

1 Article

2 Love bites – Do venomous arachnids make safe pets?

3 Tobias J. Hauke ^{1,‡}, and Volker Herzig ^{2,‡,*}

4 ¹ Munich, 81377, Germany; t.hauke87@googlemail.com

5 GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine
6 Coast, Sippy Downs, QLD 4556, Australia; vherzig@usc.edu.au

7 * Correspondence: vherzig@usc.edu.au; Tel.: +61-7-5456-5382

8 [‡] Equal contribution

9

10 **Abstract:**

11 With a global estimate of tens of thousands of arachnid enthusiasts, spiders and scorpions are gaining
12 increasing popularity as pets in industrialised countries in Europe, Northern America and Asia. As
13 most spiders and all scorpions are venomous and due to their mostly negative image in the public
14 media, several governments are already considering introducing legislation to regulate the domestic
15 care of potentially dangerous captive animals. We aimed to investigate the circumstances and effects
16 of exposure to arachnids kept in captivity. Thus, we collected and analysed data from 354 self-
17 reported bites and stings attributed to pet arachnids. Our data revealed that on average there were
18 less than 20 recorded envenomations per year with ~90% preventable by due care. We also
19 categorized the severity of the resulting symptoms and found that the vast majority of symptoms
20 were either local (60.7%) or minor (32.8%), 5.4% were asymptomatic, only 1.1% were severe and no
21 fatalities were recorded. Based on our database of bite and sting reports, we performed a risk
22 assessment for arachnid pet ownership and concluded that, with the proper care, arachnids can be
23 safely kept as pets and pose a lower risk than many other recreational activities.

24 **Keywords:** Spider; Scorpion; Pet; Bite; Sting; Envenomation

25

26 **Abbreviations**

27 BTS = British Tarantula Society

28 DeArGe = Deutsche Arachnologische Gesellschaft e.V.

29

30 **1. Introduction**

31 Despite their fearsome reputation in public media (Mammola et al., 2020), venomous arachnids
32 such as spiders and scorpions have gained increasing popularity as pets in recent decades in some
33 industrialised countries in Europe, Northern America and Asia. The continuously increasing demand
34 for new arachnid pet species has wide-ranging implications including illegal trading (Fukushima et
35 al., 2020; Law, 2019). On the other hand, arachnid pets also offer a diverse and easily accessible
36 resource for research in various disciplines associated with arachnids, such as taxonomy (Montemor
37 et al., 2020; Nunn et al., 2016), toxinology (Babic et al., 2019; Klint et al., 2015), biodiversity (Huesser,
38 2018), protection of endangered species (Kroes and Maerklin, 2014), physiology (Foelix et al., 2009;
39 Foelix et al., 2012) and evolution (Foley et al., 2019; Lueddecke et al., 2018). In addition to arachnids,
40 other venomous animals such as centipedes or snakes are also becoming increasingly popular as pets
41 and Europe is considered a global hot spot in regard to exotic pets (Fukushima et al., 2020; Law, 2019).
42 A recent case of an escaped pet cobra (*Naja kaouthia*) that was on the loose for several days in Herne
43 (Germany) before finally being caught safely (Aachener Zeitung, 2019) has caused public concerns
44 about the suitability of venomous animals as pets. This has for example prompted the local
45 government of North-Rhine Westphalia (Germany) to consider introducing regulations to control or
46 restrict keeping potentially dangerous animals in captivity, including venomous arachnids
47 (Aachener Zeitung, 2020). Other German states (Bayrische Staatskanzlei, 2015;
48 Regierungspräsidium Kassel, 2007) and countries such as Italy (Parlamento Italiano, 2003) or the UK
49 (UK Government, 1976) have previously introduced similar legislation. And further countries might
50 also come to a point where they see the need to regulate venomous animals in captivity.
51 Unfortunately, the responsible regulatory agencies rarely have the scientific expertise to judge which
52 species should be considered as potentially dangerous. Therefore, we already provided our expert
53 reports to three German states (Bavaria, Hesse, and North-Rhine Westphalia) and to a wider audience
54 (Hauke and Herzig, 2017).
55

56 Our previous review article was mostly focused on assessing the potential danger of arachnids
57 based on bites or stings that occurred in their respective countries of origin (Hauke and Herzig, 2017).
58 For authorities to make sensible decisions about pet arachnids, they first need to understand the
59 specific risks associated with arachnids held in captivity. By performing a global search for case
60 reports in online forums and popular magazines dealing with pet arachnids and by distributing a
61 questionnaire about such cases to pet owners in Europe and Northern America, we have compiled a
62 large database of 354 self-reported bites or stings from pet arachnids. This database allows us to
63 determine which arachnid genera are involved in these incidents and it also enables us to examine
64 the range of effects resulting from the bites and stings. Comparing the genera responsible for these
65 cases with their respective popularity in the pet scene, also helped to uncover genera which are
66 disproportionately involved. Furthermore, for understanding the severity of each case, we classified
67 the resulting symptoms as asymptomatic, local, minor, or severe. Overall, the analysis of our pet
68 arachnid bite and sting database allowed us to perform a specific risk assessment for keeping
69 arachnids as pets, which might be used as a foundation by authorities to base their future decisions
70 on regulations related to arachnid pets.
71

72 **2. Materials and methods**

73 In order to maximise the number of pet arachnid bite and sting reports to be analysed in this study,
74 we obtained cases from a wide variety of different sources. Therefore, we screened several internet
75 forums as well as other internet resources (Angelfire; Arachnoboards; Arachnophilia; BTS homepage;
76 Facebook; Poeci1; Reptilesworld; SKF – Schattenjaeger im Terrarium; SkorpionForum;
77 The Arachnopholic; Vogelspinnenstammtisch Schweiz) for any reports of pet spider bites or scorpion
78 stings in humans. As search parameters in these online media, we entered terms such as „bite“, „sting“,
79 „bitten“, „stung“, „envenomation“ (in the respective language of each online medium). In addition, we

80 compiled pet arachnid envenomation reports from popular magazines ("Arachne", "Arachnologischer
 81 Anzeiger", and "BTS Journal"). Finally, we prepared a questionnaire (see Supplementary Materials)
 82 and distributed it within the European and American arachnid pet scene in order to obtain feedback on
 83 arachnid envenomation cases that were caused by pet arachnids. Any cases that contained insufficient
 84 details or apparent errors or which reported symptoms unlikely to be caused by the bite/sting itself
 85 were excluded during a pre-selection process. All data were then compiled into an excel table (see
 86 Supplementary Excel file) for a detailed statistical analysis and to determine symptoms that are
 87 particularly prevalent after envenomations by selected arachnid genera. Due to the limited numbers of
 88 cases per species, we have restricted our detailed analysis of envenomation symptoms to the genus
 89 level.

90

91 In order to minimize any diagnosis bias due to potentially incorrect self-diagnoses by the pet owners
 92 reporting these cases, we only analysed those symptoms with an average incidence rate of at least 10%
 93 within spiders or scorpions. For the detailed analysis of envenomations by selected arachnid genera
 94 (with at least five reported cases), we used a 30% incidence cut-off rate. Given that there are no records
 95 available about how prevalent each arachnid genus is within the arachnid pet scene, we have estimated
 96 their popularity based on how frequently they are described in popular books on arachnid husbandry.
 97 A list of these books can be found in Table S1. In order to assess the severity of each arachnid
 98 envenomation, we introduced a classification scheme with four categories as detailed in Table 1 and
 99 which has been adapted from an existing classification for the severity of scorpion envenomations
 100 (Khattabi et al., 2011).

101

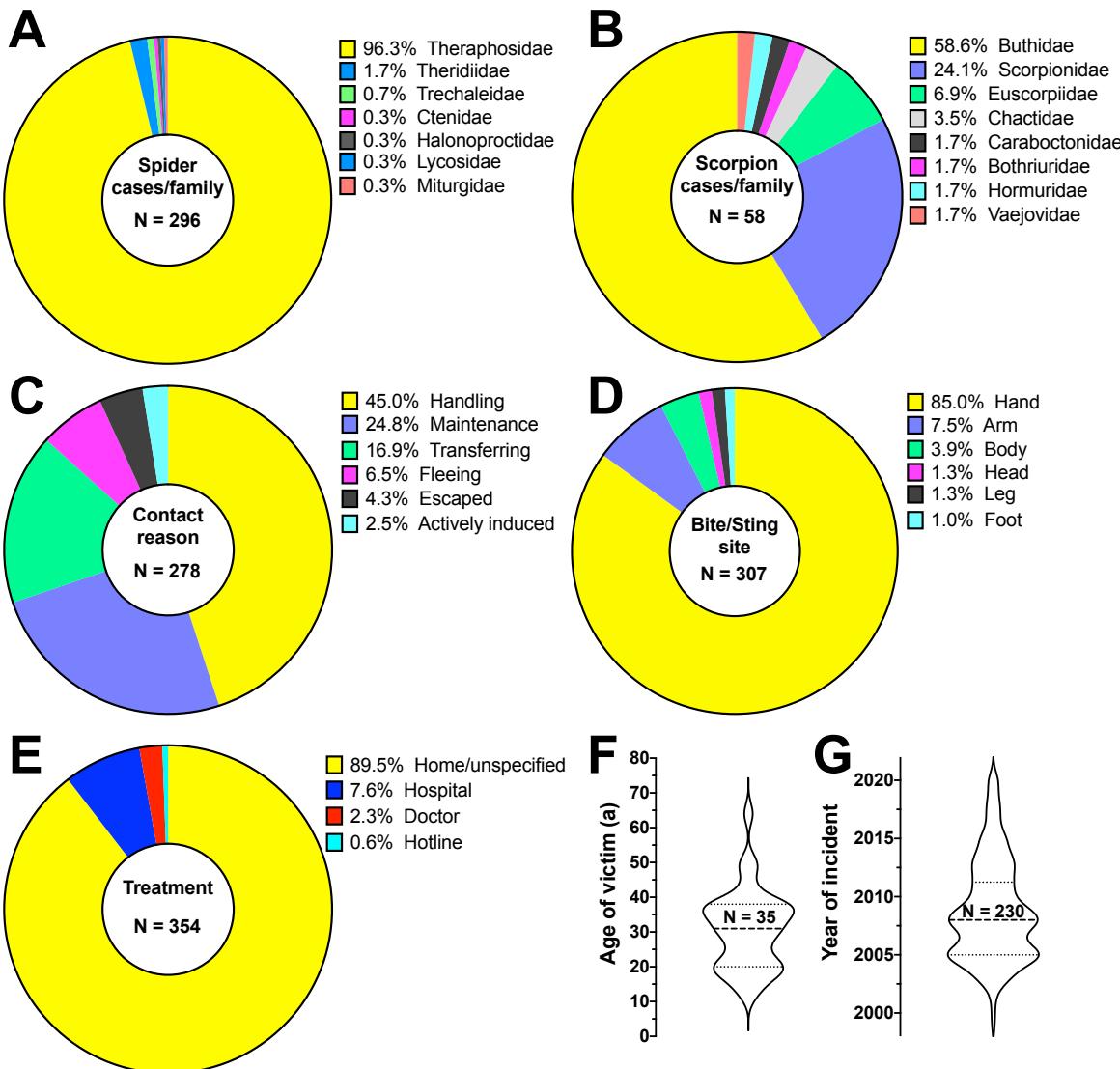
102 **Table 1.** Scheme used to classify the degree of severity of symptoms associated with each reported pet arachnid
 103 bite or sting.

Classification	Associated symptoms
Asymptomatic	No symptoms reported
Local	All symptoms remain localized to the bite/sting site
Minor	Radiated and/or systemic symptoms (non life-threatening)
Severe	Causing potentially life-threatening effects

104

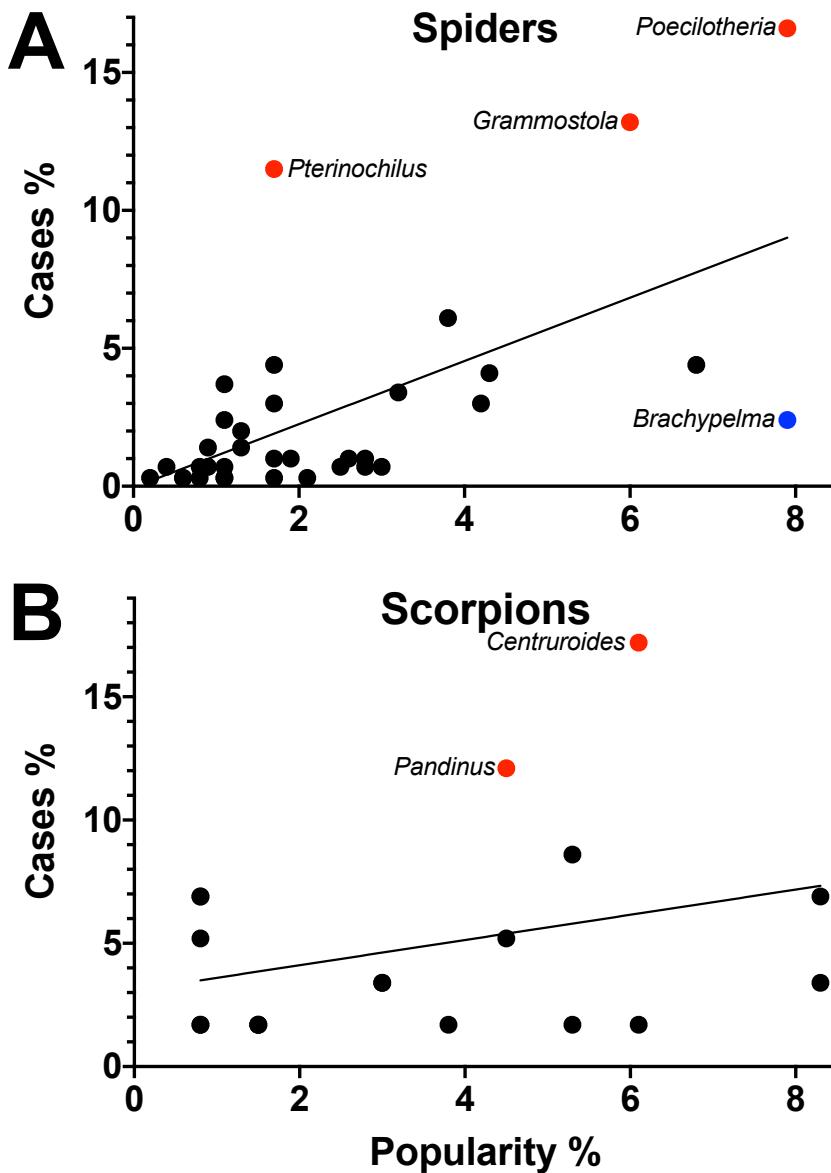
105

3. Results


106

107 The present study is based on 354 case reports, which have been sourced from a wide range of
 108 media, including internet sources (84.5%), popular arachnid magazines (9.3%) and replies to our
 109 envenomation questionnaire (6.2%). The great majority of cases relates to spider bites (83.6%) with
 110 only a minority of scorpion sting cases (16.4%). The 296 spider bite cases were caused by seven
 111 different spider families (Figure 1A) from 47 different genera (Table S2) with the vast majority being
 112 caused by spiders of the family Theraphosidae (96.3%) (Figure 1A). The 58 scorpion sting cases were
 113 caused by scorpions from 22 different genera (Table S3) within eight different families (Figure 1B),
 114 although the majority of cases were caused by species from the families Buthidae (58.6%) and
 115 Scorpionidae (24.1%). In those cases where the sex of the envenomating arachnid has been identified,
 116 it turned out that mainly female arachnids were responsible (75.5% in spiders and 63.6% in
 117 scorpions). Also, a single (rather than multiple) bite/sting occurred in the majority of cases (81.3% in
 118 spiders and 76.5% in scorpions).

119


120 Males are over-represented among the victims of arachnids, accounting for 100% of scorpion
 121 stings and 82.0% of spider bites. According to the reasons that resulted in the contact with the
 122 arachnid, the majority of encounters were due to a deliberate interaction (e.g. maintenance, handling,
 123 transferring, or actively induced), whereas only a minority of cases were due to arachnids that had
 124 managed to escape or were prevented from trying to escape (Figure 1C). The great majority of bites
 125 and stings (85.0%) were delivered to the hand, including the fingers (Figure 1D). Only 10.5% of all
 arachnid exposures specified that they sought professional help through calling a hotline or visiting

126 a doctor or hospital (Figure 1E). The age of the victims of arachnid bites/stings ranged from 12 to 64
 127 years with a median age of 32 (Figure 1F).
 128

129
 130 **Figure 1.** Envenomation statistics. All values are calculated based on those cases (the respective N-
 131 numbers are indicated for each panel) that supplied the particular details. (A) Percental distribution of all
 132 296 recorded spider bite cases across 7 different spider families. (B) Percental distribution of all 58 recorded
 133 scorpion sting cases across 8 different scorpion families. (C) Percental distribution of the contact reason
 134 with the arachnid. (D) Percental distribution of the bite/sting site in the victim. (E) Percental distribution of
 135 the treatment location. (F) Violin plot indicating distribution of the age (in years) of the bite/sting victims.
 136 (G) Violin plot indicating the year when the bite/sting occurred. Seven cases occurred prior to 2000 (i.e.
 137 1951, 1979, 1987, 1989, 2x 1990, and 1999) but are not displayed for reasons of simplification. In the violin
 138 plots in (F) and (G), the dotted lines represent the 1st and 3rd quartile and the dashed line indicates the
 139 median.

140
 141 We also performed an analysis of the popularity of particular arachnid genera (see
 142 Supplementary Excel file) based on how frequently they are mentioned in popular books about the
 143 maintenance of arachnids in captivity (Table S1). Then we performed a linear regression comparing
 144 the popularity of each genus with the frequency of bites or stings that were caused by that genus in
 145 our database (Figure 2).
 146

147

148

Figure 2. Linear regression for correlation of popularity of (A) spider and (B) scorpion genera with their respective incidence rates for causing bites or stings. Those genera that have a disproportionate incidence rate (as defined by a difference from the linear correlation of at least 5%) are indicated by the respective genus name and the data point colored in red for a higher or blue for a lower incidence rate than predicted from their popularity, all other data points are in black.

153

154

155

156

157

158

159

160

161

162

163

164

Based on a first analysis of symptoms with an incidence rate of at least 10% in one of the arachnid orders (Table 2), the top 5 of the most frequent symptoms after scorpion stings are local pain (86.2%), numbness (20.7%), swelling (19.0), paraesthesia (17.2%) and radiating pain (15.5%). The top 5 symptoms after spider bites are local pain (79.4%), swelling (45.3%), puncture marks (29.1%), redness (26.4%) and muscle cramps (23.0%). Some symptoms were preferentially caused by spiders (muscle cramps, local bleeding, puncture marks, nausea/vomiting, generalised pain, stiffness, swelling, itching, and redness), whereas other symptoms were more likely experienced after scorpion stings (paraesthesia, numbness, radiating and local pain).

Table 2. Comparison of incidence rates (in %) of frequent envenomation symptoms (based on 10% incidence rate in at least one of the arachnid orders and ordered according to an increasing prevalence in spiders)

165 between all reported envenomation cases from scorpions (N=58) and spiders (N=296). The symptoms shaded in
 166 grey have a higher incidence rate in scorpions, all other symptoms have a higher incidence rate in spiders.

Symptoms	Scorpion (%)	Spider (%)
Paraesthesia	17.2	12.8
Numbness	20.7	15.9
Radiating pain	15.5	13.5
Local pain	86.2	79.4
Redness	13.8	26.4
Itching	8.6	20.3
Swelling	19.0	45.3
Stiffness	3.4	12.5
Generalised pain	1.7	9.5
Nausea/Vomiting	1.7	9.8
Puncture marks	3.4	29.1
Local bleeding	1.7	14.9
Muscle cramps	0.0	23.0

167
 168 The classification of all 354 case reports based on their degree of severity revealed that the great
 169 majority of all cases are either local (60.7%) or minor (32.8%), with another 5.4% of asymptomatic and
 170 only 1.1% of severe cases (Table 3).

171
 172 **Table 3.** Comparison of the percental distribution of severity of symptoms between scorpion stings (N=58) and
 173 spiders bites (N=296). The average distribution across all 354 arachnid envenomations is indicated in bold.

Symptom severity (%)	Scorpions	Spiders	Average/354 cases
Asymptomatic	5.2	5.4	5.4
Local	69.0	59.1	60.7
Minor	25.9	34.1	32.8
Severe	0.0	1.4	1.1

174
 175 A separate analysis of the degree of severity of symptoms caused by arachnid genera that we have
 176 previously classified as potentially dangerous (Hauke and Herzig, 2017) showed a profound shift
 177 from local to minor symptoms in dangerous spider and a similar but less pronounced shift in
 178 dangerous scorpion genera (Table 4).

179
 180 **Table 4.** Comparison of the percental distribution of severity of symptoms for non-dangerous versus dangerous
 181 arachnids. Data is based on N=244 spider bites and N=33 scorpion stings from non-dangerous and N=52 spider
 182 bites and N=25 scorpion stings from dangerous arachnid genera according to our previous classification (Hauke
 183 and Herzig, 2017). Incidence rates from 30% are highlighted in yellow (and in bold from 50%).

Symptom severity (%)	Spiders		Scorpions	
	Non-dangerous	Dangerous	Non-dangerous	Dangerous
Asymptomatic	6.6	0.0	9.1	0.0
Local	65.6	28.8	72.7	64.0
Minor	27.5	65.4	18.2	36.0
Severe	0.4	5.8	0.0	0.0

186
 187 For the in-depth analysis of bite/sting symptoms within particular genera, we focused on those
 188 symptoms with an incidence rate of at least 30% in genera with at least 5 case reports (Table 5). Similar
 189 to the analysis for all the arachnid exposures (Table 2), the most prominent symptom observed in the
 190 analysis of the selected genera was local pain, which ranged from 46.2% in *Avicularia* to 100% in
 191 *Heteroscodra*, *Pelinobius* and *Hottentotta*. Symptoms that featured most prominently only in one or a
 192 few genera are local bleeding (57.1% incidence in *Pelinobius*), paraesthesia (54.5% incidence in

193

Heteroscodra and 40% in *Hottentotta*), paralysis (33.3% incidence in *Omothymus*) and stiffness (50% incidence in *Omothymus*).

194

195

In order to obtain an idea about the severity of the symptoms in the selected arachnid genera, we classified each case into either asymptomatic, local, minor or severe (Table 5). Our results highlight that the majority of all cases were local (in 12 out of 17 genera "local" had the highest incidence rate) followed by minor symptoms (in four out of 17 genera "minor" had the highest incidence rate and one genus [i.e. *Hysterocrates*] had an equal incidence rate for "local" and "minor"). Asymptomatic cases were recorded only from some genera (seven out of 17 genera) but had an incidence rate of up to 23.1% for the spider genus *Avicularia* and 28.6% for the scorpion genus *Pandinus*, respectively. Only four severe cases were reported, which were caused by spiders of the genera *Poecilotheria* (3x) and *Pterinochilus* (1x) and which resulted in the patient being hospitalized due to unconsciousness and several other systemic symptoms (e.g. nausea/vomiting; Table S4).

202

203

Table 5. Analysis of bite and sting symptoms (shaded in blue, in alphabetical order) and distribution of severity of symptoms (shaded in green, Asymp. = asymptomatic, no effects) in arachnid genera with at least 5 case reports. Incidence rates from 30% are highlighted in yellow (and in bold from 50%).

Genus	N=	Itching	Local bleeding	Local pain	Muscle cramps	Numbness	Paraesthesia	Paralysis	Puncture marks	Radiating pain	Redness	Stiffness	Swelling	Asymp.	Local	Minor	Severe	
Spiders	<i>Aphonopelma</i>	9	33.3	22.2	88.9	0.0	11.1	0.0	33.3	11.1	11.1	0.0	44.4	0.0	88.9	11.1	0.0	
	<i>Avicularia</i>	13	38.5	15.4	46.2	7.7	0.0	15.4	7.7	15.4	0.0	30.8	7.7	15.4	23.1	76.9	0.0	0.0
	<i>Brachypelma</i>	7	14.3	28.6	57.1	14.3	28.6	14.3	0.0	42.9	14.3	14.3	0.0	28.6	0.0	85.7	14.3	0.0
	<i>Caribena</i>	13	46.2	15.4	92.3	0.0	7.7	15.4	0.0	38.5	0.0	23.1	7.7	38.5	0.0	100.0	0.0	0.0
	<i>Grammostola</i>	39	38.5	20.5	79.5	5.1	2.6	10.3	0.0	28.2	0.0	12.8	5.1	38.5	7.7	79.5	12.8	0.0
	<i>Haplopelma</i>	12	8.3	8.3	66.7	33.3	33.3	0.0	0.0	33.3	8.3	0.0	0.0	33.3	16.7	33.3	50.0	0.0
	<i>Heteroscodra</i>	11	9.1	0.0	100.0	36.4	36.4	54.5	0.0	9.1	36.4	45.5	27.3	27.3	0.0	18.2	81.8	0.0
	<i>Hysterocrates</i>	9	22.2	11.1	55.6	22.2	0.0	22.2	0.0	22.2	22.2	11.1	0.0	55.6	11.1	44.4	44.4	0.0
	<i>Omothymus</i>	6	0.0	16.7	83.3	0.0	16.7	0.0	33.3	33.3	16.7	50.0	50.0	0.0	66.7	33.3	0.0	0.0
	<i>Pelinobius</i>	7	42.9	57.1	100.0	28.6	14.3	14.3	14.3	42.9	14.3	42.9	14.3	57.1	0.0	57.1	42.9	0.0
	<i>Poecilotheria</i>	49	12.2	18.4	85.7	59.2	22.4	12.2	2.0	32.7	22.4	32.7	20.4	57.1	0.0	28.6	65.3	6.1
	<i>Psalmopoeus</i>	10	30.0	0.0	90.0	10.0	30.0	10.0	0.0	20.0	10.0	20.0	20.0	40.0	0.0	70.0	30.0	0.0
	<i>Pterinochilus</i>	34	5.9	5.9	91.2	44.1	23.5	5.9	0.0	26.5	23.5	11.8	14.7	55.9	5.9	35.3	55.9	2.9
Scorpions	<i>Tillotocatl</i>	18	11.1	16.7	50.0	5.6	5.6	5.6	0.0	33.3	0.0	33.3	11.1	33.3	11.1	83.3	5.6	0.0
	<i>Centruroides</i>	10	0.0	10.0	80.0	0.0	30.0	10.0	10.0	0.0	30.0	10.0	10.0	30.0	0.0	60.0	40.0	0.0
	<i>Hottentotta</i>	5	20.0	0.0	100.0	0.0	20.0	40.0	0.0	20.0	40.0	60.0	0.0	60.0	0.0	60.0	40.0	0.0
	<i>Pandinus</i>	7	14.3	0.0	71.4	0.0	28.6	0.0	0.0	0.0	0.0	0.0	0.0	28.6	28.6	42.9	28.6	0.0

204

205 **4. Discussion**

206 The gold standard for assessing the toxicological effects from arachnid bites and stings is to rely
207 on verified bites, which includes the taxonomical identification of the responsible arachnid species as
208 well as the clinical follow-up of the resulting effects (Ibsbister and White, 2004). Pet spiders and
209 scorpions are typically well identified at least to the genus (often even to the species) level by experts
210 before being distributed in the pet trade, so that pet owners are usually well aware of the correct
211 taxonomic identities of their arachnids (Fuchs et al., 2014). Accordingly, we assumed that the
212 taxonomic identity of the arachnids in our study was correctly identified to the genus level, which
213 we used for our data analysis. By relying on self-reported cases, the symptoms we recorded were
214 mostly described by lay persons instead of medical professionals. Therefore, an objective reporting
215 cannot always be assumed for each case. In order to minimize any reporting bias from less accurate
216 diagnoses, we focused on symptoms with a higher incidence rate and on easy-to-self-diagnose
217 symptoms (e.g. redness, swelling, pain, cramps, nausea). Symptoms that required an accurate
218 measurement or a diagnosis by a clinician (e.g. irregular heartbeat, fever) were not included.
219 Furthermore, it needs to be emphasized that this study focused on the circumstances, under which pet
220 arachnid bites and stings happened, on the taxa being responsible for these incidents and on the scope
221 of potential outcomes. Given that only a minority of bitten/stung humans are seeking medical help, this
222 kind of reporting for the resulting symptoms has to be accepted as an inherent drawback of such kind
223 of examination in order to allow gathering a comprehensive and significant number of cases. In
224 summary, this study was designed to provide the framework for future case reports, which may then
225 focus more deeply on the clinical effects.
226

227 Our results reveal some interesting details about sting/bite incidents with arachnid pets. Of those
228 354 cases recorded in our database, 10.5% of the pet owners that get bitten or stung required medical
229 assistance and only 1.1% of all cases were classified as severe. We further noticed that the vast
230 majority of all incidents occurred during deliberate interaction with the pet arachnids, with handling,
231 maintenance, transferring and fleeing during these interactions amounting to 93.2% of all cases,
232 whereas only 4.3% were accidentally caused by arachnids that have escaped unseen and 2.5% of all
233 bites and stings have even been actively induced. In accordance, the hand (85.0%) and arm (7.5%)
234 were the body parts most often targeted by arachnids. This implies that by applying the appropriate
235 caution and safety measures (e.g. wearing protective gloves or using long forceps) when interacting
236 with arachnid pets, the majority of all cases could most likely be prevented. The fact that the victims
237 were mainly male is an unsurprising finding. Not only are men known to be more risk-loving, the
238 majority of all arachnid pet owners are apparently male. In case of the Deutsche Arachnologische
239 Gesellschaft e.V. (DeArGe) for example, 82.7% of all members are men, which nicely reflects their
240 representation among the envenomation victims. Another unsurprising finding is that the offending
241 arachnids were mainly female. Most of the cases were caused by theraphosid spiders and it is well
242 known that female theraphosids have a much longer lifespan than males (Foelix, 2011) and in many
243 cases the females are also larger than males of the same species (Herzig, 2010). Thus, this results in
244 increased prevalence of females among pet arachnids and also in a lower risk of male arachnids
245 causing notable effects.
246

247 What our data does not reveal is how big the global arachnid pet scene is and unfortunately
248 there are also no simple ways to determine the global numbers of arachnid pet owners. The world's
249 two largest societies dedicated to pet arachnids, the DeArGe and the British Tarantula Society (BTS),
250 currently have 927 and 507 (paying) / 1113 (registered) members, respectively. However, we assume
251 only a small fraction of all arachnid pet owners are willing to pay annual fees for being members of
252 any of these societies. Apparently, the majority of arachnid enthusiasts obtain their knowledge on
253 the maintenance of arachnid pets in captivity either from popular books or an increasing number is
254 seeking free advice from social media (e.g. Facebook) or video channels (e.g. YouTube), respectively.
255 The numbers of subscribers of popular YouTube channels dealing with arachnid pets ranges from

256 the tens of thousands (e.g. "birdspidersCH" from Switzerland with 20,400 subscribers) to several
257 hundreds of thousands (e.g. "The Dark Den" from Croatia with 519,000 subscribers). Based on these
258 numbers, it would seem safe to estimate the global numbers of arachnid pet owners to be at least
259 several tens of thousands. Interestingly, when comparing the recorded number of bite and sting cases
260 over the past two decades, we noticed a 55% decrease from the previous to the current decade. There
261 could be several possible explanations for this observation. The hobby could be in decline, it could
262 be due to a reporting bias (e.g. more people tending to social media such as Facebook or video
263 channels like YouTube while posting reports in online forums, the main source of cases for our
264 present study, is declining) or due to an improved education of arachnid pet owners (e.g. learning
265 from the mistakes of others; more knowledge available about the behavior of arachnid species kept
266 as pets). Monitoring the envenomation incidents over the next decade might provide an answer to
267 this question.

268
269 Our data reveal that incidents with pet arachnids are dominated by spiders from the family
270 Theraphosidae (96.3% of all spider bites, 80.5% of all arachnid incidents) and scorpions from the
271 families Buthidae and Scorpionidae (totaling 82.7% of all scorpion stings, 13.6% of all arachnid
272 incidents). These numbers largely reflect the preference of particular arachnids among the pet
273 owners. However, a few arachnid genera caused a disproportionate number of cases. The spider
274 genera *Grammostola*, *Poecilotheria* and *Pterinochilus* and the scorpion genera *Centruroides* and *Pandinus*
275 were responsible for considerably more cases than would have been predicted based on their
276 popularity. One reason for the over-representation of some genera could be that they behave in an
277 unexpected way (e.g. erratic and fast movements), which could be the case for *Poecilotheria* and
278 *Pterinochilus*, or that they are less docile than reported in the popular literature, which could be the
279 case for *Grammostola* and *Pandinus*. Another explanation could be that a genus is under-represented
280 in the popular literature, which we believe could be the case for *Centruroides*. Only the spider genus
281 *Brachypelma* caused considerably fewer bites than would have been expected based on its popularity,
282 which we believe might be due to those spiders rather using their urticating hairs than their venoms
283 for defensive purposes (Battisti et al., 2011).

284
285 Only a few of the cases in our study reported outcomes that are considered uncommon for the
286 particular arachnid genus that caused the bites or stings and in some cases it was difficult to assess,
287 whether the mentioned effects are a direct consequence of the arachnid bite/sting or whether they are
288 rather attributable to pre-existing conditions. For example, four cases (unique case numbers 9, 270,
289 305, and 328, see Supplementary Excel Table) reported breathing difficulties in envenomation victims
290 with pre-existing asthmatic conditions. Whether these symptoms were directly caused by components
291 in the venoms or by increased stress due to the incident is difficult to determine based on the limited
292 data available in these reports. The fact that these symptoms in combination with the pre-existing
293 asthma were reported from a variety of spider (*Thrixopelma*, *Poecilotheria*, *Pterinochilus*) and scorpion
294 (*Centruroides*) genera would argue against a specific venom component being responsible. One case
295 (unique case 236, see Supplementary Excel Table) that has been classified as severe, which resulted in
296 unconsciousness amongst several other symptoms of the victim, also mentioned that the medications
297 administered by the ambulance staff were not tolerated and might have contributed to the severity
298 of the effects. Another interesting case (unique case 48, see Supplementary Excel Table) was stung
299 twice by the same scorpion species (*Pandinus imperator*) on two separate incidents. The victim referred
300 to the symptoms after the second time as being more severe, reporting strong pain, breathing
301 difficulties, circulatory problems, and shock-like symptoms. These symptoms are uncommon after
302 stings from *Pandinus*, which usually cause rather mild symptoms that are characterized by pain,
303 swelling, numbness and itching (Table 5). Allergic reactions to arachnid venoms, unlike for
304 hymenopterans, are rarely reported (Lima Araujo Melo et al., 2019; Srugo et al., 2009). However, some
305 allergens have been described from scorpion venoms (More et al., 2004) and were observed to even
306 exhibit cross-reactivity with hymenopteran allergens (Nugent et al., 2004). Thus, based on the
307 symptoms and the fact that the victim was stung repeatedly in separate incidents by the same species

308 of scorpion, a type-1 hypersensitivity reaction cannot be ruled out as a potential explanation for the
309 more pronounced manifestations following the second sting from *Pandinus* in unique case number
310 48. However, without more detailed clinical data on this case, a conclusive diagnosis is impossible.
311

312 The most prominent symptom caused by spider bites and scorpion stings in our database was
313 local pain, being observed in 80.5% of all cases. This finding supports many previous reports of local
314 pain being the most prominent symptom after arachnid bites or stings (Bucaretti et al., 2000;
315 Bucaretti et al., 2014; Isbister and Fan, 2011). Furthermore, pain-inducing venom components are a
316 well-established defense mechanism for arachnids (Bohlen et al., 2010; Inceoglu et al., 2003; Osteen et
317 al., 2016; Siemens et al., 2006). Other prominent symptoms particularly caused by spider bites were
318 muscle cramps, local bleeding, puncture marks, nausea/vomiting, generalised pain, stiffness, itching
319 and redness. On the other hand, paraesthesia, numbness and radiating pain were more prominently
320 observed after scorpion stings. A similar range of symptoms was also described from bites and stings
321 by Australian arachnids with pain being the predominant symptom caused by all arachnids and
322 paraesthesia and numbness exhibiting a higher incidence rate in scorpions (Isbister and Gray, 2002,
323 2004; Isbister et al., 2003b). However, comparing the actual percentages for the incidence rates that
324 we observed with other published results is hampered by differences in the diversity and
325 geographical origin of the arachnids involved in these incidents. The published literature on clinical
326 effects is heavily biased towards medically important arachnids. In contrast, our data on spiders
327 includes three cases (out of 296) from medically important spiders and is otherwise clearly focused
328 on the medically less important theraphosids, accounting for 96.3% of all spider bites. Previous
329 clinical evidence indicates that Australian and Brazilian theraphosid bites only caused mild
330 symptoms with pain being the most prevalent effect (Isbister et al., 2003a; Lucas et al., 1994). The
331 theraphosids included in our study originated from various parts across their natural distribution
332 range including the Americas, Africa and Asia. Geographic differences of the effects caused by
333 theraphosid venoms have already been documented with respect to certain African and Asian
334 theraphosids being implied to have a higher neurotoxicity in mice (Escoubas and Rash, 2004). Our
335 data supports that some African and Asian theraphosid genera such as *Heteroscodra*, *Pelinobius*,
336 *Poecilotheria* and *Pterinochilus* predominantly caused minor effects, whereas local effects were
337 predominant after bites by the New World genera *Aphonopelma*, *Avicularia*, *Caribena*, *Grammostola*,
338 *Psalmopoeus* and *Tliltocatl*. However, it is yet too early to draw a general conclusion about potential
339 geographic variations in the severity of symptoms caused by theraphosid bites as this should be
340 examined in a more detailed way by taking both the geographic origin as well as the phylogenetic
341 relationship into account. And other factors such as the venom amount might also play a crucial role.
342

343 Visual signs at the bite/sting site (such as puncture marks, bleeding, swelling, redness) were
344 more common after spider bites than after scorpion stings. This could be attributed to the relatively
345 large fang size of theraphosid spiders (Isbister and Gray, 2004). One symptom that was only caused
346 by spider bites and not by scorpion stings are cramps of skeletal muscles. In particular the genus
347 *Poecilotheria* caused an incidence rate of 59.2% of muscle cramps, which correlates well with the 58%
348 reported by a previous study (Fuchs et al., 2014). Our data therefore further adds to the evidence of
349 muscle cramps being caused by *Poecilotheria* venoms in vertebrates such as humans (Ahmed et al.,
350 2009; Fuchs et al., 2014) or mice (Andreev-Andrievskiy et al., 2017). Other theraphosid genera that
351 exhibited a high incidence rate of muscle cramps include *Haplopelma* (33.3%), *Heteroscodra* (36.4%)
352 and *Pterinochilus* (44.1%), with the latter two genera also previously being reported for inducing
353 muscle cramps in humans (Ahmed et al., 2009; Fuchs et al., 2018). In some of our cases, those muscle
354 cramps were reported to be long-lasting, sometimes occurring over periods of several weeks or even
355 months. While previous studies have classified muscle cramps as a severe symptom (Ahmed et al.,
356 2009), we do not share this view for two reasons. Firstly, the sole presence of muscle cramps does not
357 represent a reliable indicator for the severeness of an arachnid envenomation, as in some cases, the
358 muscle cramps were explicitly described as mild or locally restricted, whereas in others they were

359 experienced as extraordinary painful and debilitating. Secondly, skeletal muscle cramps are usually
360 not life-threatening, unless they affect the diaphragm muscle to interfere with breathing.

361

362 When specifically comparing incidents from those arachnid genera that we have previously
363 classified as non-dangerous to those considered potentially dangerous (Hauke and Herzig, 2017), we
364 found a shift from local to minor symptoms in spiders and a similar but less pronounced shift in
365 scorpions. This implies that incidents with potentially dangerous arachnid pets do not necessarily
366 result in severe consequences, with only 3.9% of the recorded incidents (i.e. three severe cases
367 amongst all 77 bites/stings) from dangerous arachnids causing severe symptoms. Notably, we
368 gathered several incidents from arachnids that are historically considered being of medical
369 importance in their respective countries of origins, namely from spiders of the genera *Latrodectus* and
370 *Phoneutria* and scorpions of the genera *Androctonus*, *Centruroides*, *Hottentotta*, *Leiurus*, *Olivierus*,
371 *Parabuthus*, and *Tityus* (Isbister and Fan, 2011; Ward et al., 2018). However, none of these were
372 involved in a severe envenomation in this study. Conversely, all four cases we classified as severe
373 were caused by the theraphosid genera *Poecilotheria* and *Pterinochilus*, with theraphosids being only
374 considered of minor medical importance in their countries of origins (Isbister et al., 2003a; Lucas et
375 al., 1994).

376

377 When using a risk matrix to perform an assessment for the risk associated with venomous
378 arachnid pets, the overall risk is determined by two factors, i.e. the likelihood and the consequence.
379 The **likelihood** of being bitten or stung by an arachnid is obviously increased, if they are kept at home
380 as pets. We recorded 354 incidents with pet arachnids, with most of them occurring in the last two
381 decades. On the background of tens of thousands of assumed arachnid pet owners globally, the
382 recorded case numbers appear low, although we have to assume that many inconsequential incidents
383 with pet arachnids have gone unnoticed if the pet owners did not consider a lack of symptoms worth
384 reporting. Nevertheless, the overall likelihood of being bitten or stung by an arachnid pet can be
385 considered low and there are a number of simple measures that arachnid pet owners can implement
386 to further reduce this likelihood. These measures for example include keeping arachnids in tight
387 enclosures to prevent accidental escape, using sturdy gloves or long forceps for any interaction with
388 the arachnids if required for maintenance purposes, and avoiding any direct physical contact. Our
389 data imply that ~90% of all cases were due to a lack of due care when interacting with the arachnids
390 and are therefore considered preventable. When it comes to the **consequences** of the arachnid bites
391 and stings, our data show that only four of the 354 cases (= 1.1%) were classified as severe. In other
392 words, about 99% of all cases showed either local, minor or no symptoms at all. Therefore, the typical
393 consequences (symptoms) of arachnid bites and stings can be regarded as mild. Combining a low
394 likelihood of incidents with the overwhelmingly mild symptoms of these bites and stings leads to a
395 low overall risk rating associated with arachnid pet ownership. Other hobbies and leisure activities
396 such as beekeeping or sports are associated with more severe outcomes. For example, over a ten year
397 period from 2009-2018, there were more than 16 annual deaths registered due to honeybees and other
398 hymenopterans according to statistical data from Germany and almost 50 annual deaths in the USA
399 from 1991-2001 (Langley, 2005). Sports or drowning related accidents from 2009-2018 accounted for
400 an annual average of 196 and 17 deaths, respectively, in Germany alone. Any recreational activity is
401 associated with specific risks and judging from the low overall risk associated with keeping arachnids
402 as pets, the introduction of legislative restrictions on this hobby seems disproportionate. However,
403 providing guidelines to arachnid enthusiasts for improving due care when interacting with their
404 arachnid pets could be helpful in preventing most incidents. As pet arachnids continue to be an
405 important source of venoms and toxins used for research to benefit humanity (Herzig et al., 2020;
406 Osteen et al., 2016), imposing unsubstantiated regulatory measures could even negatively impact the
407 progress of research as evidenced by research on venomous cone snails (Bjorn-Yoshimoto et al., 2020).

408 **5. Conclusions**

409 In the present study, we have compiled and assessed 354 self-reported cases of bites and stings
410 from pet arachnids. These cases resulted mostly in local or minor symptoms and only 10.5% of the
411 victims sought professional medical assistance. Furthermore, about 90% of these cases might have
412 been avoidable by applying due care when interacting with the arachnid and only 1.1% of all cases
413 were classified as severe with no recorded fatalities. By performing a risk assessment that is based on
414 the analysis of all cases in our database, we conclude that the overall risk associated with arachnid
415 pet ownership is low and that this hobby therefore bears a lower risk than many other more common
416 recreational activities. In general, we encourage the establishment of guidelines that provide
417 information and rules for the keeping and handling of "exotic pets" (not limited to arachnids) to
418 lower any potential risks for both animals and owners. At this stage, however, we do neither see any
419 need nor benefit in introducing legislation to stricter regulate or even prohibit arachnid pet
420 ownership.

421 **Supplementary Materials:** The following data are available as E-component / supplementary material linked to
422 this article: Supplementary Material, Supplementary Excel File, Questionnaire pet arachnid envenomations–
423 English, Questionnaire pet arachnid envenomations–German.

424 **Author Contributions:** Conceptualization; methodology; formal analysis; data curation; writing—original draft
425 preparation; writing—review and editing, T.H. and V.H.; project administration, V.H. All authors have read and
426 agreed to the published version of the manuscript.

427 **Funding:** V.H. is funded by a Future Fellowship from the Australian Research Council (FT190100482).

428 **Acknowledgments:** We would like to thank Geoffrey K. Isbister for helpful comments on the design of the
429 questionnaire and on the manuscript. We further like to thank the DeArGe (and in particular Tim Lüdecke for
430 extracting the member data), the BTS (and in particular Ray Hale and Mike Strick for extracting the member
431 data) and the Natur-und-Tier-Verlag for distributing our questionnaire, and all pet owners who contributed by
432 filling out and returning the questionnaire or by providing their envenomation reports in any of the other print
433 or online media.

434 References

435 Aachener Zeitung, 2019. [https://www.aachener-zeitung.de/nrw-region/giftschlange-in-herne-wurde-gefunden-
436 und-eingefangen_aid-45481207](https://www.aachener-zeitung.de/nrw-region/giftschlange-in-herne-wurde-gefunden-und-eingefangen_aid-45481207) (accessed 2/9/2020).

437 Aachener Zeitung, 2020. [https://www.aachener-zeitung.de/nrw-region/verfassungsbedenken-gegen-neues-
438 gifttiergesetz_aid-49617349](https://www.aachener-zeitung.de/nrw-region/verfassungsbedenken-gegen-neues-gifttiergesetz_aid-49617349) (accessed 2/9/2020).

439 Ahmed, N., Pinkham, M., Warrell, D.A., 2009. Symptom in search of a toxin: muscle spasms following bites by
440 Old World tarantula spiders (*Lampropelma nigerrimum*, *Pterinochilus murinus*, *Poecilotheria regalis*) with review.
441 Qjm-Int. J. Med. 102, 851-857.

442 Andreev-Andrievskiy, A., Popova, A., Lagereva, E., Osipov, D., Berkut, A., Grishin, E., Vassilevski, A., 2017.
443 Pharmacological analysis of *Poecilotheria* spider venoms in mice provides clues for human treatment. Toxicon
444 138, 59-67.

445 Angelfire, <http://www.angelfire.com/my/vogelspinnen/bitereports.html> (accessed on 19/10/2020).

446 Arachnoboard, <https://arachnoboard.com/> (accessed on 2/9/2020).

447 Arachnophilia, <http://www.arachnophilia.de/forum/> (accessed on 2/9/2020).

448 Battisti, A., Holm, G., Fagrell, B., Larsson, S., 2011. Urticating hairs in arthropods: their nature and medical
449 significance. Annu. Rev. Entomol. 56, 203-220.

450 Bayrische Staatskanzlei, 2015. [https://www.gesetze-
451 bayern.de/\(X\(1\)S\(2bkyjovcongqv4gyn1jgac0x\)\)/Content/Document/BayVwV96517-
452 137?AspxAutoDetectCookieSupport=1](https://www.gesetze-bayern.de/(X(1)S(2bkyjovcongqv4gyn1jgac0x))/Content/Document/BayVwV96517-137?AspxAutoDetectCookieSupport=1) (accessed 2/9/2020).

453 Bibic, L., Herzog, V., King, G.F., Stokes, L., 2019. Development of high-throughput fluorescent-based screens to
454 accelerate discovery of P2X inhibitors from animal venoms. J. Nat. Prod. 82, 2559-2567.

455 birdspidersCH, <https://www.youtube.com/c/birdspidersCH/featured> (accessed 2/9/2020).

456 Bjorn-Yoshimoto, W.E., Ramiro, I.B.L., Yandell, M., McIntosh, J.M., Olivera, B.M., Ellgaard, L., Safavi-Hemami,
457 H., 2020. Curses or cures: a review of the numerous benefits versus the biosecurity concerns of conotoxin
458 research. *Biomedicines* 8, 235.

459 Bohlen, C.J., Priel, A., Zhou, S., King, D., Siemens, J., Julius, D., 2010. A bivalent tarantula toxin activates the
460 capsaicin receptor, TRPV1, by targeting the outer pore domain. *Cell* 141, 834-845.

461 BTS homepage, <http://www.thebts.co.uk/selenocosmia.htm> (accessed on 19/10/2020).

462 Bucaretschi, F., Deus Reinaldo, C.R., Hyslop, S., Madureira, P.R., De Capitani, E.M., Vieira, R.J., 2000. A clinico-
463 epidemiological study of bites by spiders of the genus *Phoneutria*. *Rev. Inst. Med. Trop. Sao Paulo* 42, 17-21.

464 Bucaretschi, F., Fernandes, L.C., Fernandes, C.B., Branco, M.M., Prado, C.C., Vieira, R.J., De Capitani, E.M.,
465 Hyslop, S., 2014. Clinical consequences of *Tityus bahiensis* and *Tityus serrulatus* scorpion stings in the region
466 of Campinas, southeastern Brazil. *Toxicon* 89, 17-25.

467 Das Informationssystem der Gesundheitsberichterstattung des Bundes, [http://www.gbe-
468 bund.de/gbe10/pkg_isgbe5.prc_isgbe?p_uid=gast&p_aid=0&p_sprache=D](http://www.gbe-bund.de/gbe10/pkg_isgbe5.prc_isgbe?p_uid=gast&p_aid=0&p_sprache=D) (accessed 2/9/2020).

469 Escoubas, P., Rash, L., 2004. Tarantulas: eight-legged pharmacists and combinational chemists. *Toxicon* 43, 555-
470 574.

471 Facebook, <https://www.facebook.com/> (accessed 2/9/2020).

472 Foelix, R., 2011. Biology of Spiders. Oxford University Press, New York, USA.

473 Foelix, R., Rast, B., Erb, B., 2009. Palpal urticating hairs in the tarantula *Ephebopus*: fine structure and mechanism
474 of release. *J. Arachnol.* 37, 292-298.

475 Foelix, R.F., Rast, B., Peattie, A.M., 2012. Silk secretion from tarantula feet revisited: alleged spigots are probably
476 chemoreceptors. *J. Exp. Biol.* 215, 1084-1089.

477 Foley, S., Lueddecke, T., Cheng, D.Q., Krehenwinkel, H., Kunzel, S., Longhorn, S.J., Wendt, I., von Wirth, V.,
478 Taenzler, R., Vences, M., Piel, W.H., 2019. Tarantula phylogenomics: A robust phylogeny of deep
479 theraphosid clades inferred from transcriptome data sheds light on the prickly issue of urticating setae
480 evolution. *Mol. Phylogenet. Evol.* 140, 106573.

481 Fuchs, J., Martin, N.C., Rauber-Luthy, C., 2018. A verified bite by *Heteroscodra maculata* (Togo starburst or
482 ornamental baboon tarantula) resulting in long-lasting muscle cramps. *Clin. Toxicol.* 56, 675-676.

483 Fuchs, J., von Dechend, M., Mordasini, R., Ceschi, A., Nentwig, W., 2014. A verified spider bite and a review of
484 the literature confirm Indian ornamental tree spiders (*Poecilotheria* species) as underestimated theraphosids
485 of medical importance. *Toxicon* 77, 73-77.

486 Fukushima, C.S., Cardoso, P., Bertani, R., 2020. Description of the male of the critically endangered tarantula
487 *Typhochlaena curumim* Bertani, 2012 (Araneae, Theraphosidae), with comments on tarantula trade and
488 conservation. *Zookeys* 938, 125-136.

489 Hauke, T.J., Herzig, V., 2017. Dangerous arachnids—Fake news or reality? *Toxicon* 138, 173-183.

490 Herzig, V., 2010. Ontogenesis, gender, and molting influence the venom yield in the spider *Coremiocnemis tropix*
491 (Araneae, Theraphosidae). *J. Venom Res.* 1, 76-83.

492 Herzig, V., Cristofori-Armstrong, B., Israel, M.R., Nixon, S.A., Vetter, I., King, G.F., 2020. Animal toxins - Nature's
493 evolutionary-refined toolkit for basic research and drug discovery. *Biochem. Pharmacol.* 114096.

494 Huesser, M., 2018. A first phylogenetic analysis reveals a new arboreal tarantula genus from South America with
495 description of a new species and two new species of *Tapinauchenius* Ausserer, 1871 (Araneae,
496 Mygalomorphae, Theraphosidae). *Zookeys* 784, 59-93.

497 Inceoglu, B., Lango, J., Jing, J., Chen, L., Doymaz, F., Pessah, I.N., Hammock, B.D., 2003. One scorpion, two
498 venoms: prevenom of *Parabuthus transvaalicus* acts as an alternative type of venom with distinct mechanism
499 of action. Proc. Natl. Acad. Sci. USA 100, 922-927.

500 Isbister, G.K., Fan, H.W., 2011. Spider bite. Lancet 378, 2039-2047.

501 Isbister, G.K., Gray, M.R., 2002. A prospective study of 750 definite spider bites, with expert spider identification.
502 Q. J. Med. 95, 723-731.

503 Isbister, G.K., Gray, M.R., 2004. Bites by Australian mygalomorph spiders (Araneae, Mygalomorphae), including
504 funnel-web spiders (Atracinae) and mouse spiders (Actinopodidae: *Missulena* spp). Toxicon 43, 133-140.

505 Isbister, G.K., Seymour, J.E., Gray, M.R., Raven, R.J., 2003a. Bites by spiders of the family Theraphosidae in
506 humans and canines. Toxicon 41, 519-524.

507 Isbister, G.K., Volschenk, E.S., Balit, C.R., Harvey, M.S., 2003b. Australian scorpion stings: a prospective study
508 of definite stings. Toxicon 41, 877-883.

509 Isbister, G.K., White, J., 2004. Clinical consequences of spider bites: recent advances in our understanding.
510 Toxicon 43, 477-492.

511 Khattabi, A., Soulaymani-Bencheikh, R., Achour, S., Salmi, L.R., Scorpion Consensus Expert Group, 2011.
512 Classification of clinical consequences of scorpion stings: consensus development. Trans. R. Soc. Trop. Med.
513 Hyg. 105, 364-369.

514 Clint, J.K., Smith, J.J., Vetter, I., Rupasinghe, D.B., Er, S.Y., Senff, S., Herzig, V., Mobli, M., Lewis, R.J., Bosmans,
515 F., King, G.F., 2015. Seven novel modulators of the analgesic target Nav1.7 uncovered using a high-
516 throughput venom-based discovery approach. Br. J. Pharmacol. 172, 2445-2458.

517 Kroes, T., Maerklin, T., 2014. Erfahrungsbericht ueber das erste *Poecilotheria* Auswilderungsprogramm im April
518 und Dezember 2013 in Sri Lanka. Arachne 19, 28-39.

519 Langley, R.L., 2005. Animal-related fatalities in the United States-an update. Wilderness Environ. Med. 16, 67-
520 74.

521 Law, Y.H., 2019. New tarantula highlights illegal trade in spiders. Science 363, 914-915.

522 Lima Araujo Melo, I.M., Dias Ramalho, R., Vieira Bezerra, M.M., de Oliveira Filho, I.E., Roberto Medeiros, C., da
523 Costa Gadelha, M.A., Pereira de Oliveira Pardal, P., 2019. Fatal anaphylaxis to *Jaguajir rochae* (Borelli, 1910)
524 (Scorpiones, Buthidae) in Brazil: a case report. Rev. Patol. Trop. 48, 187-194.

525 Lucas, S.M., Da Silva, P.I., Jr., Bertani, R., Cardoso, J.L.C., 1994. Mygalomorph spider bites: A report on 91 cases
526 in the state of Sao Paulo, Brazil. Toxicon 32, 1211-1215.

527 Lueddecke, T., Krehenwinkel, H., Canning, G., Glaw, F., Longhorn, S.J., Taenzler, R., Wendt, I., Vences, M., 2018.
528 Discovering the silk road: Nuclear and mitochondrial sequence data resolve the phylogenetic relationships
529 among theraphosid spider subfamilies. Mol. Phylogenet. Evol. 119, 63-70.

530 Mammola, S., Nanni, V., Pantini, P., Isaia, M., 2020. Media framing of spiders may exacerbate arachnophobic
531 sentiments. People and Nature, 1-13.

532 Montemor, V.M., West, R.C., Zamani, A., Moradmand, M., von Wirth, V., Wendt, I., Huber, S., Guadanucci,
533 J.P.L., 2020. Taxonomy of the genus *Ischnocolus* in the Middle East, with description of a new species from
534 Oman and Iran (Araneae: Theraphosidae). Zool. Middle East 66, 76-90.

535 More, D., Nugent, J., Hagan, L., Demain, J., Schwertner, H., Whisman, B., Freeman, T., 2004. Identification of
536 allergens in the venom of the common striped scorpion. Ann. Allergy Asthma Immunol. 93, 493-498.

537 Nugent, J.S., More, D.R., Hagan, L.L., Demain, J.G., Whisman, B.A., Freeman, T.M., 2004. Cross-reactivity
538 between allergens in the venom of the common striped scorpion and the imported fire ant. J. Allergy Clin.
539 Immunol. 114, 383-386.

540 Nunn, S.C., West, R.C., von Wirth, V., 2016. A revision of the selenocosmiine tarantula genus *Phlogiellus* Pocock
541 1897 (Araneae: Theraphosidae), with description of 4 new species. *Int. J. Zool.*, 1-54.

542 Osteen, J.D., Herzig, V., Gilchrist, J., Emrick, J.J., Zhang, C., Wang, X., Castro, J., Garcia-Caraballo, S., Grundy,
543 L., Rychkov, G.Y., Weyer, A.D., Dekan, Z., Undheim, E.A., Alewood, P., Stucky, C.L., Brierley, S.M.,
544 Basbaum, A.I., Bosmans, F., King, G.F., Julius, D., 2016. Selective spider toxins reveal a role for the Nav1.1
545 channel in mechanical pain. *Nature* 534, 494-499.

546 Parlamento Italiano, 2003. <https://www.camera.it/parlam/leggi/032131.htm> (accessed 10/9/2020).

547 Poeci1, <https://poeci1.de/poeciloheria/gift/> (accessed on 19/10/2020).

548 Regierungspräsidium Kassel, 2007. <https://rp-kassel.hessen.de/umwelt-natur/naturschutz/artenschutz/private-haltung-gef%C3%A4hrlicher-wildtiere> (accessed 2/9/2020).

549 Reptilesworld, <https://reptilesworld.de.tl/Vogelspinnenbisse -Betroffene-berichten.htm> (accessed on
550 19/10/2020).

551 Siemens, J., Zhou, S., Piskorowski, R., Nikai, T., Lumpkin, E.A., Basbaum, A.I., King, D., Julius, D., 2006. Spider
552 toxins activate the capsaicin receptor to produce inflammatory pain. *Nature* 444, 208-212.

553 SKF – Schattenjaeger im Terrarium, <https://www.skorpionforum.com/> (accessed 2/9/2020).

554 SkorpionForum, <https://scorpionforum.darkbb.com/> (accessed 2/9/2020).

555 Srugo, I., Aroch, I., Cruchim, Y., 2009. Anaphylactic reaction to a spider (*Chaetopelma aegyptiaca*) bite in a dog.
556 Israel J. Vet. Med. 64.

557 The Arachnopholic, <https://theearachnopholic.wixsite.com/arachnopholic/arachnopholic-news> (accessed 2/9/2020).

558 The Dark Den, <https://www.youtube.com/c/TheDarkDen/featuredv> (accessed 2/9/2020).

559 UK Government, 1976. <https://www.legislation.gov.uk/ukpga/1976/38> (accessed 2/9/2020).

560 Vogelspinnenstammtisch Schweiz, <https://vogelspinnenforum.ch/> (accessed 2/9/2020).

561 Ward, M.J., Ellsworth, S.A., Nystrom, G.S., 2018. A global accounting of medically significant scorpions:
562 Epidemiology, major toxins, and comparative resources in harmless counterparts. *Toxicon* 151, 137-155.

563 YouTube, <https://www.youtube.com/> (accessed 2/9/2020).

564

565