Preprint
Review

Homocysteine in Neurology: A Risk Factor or Something Different in Small Vessel Disease

Altmetrics

Downloads

413

Views

278

Comments

0

Submitted:

05 September 2020

Posted:

06 September 2020

You are already at the latest version

Alerts
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. Hyperhomocysteinemia (HHcy) is typically defined as levels >15 micro mols/L. Elevated plasma levels of Hcy can be caused by the deficiency of either vitamin B12 or folate. The active role of homocysteine is quite ambivalent: many studies detected its potential impact on neurological events; others try to identify it as one of the possible risk factors of cardiovascular events, but with a complementary and secondary role. HHcy has been reported in many neurologic disorders, including cognitive impairment and stroke, independent of long-recognized factors such as hyperlipidemia, hypertension, diabetes mellitus, and smoking. Nowadays, homocysteine could be considered as a possible link between a common vascular risk factor and potential alterations in degenerative neuronal disorders. HHcy-induced oxidative stress, endothelial dysfunction, inflammation, smooth muscle cell proliferation, and endoplasmic reticulum stress; all these aspects have been considered to play an essential role in the pathogenesis of several diseases, including atherosclerosis, major stroke, and vascular dementia. Specific models of astrocytes impairment in HHcy-mice, which mimic small vessel disease, have been developed with a three-step investigation (at 6, 10, 14 weeks of B6, B9, and B12 detrimental diet in wild type HHcy mouse). These studies found out that after ten weeks on a diet (at the most after 14 weeks), end-feet disruption occurs. This phenomenon is concomitant to reduced vascular labeling for aquaporin -4-water channels, lower protein/mRNA levels for Kir4.1, and BK potassium channels, associated with a higher expression of MMP-9. The most exciting finding is that microglial activation in this mice model was evident since the precocious time of observation (6-week time) and precedes astrocytic changes. Our research aims to review the possible role of HHcy in neurodegenerative disease and small-vessel disease and to understand its pathogenic impact.
Keywords: 
Subject: Medicine and Pharmacology  -   Pharmacology and Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated