Preprint
Article

Predicting Spatial Crime Occurrences through an Efficient Ensemble-Learning Model

Altmetrics

Downloads

256

Views

275

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 September 2020

Posted:

14 September 2020

You are already at the latest version

Alerts
Abstract
While the use of crime data has been widely advocated in the literature, its availability is often limited to large urban cities and isolated databases tend not to allow for spatial comparisons. This paper presents an efficient machine learning framework capable of predicting spatial crime occurrences, without using past crime as a predictor, and at a relatively high resolution: the U.S. Census Block Group level. The proposed framework is based on an in-depth multidisciplinary literature review allowing the selection of 188 best-fit crime predictors from socio-economic, demographic, spatial, and environmental data. Such data are published periodically for the entire United States. The selection of the appropriate predictive model was made through a comparative study of different machine learning families of algorithms, including generalized linear models, deep learning, and ensemble learning. The gradient boosting model was found to yield the most accurate predictions for violent crimes, property crimes, motor vehicle thefts, vandalism, and the total count of crimes. Extensive experiments on real-world datasets of crimes reported in 11 U.S. cities demonstrated that the proposed framework achieves an accuracy of 73 and 77% when predicting property crimes and violent crimes, respectively.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated