyo(€) = 0.481814 + 0.518186 (1 — €2)" 7" x
(1 — (0.074165 + 0.6495417)¢2)" 4014500052476 o
(1 — (0.074165 — 0.6495417)¢2)" 40148 70-0052476

As usual we are looking for the permeability at ¢ = 1. Thus, we have
three estimates,

Psg(1) = 0.51277,  Fy(1) = 050195, Fy, (1) = 0.481814,

all satisfying the given bounds. Their average K,, is equal to 0.498845,
and corresponding margin of error can be estimated through the variance,
which equals 0.0128272. Different formulas for the permeability together
with bounds, are compared in in Fig.6.

Close to €. we evaluate that

Pyg(€) ~ 0.51277 + 2.30175(1 — €),

and the correction to constant is linear. As well, one can calculate from the
shifted factor approximant, that

1.s(€) = 0.481814 4 1.36825(1 — €)° 700642,

Possibly, we have here an indication of a non-trivial subcritical index with
the value of 0.767.

To elaborate further, we would like to study in more detail the behavior
of permeability in the vicinity of €.. Assuming also some deviations from
linearity, motivated by the shifted factor approximant.

We can start with general initial approximation for the permeability,
which holds in the vicinity of €, = 1,

Ko(e) ~ Ay + Al(ez - 62)>‘°, (81)
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Figure 6: Bounds (79) for the permeability are shown with dashed lines.
Comparison of the formulas in the vicinity of €.: Padé approximant Fgg¢ is
shown with with dotted line, factor approximant Fj, from (80) is shown
with solid line, and shifted factor approximant 7, ; from (80) is shown with
dot-dashed line.
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To simplify the procedure of finding the unknowns, let us set from the start
Ag = K,,. Now, to obtain the remaining unknowns, we can try to satisfy
the expansion (77) in the second order. Then, it appear that A; = 0.501155,
Ao = 0.929201. The expression (81) can be understood as a two-fluid model,
reflecting on the fact that there are two components in the flow. One which
is getting blocked by the obstacles to flow, and another, which can not be
blocked.

One ought to appreciate that (81) with its parameters is only a crude
approximation. In what follows let us attempt to correct the formula Kjy(e),
even further. To this end let us assume in place of Ay, even some more general
functional dependence A*(e). As € — €., A*(€) — A., the sought corrected
value. The function A*(¢) will be designed in such a way, that it smoothly
interpolates between the initial value \y valid at small €, and the sought value
A valid as € — €.. The permeability K*(e) is getting “dressed” in such way.
it is is now given as follows:

K*(e) = Ag + Ay (2 — )N, (82)

It should become valid for all e. From (82) one can express A*(¢) formally,
bearing in mind that we do not have the expression for K*(¢). All we can do
is to use its asymptotic form (77), then express A*(€) as a truncated series for
small e. And then we can apply to such obtained series some resummation
procedure (e.g. Padé technique). Such resummation is expected to extend
the series to the whole region of e. Finally, we are in a position to calculate
the limit of the approximants as ¢ — €., and find the corrected value as
Ae = A*(ee).

Let p(e) = Kys(€) stand for an asymptotic form of K*(e) for small e.
Corresponding asymptotic expression for A*, just called A(e), can be made
explicit from the following relation,

log ((%;I;(@))

log(eZ — €?)

Ale) ~ — (83)

A(e) can be explicitly presented as expansion in powers of € around the
value of A,
A<€> == )\0 + Al (6) (84)

And only now one can construct a sequence of diagonal Padé approximants

A (€) = Ao + Pade Approximant[Ay[e], n,n]), (85)
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and find the sought limit A*(¢). Finally, we estimate the critical index \. =
A*(e.) and also find the complete formula for permeability, returning to the
expression (82).

There is a good convergence within the approximations for the A, gener-
ated by the sequence of Padé approximants,

Aei = 0.929201, A o = 0.402904, A.4 = 0.631631,

Aes = 0.630229, A g =0.702766, A.10 = 0.698385 A 12 = 0.702563.

Remarkably, in the highest orders (up to 18-th) the value of index remains
practically the same. The final estimate for A\. can be conjectured to be
rational %

The function A*(e) is needed to reconstruct the permeability. It can
be straightforwardly expressed as the Padé approximant. The approximant
corresponding to A.¢ has the following form,

—4.15886€% +6.957¢4 —7.18244¢240.929201

K} (€) = 0.498845 + 0.501155 (1 — 62) —1.564218+2.06025¢T 6 08732741 (86)

Formula (86), as well as the higher-order approximant (87), corresponding
to )\0787

0.134578¢5-0.22113¢54+0.650924¢% —0.904689¢2+0.929201

Kg‘(e) = 0.498845 + 0.501155 (1 _ 62) —0.0295078¢3 01994910 +0.208201¢7 —0.23125¢2 +1

(87)
are confidently located within the Padé-bounds (79). Formulas for the per-
meability including the subcritical regime, are shown together with bounds
in Fig.7. We summarize, that in the case of channel with wavy walls, the
lubrication approximation works poorly. The exceptions can be found when
the surfaces are sufficiently close to a plane and for small value of e. Dif-
ferent approximation technique, not involving lubrication approximation in
any sense, is suggested. Closed-form expressions for arbitrary e are derived
for the situations, when walls can or cannot touch. In the former case the
critical exponents and amplitudes are calculated without involving the lu-
brication approximation. In the latter case we anticipate and describe the
crossover form the high-permeable to low-permeable state of the channel. it
is characterized with the power low. The corresponding critical exponent v
for large ¢, is found by various techniques. Tiny viscous eddies dominate
in this case. Their onset over the whole length of the channel explains the
quantitative breakdown of the lubrication approximation for the macroscopic
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Figure 7: Bounds (79) for the permeability are shown with dashed lines.
Comparison of the formulas in the vicinity of e.: K (¢€) is shown with dotted
line, K¥(e) is shown with solid line.

permeability (59). For the important case of a symmetric sinusoidal three-
dimensional channel we discuss possibility of a nontrivial sub-critical index.
Plausible estimates of its value as found, by developing special technique for
such situation.

4 Relaxation phenomena in time series

For the phenomenon to occur, the basic underlying symmetry must be bro-
ken. While studying the phenomenon it is important to distinguish between
an explicit symmetry breaking when governing equations are not invariant
under the desired symmetry and spontaneous symmetry breaking, without
presence of any asymmetric cause [29]. When successful, the approach based
on broken global symmetries leads to understanding of the key phenom-
ena of magnetism, superconductivity and superfluidity. On the other hand,
when some global inherent symmetry can be recognized in physical quanti-
ties, we arrive to gloriously successful theory of critical phenomena and vital
extensions of perturbation results in quantum field theories, jointly called
renormalization group (RG). In a nutshell, we suggest below how to apply
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symmetry considerations to the crashes which occur in time series, with most
notable example given by stock market crashes.

Assume that numerical data on the time series variable (e.g., price) s
is given for some time ¢t segment. Typically, one considers N + 1 values
s(to),s(t1)...,s(tn), for N + 1 given at equidistant successive moments in
time t =t;, with j =0,1,2..., N [35].

In time series, one is interested in the extrapolated to future value of s.
In financial mathematics, one is particularly interested in the predicted value
of log return [35, 38],

Rlty +6t) = In (W) | (88)

One can see from the definition that we are really interested in the quantity
S = In(s), to be called return. Let us place origin at the very beginning of
the time interval, setting also ¢, = 0. Naturally, one is interested in the value
of S(ty + dt), allowing to find R(tx + dt) at a later time. Since the approach
developed in [35, 28], is invariant with regard to the time unit choice, we
consider temporal points of the data set as integer, while consider the actual
time variable as continuous.

Modern physics when applied to financial theory is concerned with er-
godicity violations [30, 31, 32, 33]. Ergodicity violations may be understood
as a manifestation of a non-stationarity, or violation of time-invariance of
random process. Metastable phases in condensed matter also defy ergodicity
over long observation timescales. In special quantum systems of ultracold
atoms spontaneous breaking of time-translation symmetry causes the for-
mation of temporal crystalline structures [34]. Concept of a spontaneously
broken time-translation invariance can be useful for time series in application
to market dynamics as first suggested in [35]. According to [35], window of
forecasting of time series describing market evolution emerges due to a spon-
taneous breaking/restoration of the continuous time-translation invariance,
dictated by relative probabilities of the evolution patterns [36]. In turn, the
probabilities are derived from the stability considerations.

Notion of probability introduced in [36] is not based on the same conven-
tional statistical ensemble probability for a collection of people, but is closer
to the time probability, concerned with a single person living through time,
see Gell-Mann, Peters [32], Taleb [33]. Probabilistic trading patterns cor-
respond to local breakdown of time-translation invariance. Their evolution
leads to the time-translation symmetry complete (or partial) restoration. We
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need to estimate typical time, amplitude and direction for such restorative
process. Thus we are not confined to a binary outcome as in [35], but attempt
to estimate also the magnitude of the event.

A catastrophic downward acceleration regime in the time series is known
as crash [39]. Time series representing market price dynamics in the vicinity
of crisis (crash, melt-up), could be treated as a self-similar evolution, because
of prevalence of the collective coherent behavior of many trading, interacting
agents [36, 40], including humans and machine algorithms. The dominant
collective slow mode corresponding to such behavior, develops according to
some law, formalized as a time-invariant, self-similar evolution. Away from
crisis there is a superposition of collective coherent mode (generalized trend)
and of a stochastic incoherent behavior of the agents [36, 38]. We do not
attempt here to write down a generic evolution equation of behind the time
series pertaining to market dynamics. Instead. we consider, locally in time,
some trial functions-approximants, in the form inspired by the solutions to
some well-known evolution equations. The approximants are designed to re-
spect or violate the self-similarity. Our goal here is not of forecasting/timing
the crash, but studying the crash as particular phenomenon created by spon-
taneous, time-translation symmetry breaking/restoration.

Since the market dynamics is believed to be formed by a crowd (herd)
behavior of many interacting agents, there are ongoing attempts to create
empirical, binary-type prediction markets functioning on such principle, or
mini Wall Streets [37]. Prediction markets often work pretty well, however
there are many cases when they give wrong prediction or make any prediction
at all. Such special set-ups are already very useful in reaching understanding
that market crowds are correct only if they express a sufficient diversity of
opinion. Otherwise, market crowd can have a collective breakdowns, i.e., is
fallible as expected by Soros [39].

4.0.1 Self-similarity and time translation invariance

According to Isaac Newton and Murray Gell-Mann, the laws of nature are
somehow self-similar. The laws of Newtonian mechanics are invariant with
respect to Galilean group, expressing Galileo’s principle of relativity [42],.
The group includes time-translation invariance. Or else, the laws of classi-
cal mechanics are self-similar. What should be the underlying symmetry for
price dynamics? In normal times the average price trajectory is exponen-
tial, because of the compounding interests, and we enjoy an almost constant
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return (or price growth rate) [43].

Indeed, let s;, be an underlying security (index) price at t = ¢,. Let F¥
be the fair value of the future requiring a risk associated expected return (8
[33]. Then (see, e.g.,[33]), expected forward price FF = s;, exp(B(t — to).
For example, a share of a stock would be correctly priced with the expected
return calculated as the return of a risk-free money market fund minus the
payout of the asset, being a continuous dividend for a stock [33]. Thus,
rather simple and natural exponential estimates are constantly made for the
stocks and alike. The formula forward price is self-similar, or time-translation
invariant, as explained below.

However, as noted in [39, 43], prices often significantly deviate from such
simple description. Bubbles can be formed, as well as other presumed pat-
terns of technical analysis. Asset prices strongly deviate from the funda-
mental value over significant intervals of time. The fundamental value is not
truly observable, making definition of such intervals somewhat elusive. There
are very real mechanisms in work, acting to increase and even accelerate the
deviation from fundamental value. The causes of deviation could be “option
hedging, portfolio insurance strategies, leveraging and margin requirements,
imitation and herding behavior 7, as is the authoritative opinion expressed
in [39, 43].

Recall also that meaningful technical analysis starts from from recast-
ing the time series data using some polynomial representation to serve as the
expansion [35]. The regression is constructed in standard fashion by minimiz-
ing mean-square deviation, with the effective result that the high-frequency
component of the price is getting average out. Then one can consider self-
similarity in averages [40]. Indeed, the standard polynomial regressions are
invariant under time-translation, retaining their form after arbitrary selec-
tion of origin of time with simple redefinition of all parameters. We put
forward the idea that it is onset of broken time-translation invariance that
signifies birth of a bubble, or of some other temporal pattern preceding crash.
End of pattern corresponds to the restoration of time-translation invariance,
partially or fully. Our task is to express this idea in quantitative terms by
making explicit transformation from the regression-based technical analysis
to the valuation formula in the exponential form, bearing in mind taking into
account strong deviations from the standard valuation formulae.

Assume that a time series dynamics is predominantly governed by its own
internal laws. This is the same as to write down a self-similar evolution for
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the marker price s [44], meaning that for arbitrary shift 7 one can see that
s(t+7,a) = s(t,s(r,a)), (89)

with the initial condition s(0,a) = a [45, 46]. The value of the self-similar
function s in the moment t + 7 with given initial condition, is the same as
in the moment ¢, with the initial condition shifted to the value of s in the
moment 7.

When t stands for true time, the property of self-similarity means the
time-translation invariance. Formally understood equation (89) gives a back-
ground for the field-theoretical renormalization group, with addition of some
perturbation expansion for the sought quantity, which should be resummed
in accordance with self-similarity expressed in the form of ODE [45, 46, 47].
The time-translation invariance expressed by (89), means that the law for
price evolution exists and remains unchanged with time, with proper trans-
formation of the initial conditions [42]. The role of expansion when price
dynamics is concerned, is accomplished by meaningful technical analysis, by
recasting data in the form of some polynomial representation [35].

Consider first the simplest case of technical analysis. The linear function
can be formally considered as the function of time and initial condition a,
namely $1(t,a) = a + bt, and s1(0,a) = a. The linear function (regression)
is self-similar, or time-translation invariant, as can be checked directly, by
substitution to (89).

Through some standard procedure let us obtain the linear regression on
the data around the origin ¢y = 0, so that

SQJ(ZS) =a + blt

Note that the position of origin is arbitrary, and it can be mode to arbitrary
position given by real number r, so that

Spa(t) = Ai(r) + Bi(r)(t — 1),

with new and different coefficients. It turns out that the coefficients are
related as follows
Ai(r) = a1+ byr, By(r) = by,

so that
Sr,l(t) = Soﬁl(t).

37


https://doi.org/10.20944/preprints202009.0141.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2020 d0i:10.20944/preprints202009.0141.v2

By shifting origin we created an r-dependent form of the linear regression
5r.1, which can be used constructively. Thus instead of a single regression
we have its r-replicas, equivalent to the original form of regression, and all
replicas respect time-translation symmetry. In such sense one can speak
about replica symmetry. Of course, we would like to avoid such redundancy
in data parametrization.

The position of origin in time can be explicitly introduced into the regres-
sion formula and included into the coefficients, but actual results of calcula-
tions with any arbitrary chosen origin will remain the same. Such property
can be expressed as some symmetry. However, intuitively, one would expect
that the result of extrapolation with chosen predictors should be depen-
dent on the point of origin r. Indeed, various patterns such as “heads and
shoulders”, “cup-with-handle“,“ hockey stick”, etc., considered by technical
analysts do depend on where the point of origin is placed. In physics, the
point of origin (Big Bang) plays a fundamental role. We should find the way
to break the replica symmetry.

As discussed above it is exponential shapes that are natural in pricing.
Exponential function

E<t7 CL) =a exp(ﬁt),

with initial condition a and arbitrary 3, satisfy functional self-similarity as
well. It can be replicated as

E.(t) = a(r) exp(B(t — 1)),
a(r) = aexp(fr). (90)

Having 5 dependent on r is going to wiolate the time-translation and replica
symmetry. Instead of a global time-translation invariance, we have a set
of r local “laws” near each point of origin. But having r in the formula
(90) fixed by imposing some additional condition, or being integrated out,
should restore the global time-translation invariance completely as long as
the exponential function is considered. Moreover, stability of the exponential
function is measured by the exponential function with same symmetry (see
formula (92)). Not only exponential function is time-translation invariant,
but the expected return S has the same property. For exponential functions
the expected (predicted) value of return per unit time, exactly equals f.
Note, that shifted exponential function F(t,a) = ¢ + (a — ¢) exp(bt), with
initial condition @ and arbitrary b, c, is invariant under time-translation as
well.
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Another interesting symmetry is shape invariance [48], meaning

FP

_ P
e = MG,

and an exponential function is shape invariant with m = exp (47), leaving
expected return unchanged. Mind that our task is to calculate 8 from the
time series. In principle, one can think about breaking/restoration of shape
invariance, as a guide for construction of the concrete scheme for calculations.

For critical phenomena an underlying symmetry of formula for observable,
is scaling

¢/\t = Agbta

where A = ¢,. The class of power laws, ¢; = t*, with critical index «, is
scaling-invariant. The central task is to calculate c¢. The statistical renormal-
ization group formulated by Wilson, see. e.g. [49], explains well the critical
index in equilibrium statistical systems. When information on the critical
index is encoded in some perturbation expansion, one can use resummation
ideas to extract the index, even for short expansions and for non-equilibrium
systems [50, 3, 9]. Some of the methods were discussed in the Introduction.

Working with power-law function will not leave the return unchanged.
Yet, one can envisage the scheme with broken scaling invariance, as alter-
native to the former schemes. The log-periodic solutions extend the simple
scaling [56], and are extensively employed in the form of a sophisticated
seven-parametric fit to long historical data set [43], as well as of its exten-
sions [57]. The fit is tuned for prediction of the crossover point to a crash,
understood as catastrophic downward acceleration regime [39]. But one can
not exclude the possibility of the solutions with different time of symme-
tries (scaling and time-invariance, for instance) competing to win over, or to
coexist, all measured in terms of their stability characteristics.

Our primary concern is crash per se, not the regime preceding it. We
start analyzing crash with the polynomial approximation that respects time-
translation symmetry, then have the symmetry broken, and then restored
(completely, or partially), by means of some optimization. Such sequence
ends with a non-trivial outcome: [ becomes renormalized 5(r), with r to be
found from optimization procedure(s) defined below.

In the paper [35], the framework for technical analysis of time series was
developed based on second-degree regression and asymptotically equivalent
exponential approximants, with some rudimentary, implicit breaking of the
symmetry. We intend to go to higher-degree regressions and and develop
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some consistent technique for explicit symmetry breaking with its subsequent
restoration. According to textbooks, fourth order should be considered as
“high”. Taleb, see footnote on p.53 in [33], also considers models with five
parameters as more than sufficient.

4.1 Optimization, approximants, multipliers

Higher-order regressions allow for replica symmetry. For instance, the quadratic
regression Sg2(t) = ag + bat + cot?, can be replicated as follows:

Spa(t) = Ag(r) + Ba(r)(t — ) + Co(r)(t — 7)?,

with
Ag(r) = ag + bor + cor?, Ba(r) = by + 2car, Co(r) = ca.

With such transformed parameters we find that s,5(t) = so2(t). In fact, one
can still formulate self-similarity analogous to (89), but in vector form with
increased number of parameters/initial conditions in place of a [47]. But if
only the linear part of quadratic regression, or trend, is taken into account,
we return to the conventional functional self-similarity = time-translation
invariance, discussed above extensively.

Such effective linear/trend approach to higher-order regressions allows to
apply the same idea in all orders and observe how the exponential structures
change with increasing regression order.

To take into account the dependence on origin, the replica symmetry has
to be broken. Breaking of the symmetry means the dependence on origin
of actual extrapolations with non-polynomial predictors. As the primary
predictors we suggest the simplest exponential approximants considered as
the function of origin r and time,

B
Bilt,r) = Atryexo (50 (6-1). (o1)
independent on the order of polynomial regression. The approximants (91)
are constructed by requiring an asymptotic equivalence with linear part of
chosen polynomial regression. If the extrapolations F7(ty + dt,r) are made
by each of the approximants, they appear to be different for various r, mean-
ing breaking of the replica symmetry and of the time-translation symmetry.
Passage from polynomials to exponential functions leads to emergence of the
continuous spectrum of relaxation (growth) times.
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To compare the approximants quality, on can look at their stability. Sta-
bility of the approximants is characterized by the so-called multipliers defined
as the variation derivative of the function with respect to some initial ap-
proximation function [36]. Following [58], one can take the linear regression
as zero approximation, and find the multiplier

M;(t,7) = exp (iég (t - 7“)) . (92)

The simple structure of multipliers (92) allows to avoid appearance of spu-
rious zeroes which often complicate analysis with more complex approxi-
mants/multipliers.

Because of multiplicity of solutions, embodied in their dependence of
origin, it is both natural and expedient to introduce probability for each
solution. As explained in [36], one can introduce

Probability oc |M;(t,r)| ™",

with proper normalization, as shown below in formula (94). Probability
appears to be of a pure dynamic origin and is expressed only from the time
series itself. When the approximants and multipliers of the first order are
applied to the starting terms of the quadratic, third or fourth order regression,
we are confined to effective first-order models, with velocity parameter from
[35] dependent also on higher order coefficients and origin.

To make extrapolation with approximants (91) one has still to know the
origin. In other words, the time-translation symmetry has to be restored
completely or partially, so that a specific predictor with specifically selected
origin but, otherwise as close as possible to time-translation invariant form,
is devised. Fixing unique origin also selects unique relaxation (growth) time
during which the price is supposed to find a time-translation invariant state.
Exponential functions are chosen above because they are invariant under
time translation. Any shift in origins is absorbed by the pre-exponential
amplitude and does not influence the return R. Similar in spirit view that
broken symmetries have to be restored in a correct theory was expressed in
[59].

In the approach predominantly adopted in this section, we keep the
form and order of approximants the same in all orders, but let the se-
ries/regressions evolve into higher orders. Independent on the order of re-
gression, we construct the same approximant, based only on the first order
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terms, only with parameters changing with increasing order of regression.
In the framework of the effective first order theories, we employ exponential
approximants.

Consider the value of origin as an optimization parameter [28]. To find
it and to restore the time-translation symmetry, we have to impose an ad-
ditional condition directly on the exponential predictors with known last
closing price,

ET(tN,T') = SN . (93)

One has to solve the latter equation to find the particular origin(s) r = r*.
In this case we consider a discrete spectrum of origins, consisting of several
isolated values. To avoid double-counting when the last closing price enters
both regression and optimization, one can determine the regression parame-
ters in the segment limited from above by ty_1,sy_1. Or, alternatively, one
can consider the two ways to define regression parameters and choose the one
which leads to more stable solutions. Unless otherwise stated, we consider
that such comparison was performed and the most stable way was selected.

The extrapolation for the price is simply s(ty+6t) = Ef(tx+03t,7*). The
condition imposed by the equation (93) is natural, because then, a first-order

approximation to the formula (88), R =~ W, is recovered (see, e.g.,

[38]), as one would expect intuitively.

The procedure embodied in (93), leads to a radical reduction of the set
of r-predictors to just a few. Set of predictors and corresponding to each
multiplier, define the probabilistic, poor man’s order book. Instead of an
unknown to us true numbers of buy and sell orders, we calculate a priori
probabilities for the price going up or down and corresponding levels. Target
price is estimated through weighted averaging developed in [36, 58], in its
concrete form (94) given below.

For sake of uniqueness one can simply choose the most stable result
among such conditioned predictors. One can also consider extrapolation with
weighted average of all such selected solutions. With 1 < M < 6 solutions,
their weighted average E; for the time ¢y + dt is given as follows,

El(tN + (St) _ 22/121 Ef(t]@f + 5t7 TI:) |Mik(tN +_ft,7",:)|_1. (94)

ST M (b + 0,17
Within the discrete spectrum we can find solutions with varying degree of
adherence to the original data. They can follow data rather closely or be
loosely defined by the parameters of regression. The former could be called
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“normal” solutions, and tend to be less stable, with multipliers ~ 1, but
the latter are “anomalous” solutions, since they cut through the data, and
typically are the most stable with small multipliers. Anomalous solutions are
crashes (meltdowns), and melt-ups. Typical situation with the solutions in
the discrete spectrum is presented in Fig.10. The novel feature introduced
through (94), is that averaging is performed over all approximants of the
same order, compatible with constraints expressed by (93).

One can also integrate out the dependence on origin r, considered as
continuous variable, by applying an averaging technique of weighted fixed
points suggested in [36]. The dependence on origin enters the integration
limit through parameter T'. Integration can be performed numerically for
the simplest exponential predictors according to the formula

LY B (X0 My (X, 6|7t dX
LM )X

I(t,T) = (95)

To optimize the integral we have to impose an additional condition on the
weighted average/integral. It is natural to force it pass precisely through the
last historical point.

I(ty,T) = s(tn), (96)

and solve the latter to find the integration limit 7" = T™. The sought extrap-
olation value for the price s is simply I(ty + 0t, T*).

As an additional condition to find origin, one can also consider the mini-
mal difference requirement on the lowest order predictors, as first suggested
in [40]. To this end one has to construct the second order super-exponential
approximant

E5(t,r) = A(r) exp

o _BOY?
7(r) =1- zgicey

B(r)(t—r) eXp(%)
A(r) 9

(97)

and minimize its difference with the simplest exponential approximant in the
time of interest ¢y + 0t. Namely, one has to find all roots of the equation

exp (C’(r)T(r)(tN + 0t — T)) _1 (98)

B(r)
with respect to real variable r. Corresponding multiplier
1 OFE5(t,r)
M (t,r) = 2
2 ( ) T) B(’I”) 815 )
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can be found as well.

The discrete spectrum optimization seems to be the most natural and
transparent. Our goal is to find the approximants and probabilistic dis-
tributions in the last available historical point of time series. Crashes are
attributed to the stable solutions with large negative r, meaning that origin
of time has to be moved to the deep past to explain crash in near future.
Preliminary results of [28], suggest that in overwhelming majority of cases,
crash is preceded by similar, asymmetric probability pattern(s), of the type
shown in figures below !. There are also additional solutions with multipliers
of the order of unity, coming form with the region of moderate r, and it is
often possible to find some rather stable upward solution for large positive
r. One can think that for such stable time series as describing population
dynamics, the region of moderate r gives relevant solutions, while for time
series describing price dynamics all types of solutions exist simultaneously.

Within our approach to constructing approximants one can also try to
exploit the second order terms in regression. Instead of exponential ap-
proximants one should try some other, higher order approximants, but with
time-translation invariance property. Such approximants are presented be-
low. They are considered ad hoc, because they can be written in closed from
only in special, low-order situations. It is not feasible to extend them system-
atically into arbitrary high order, in contrast with approximants mentioned
in the context of first approach. On the contrary, all approximants men-
tioned for the first approach, violate the time-translation invariance, and can
not be used purpose of symmetry restoration. Hence, our interest in special
forms with desired symmetry. But all three approaches could be applied si-
multaneously and complementary, since the price evolution can take various
unexpected forms. Sometimes, it is even not possible to find stable solutions
with third approach, but is possible with corrected approximants.

Recall that exponential function can be obtained as the solution to simple
linear first order ODE. In search of second order approximants with time-
translation invariance, we turned to some explicit formulas, emerging in the
course of solving some first order ODE with added nonlinear term with arbi-
trary positive power, which generalizes ODE for simple exponential growth.
It is known as Bertalanffy-Richards(BR) growth model [60, 61]. Among its
solutions in the case of second-order nonlinear term, there is a celebrated lo-

L As noted in [41], Kahneman and Tversky explained that people tend to judge current
events by their similarity to memories of representative events.
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gistic function [60], L(t) = +(1_q1q;)exp(_q0t) , where ¢ is the initial condition.
Qt+——

The logistic function is widely usedq’lco describe population growth phenom-
ena and is also known to be the solution to logistic equation of growth. The
logistic function written in the form L(¢,q;), dependent on the initial con-
dition L(0,¢;) = q1, with arbitrary qo, g2, is time-translation invariant. One
can also introduce the second-order logistic approximant which generalizes
logistic function [28]. In addition to describing situations with saturation at
infinity, the logistic approximant include also the case of so-called finite-time
singularity, which makes it redundant, since such solutions were excluded
from the price dynamics [35].

Another solution to the Bertalanffy-Richards model in the case when
the nonlinear term has power only slightly differing from unity, is known as
Gompertz function [60],

G(t) = goexp(g1 exp(gat)), (99)

used to describe growth (relaxation, decay) phenomena. But, as we demon-
strate in the very end of Introduction, it is possible to explain G(t) directly
from the resummation technique leading to the formula (19), without re-
sorting to BR. Relaxation time(growth) behaves exponentially with time.
Gompertz function is log-time-translation invariant.

One can consider the second order Gompertz approximant. It simply
generalizes the Gompertz function. Namely, one can find Gompertz approx-
imant in the following form

G(t,7) = go(r) exp(gi(r) exp(ga(r)(t — 1)),

—ai(r B(r A(r)C(r)=B(r)2 100
ao(r) = A(r)e=2®,  gi(r) = A(r)§2)<r>v o) = 2 (Qr()é(r)() ’ (100)

with the multiplier

90(1)g1(r)g2(r) e (r)es2(=) 4gy (r) (=)
B(r) '

The Gompertz approximant, of course, is not limited to the situations with
saturation at infinity, as it can describe also very fast decay (growth) at
infinity.

With r to be found from some optimization procedure, the return R
generated by Gompertz approximant, is time-translation invariant, and has
a compact form

R(6t) = g1(r) exp(g2(r) (tn — 7)) (exp(ga(r)dt) — 1),

Mg(t, T) =
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For small 4t it becomes particularly transparent:

ot

R(5t) ~ g1(r)ga(r) exp(ga(r)(ty — 1)) x 0t = TTwr)

with the pre-factor giving the return per unit time. The inverse return per
unit time has the physical meaning of the effective time for growth (relax-
ation)
B(t,r) ™ = 7(t,7) = (91(r)ga(r) " exp (ga(r)(r = 1)),

considered at the moment ¢ = T. Here, we employed the the effective relax-
ation (growth) time (see Introduction), 7(t) = (4 InG(t) )_1 , and replicated
it. We can find the return for Gompertz approximant solely determined by
relaxation

S(t,r) = )

and express the log return in a compact form
R(6t) = S(tn + dt, 1) — S(tn,T).

Thus, the return for Gompertz approximant is purely dynamic quantity. If
relaxation time is found from the data to be very large as it should be close
to equilibrium conditions [62], we have no potential for returns, i.e., near-
equilibrium yields dull, everyday mundane events that are repetitive and lend
themselves to statistical generalizations [39]. If relaxation time is anticipated
to be very short, we have potentially huge returns, and conclude that far-
from-equilibrium conditions give rise to unique, historic events [39].

Gompertz approximant can go at infinity faster or slower than exponen-
tial, and in some important examples such difference amounting to a few
percents, can be detected. The function go(r), could be called a gauge func-
tion for the price, expressing arbitrariness of choice of the price unit, as it
does not enter the return. The time-translation invariance of return and
gauge invariance for the price are considered very desirable in price model
formulation [35], both properties are pertinent to exponential and Gompertz
approximations for the price temporal dynamics.

We are interested in market prices on a daily level, and consider only sig-
nificant market price drops/crashes with magnitude more than 5.5%. Such
magnitude is selected to be comparable to the typical yearly return of Dow
Jones Industrial Average index. Typically, a 2% daily move is considered
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as big, but not at the times of various turmoils. It is widely accepted in
practical finance that asset price moves in response to unexpected funda-
mental information. The information can be identified as well as the tone,
positive versus negative. It is found that news arrival is concentrated among
days with large return movements, positive or negative [64]. Spontaneously
emerging narratives, a simple story or easily expressed explanation of events,
might be considered as largely exogenous shocks to the aggregate economy
[41]. Simply put, one should analyze what people are talking about in search
for the source of economic fluctuations. Moreover, just like in true epi-
demics governed by evolutionary biology, mutations in narratives spring up
randomly, just as in organisms in evolutionary biology, and if contagious gen-
erate unpredictable changes in the economy [41]. As noted in [65], panic on
the market can be due to external shocks or self-generated nervousness. It
is argued [66], that cause and effect can be cleanly disentangled only in the
case of exogenous shocks, as it is only needed to select some interesting set of
shocks to which price is likely to respond. Effects of positive and negative oil
price shocks on the stock price need not be symmetric. In macroeconomics it
is even accepted that only positive changes in the price of oil have important
effects. Periods dominated by oil price shocks are reasonably easy to identify,
and they can be indeed considered as exogenous and, often, strong, although
difficult to model. Oil price shocks are the leading alternative to monetary
shocks, and may very well have similar effects [66].

4.2 Example

Consider as example a 7.72% drop in the value of Shanghai Composite index
related to the first COVID-19 crash, which occur on February 3, 2020. With
N =15, as recommended in [35], the following data points available,

s0 = 3085.2, 57 = 3083.79, 59 = 3083.41, s3 = 3104.8, s4 = 3066.89, s5 = 3094.88,

s6 = 3092.29, s; = 3115.57, s5 = 3106.82, s = 3090.04, 519 = 3074.08, s1; = 3075.5,
S12 = 3095.79, s13 = 3052.14, 514 = 3060.75, 515 = 2976.53.

And the value of s14 = 2746.61 is to be “predicted”. From the whole set of
daily data we employ only several values of the closing price. Such coarse-
grained description of the time series may be justified if one is interested in
the phenomenon not dependent on the fine details, such as crash. In the
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examples presented below, we keep the number of data points per quartic
regression parameter in the range from 3 to 4. Lower order calculations can
be found in [28]. Here we show only the quartic regression

504(t) = ag + byt + c4t® + dyt® + fit?,

and based on it optimized approximants and multipliers. It can be replicated
as follows:

Spa(t) = Ag(r) + Ba(r)(t — 1) + Ca(r)(t — 7")2 + Dy(r)(t — 7“)3 + Fy(r)(t — r)4,
with
Ay(r) = ag 4 byr + cyr® + dyr® + fart, By(r) = by + 2c4r + 3dyr* + 4f4r?,

Ci(r) = ca+ 3dar +6f47%,  Dy(r) = ds +4fsr,  Fa(r) = fu.

With such transformed parameters we have s, 4(t) = s9.4(%).

Within the data shown in Fig.8, one can discern competing trends. First,
let us show the data compared to the regression. There are two obvious
trends, “up” and “down” as can be seen in Fig.8. Our analysis will indeed

Index

30808 ° °
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3000
2980

2960 -

5 10 15

Figure 8: COVID-19, Shanghai Composite, February 3, 2020. Fourth-order
regression against data points

find highly probable solutions of both types, with the downward trend de-
veloping into fast exponential decay. Let us analyze the typical approximant
and multiplier dependencies on origin, for fixed time ¢ = ¢t5. The inverse
multiplier is shown as function of the origin r in Fig.9 as well as the first
order approximant. There are two uneven humps in the probabilistic inverse
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Figure 9: Shanghai Composite, February 3, 2020. Calculations with fourth-
order regression. The inverse multiplier is shown as function of the origin r
at t = Ty, N = 15. The first order approximant is shown at separate figure.
Level s15 is shown as well, with dot-dashed line.

multiplier, suggesting that large negative and large positive » dominate, with
more weight put on the negative region. Such dependence on r manifests the
time-translation invariance violation, which should be lifted by finding ap-
propriate origin. More details on the example can be found in [28]. Below
we discuss only the fourth-order calculations.

The results of extrapolation by method expressed by equation (93) is
given as

E7(16) = 2804.32, M7 (16) = 0.0113494,

with relative percentage error of 2.1%. There is also less stable “upward”
solution
E7(16) = 3211.95, M;(16) = 0.0363796,

in agreement with intuitive picture based on naive data analysis. There are
also two additional solutions in between with multipliers close to 1. They do
not effect averages much, but in real time the metastable solutions, just like
metastable phases in condensed matter, may show up under special condi-
tions. Metastable solutions when realized, violate principle of maximal sta-
bility over the observation timescale, complicating or even negating a unique
forecast, based on weighted averages or the most stable solution.
Calculation of the discrete spectrum can be extended to different approx-
imants. For instance, one can also construct the second order Gompertz
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approximant introduced above, and solve the following equation on origins,
G(tn,r) = s(tn) . (101)
The most stable Gompertz approximant gives the most accurate estimate
G(16) = 2746.05, M(16) = 0.001539,

with very small error of 0.02%. There are altogether five solutions to (101), in
the discrete spectrum as shown in Fig.10. Thus, the Gompertz approximant

G(t,r")

3500

3000 fms e me e

2500

Figure 10: All Gompertz approximants corresponding to the discrete spec-
trum, i.e., solutions to (101) are shown. The most stable downward and
less stable upward solutions are shown with solid lines. Three additional
solutions are shown as well. The solution shown with dashed line is clos-
est to the data. The “no-change”, practically flat solution, is shown with
dot-dashed line. Yet another solution, corresponding to moderate growth, is
shown with dotted line. The level s;¢ = 2746.61 is shown with black line.
Several historical data points are shown as well.

of second order with log-time-translation invariance, gives better results than
symmetric exponential approximant Ej. Although Taleb’s Black Swan did
seem to materialize, the short-time stock market response was not different
than in somewhat comparable instances of crashes brought up in [28], making
it look like a Grey Swan. Indeed, it is plausible that a holiday season in
China, played the role here. It also helped our cause, effectively pinpointing
the day for crash. One can think that all solutions, except the most extreme
downward solution, where simply not considered.
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4.3 Comments

Many more examples of various notable crashes can be found in [28]. They
were selected to exemplify market reaction to shock including 9/11, Fukushima
disaster, US entrance to the Great War, death of Chinese leader Deng Xi-
aoping, Friday the 13th, flash crash etc.,and to demonstrate similarity of
early panics with coronavirus recession. Despite their different “geometry”,
different temporal patterns preceding crash, exhibit analogous in their main
features probabilistic distributions, with significant difference only in the
region of moderate r, but with analogous structure for large negative and
positive origins. Crashes are attributed to the stable solutions with large
negative r, meaning that origin of time has to be moved to the deep past
to explain crash in near future. Preliminary results of [28], suggest that in
overwhelming majority of cases, crash is preceded by similar, asymmetric
probability pattern(s), of the type shown in figures of this section.

Exponential and Gompertz approximants are found to work rather well,
despite(or due to?) their simplicity. Unlike all other approximants they
give very clear graphic snapshot of the probabilistic space. Besides, their
application is grounded in the exponential form of any future contract, with
a transparent interpretation to the renormalized trend parameter B(t,r), as
expected return per unit time, equivalent to as inverse growth (relaxation)
time.

Our theory explains or at least give a hint why making predictions about
the future is so notoriously difficult. Instead of a unique, ironclad solution to
the problem we advocate finding all solutions and interpret them as bounds
as plainly illustrated in Fig.10. Bounds are given different strength, a priori
determined by multipliers. Reality is not completely confined to reaching the
most stable bound, but various metastable bounds can be realized as well,
blurring the picture and complicating emergent time dynamics.

After applying some arguments concerned with broken/restored time-
invariance, we come to the exponential solution with explicit finite time
scale, which was only implicit in initial parametrization with polynomial
regressions. Mind that in condensed matter physics and field theory there
is a key Meissner-Higgs mechanism for generating mass or, equivalently, for
creating some typical space scale from original fields through broken symme-
try technique (see, e.g.,[63]). Relatively recently the concept was confirmed,
culminating in discovery of the Higgs boson. Our approach to market price
evolution is by all means inspired by Meissner-Higgs effect. But, instead of a
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mass of mind-boggling elementary particle, we have a mundane, but highly
sought after return per unit time.
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