Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 d0i:10.20944/preprints202009.0539.v1

Review

Energy metabolism decline in the aging brain; pathogenesis of

neurodegenerative disorders

Janusz Wieslaw Btaszczyk

Department of Human Motor Behavior, Jerzy Kukuczka Academy of Physical Education,
Katowice, Poland.

Correspondence: j.blaszczyk@awf.katowice.pl

Article for special Issue: Neurodegenerative Disorders and Metabolism of the Aging Brain

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.



mailto:j.blaszczyk@awf.katowice.pl
https://doi.org/10.20944/preprints202009.0539.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020

Abstract

A growing body of evidence indicates that aging of the brain is strictly related to the decline
of energy metabolism. In particular, in older adults, the neuronal metabolism of glucose
declines steadily resulting in a growing deficit of ATP production. The decline is evoked by
deficient NAD recovery in the salvage pathway and subsequent impairment of the Krebs
cycle. NAD deficit impairs also the activity of NAD-dependent enzymes. All these open
vicious circles of neurodegeneration and neuronal death. Some brain structures are
particularly prone to aging and neurodegeneration. These are pathological foci of
neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. This review article
summarizes the impacts and mutual relationships between metabolic processes both on
neuronal and brain levels. It also provides directions on how to reduce the risk of

neurodegeneration and protect the elderly against neurodegenerative diseases.
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1. Energy metabolism

Energy metabolism is the foundation of life [1]. Its role is to meet all organismal energy needs.
The human brain is critically dependent on the supply of energy to meet its high metabolic demands.
The brain consumes approximately 20% of organismal energy although its mass comprises roughly
2% of the body’s mass [2,3]. The energy is used mainly to reverse ion fluxes that underlie the
generation of action potentials, their axonal transmission, and release of neurotransmitters at synaptic
junctions [4-9]. Brain energy production is reliant on the uptake and metabolism of glucose and
oxygen [3,10-13].

Brain activity, especially axonal and synaptic transmission are highly energy
demanding [5,14-17]. The high-energy demand generates the need for a large amount of
oxygen delivered via the bloodstream. The brain consumes, on average, six molecules of
oxygen per molecule glucose [11,12] whereas the number of oxygen molecules in the arterial
blood exceeds the number of glucose molecules by only a factor of 1.5 [11]. During energy
production, the oxygen is almost fully reduced to water, while only 1-2% of the O, is reduced
incompletely to give the superoxide anions [18]. Increasing with age excessive production of free
radicals further worsens the mitochondrial function by causing oxidative damage to macromolecules
[18,19,20-22] leading to neuronal death [16,20,23-26].

Cellular respiration is a set of metabolic reactions and processes that take place in
mitochondria of neurons and glial cells. Mitochondrial activity converts chemical energy from oxygen
molecules and glucose into the water and various type the energies, such as chemical of ATP, thermal,
electric, and biomechanical necessary for waste product removal. Additional energy is allocated to fix
numerous and inevitable errors of metabolic processes that, even on the cellular level, can only be
realized with limited efficiency. Thus, we can evaluate physiological and pathological brain status
based on the overall energy balance [22].

Neurons are unique cells having only a single life. In the neuronal networks of the
basal ganglia, only a marginal number of interneurons are continuously replaced by the
progenitor cells in the process of neurogenesis [27-31]. Neuronal metabolism is the set of
continuous life-sustaining chemical reactions that requires the delivery of nutrients and energy
from outside. Inadequate amounts of essential nutrients, or diseases that interfere with their
absorption, resulting in a deficiency state that compromises cellular growth, function, and
survival. The energy metabolism pathway depends on several factors such as the supply of
substrates and the efficiency of their transport to the cytoplasm [11,32]. Kinetics of all

intracellular reactions depends on the temperature and pH of the cytoplasm [33]. All these
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results in a limited efficiency of the metabolic reactions and some energy reserve must be

allocated for fixing metabolic errors and removal of waste products [34].

Both oxygen and glucose are essential for the energy metabolism of the brain
[11,12,35,36]. The transport of glucose to the brain depends on the concentration gradient
between blood and brain tissue. Therefore, even a large increase in the cerebral blood flow
(CBF) does not substantially change the glucose levels in the brain [32,37]. In contrast, the
cerebral blood flow may control the oxygen availability for the brain [11]. The energy at the
cellular level is necessary for setting resting gradients of ions concentration. In particular, the
neuronal and mitochondrial resting potentials are determined by specific gradients of sodium,
potassium, and chloride ions. The gradients strictly depend on the ATP-controlled the ion
pumps and transporters. Generation and transmission of neuronal action potentials is the most
energy-demanding process.

The energy production and storage in the electric field are specific for mitochondria
[20]. These semi-autonomous organelles, bounded in double-membrane are found particularly
abundantly in axons nearby the Ranvier nodes and synaptic junctions. Distribution of axonal
mitochondria can vary substantially in number, size, and membrane potential depending on
differences in recirculated ATP levels and thus energetic processes [5,6]. Mitochondrial
dysfunctions result in a decline in ATP production, oxidative damage, and the induction of apoptosis,
all of which are involved in the pathogenesis of numerous disorders [18,25]. The accumulation of
mitochondrial DNA mutations accelerates normal aging, leads to oxidative damage to nuclear DNA,
and impairs gene transcription [19,20]. In consequence, it requires intensification of the NAD-
dependent repair enzymes which additionally impoverishes the intraneuronal NAD pool [15,17,38-
41].

Glucose supplies energy to neurons through the glycolytic pathway that converts glucose into
pyruvate, and hydrogen ions:

Glucose + 2 (Pi + ADP) + 2 NAD — 2Pyruvate + 2 NADH + 2 H" + 2 ATP + 2 H,0

Glycolysis is one of the two main metabolic pathways in neuronal energy metabolism. As
glucose enters neurons, it is phosphorylated by ATP to glucose 6-phosphate (G6P). It is a necessary
and irreversible first step of neuronal energy metabolism. The pathway of glycolysis is controlled by
ATP positive feedback. The availability of the ATP-derived phosphoryl groups is the main regulator
of glucose flux to glycolysis. In the process of glycolysis, each molecule of glucose 6-phosphate is
broken down into two molecules of pyruvate, which are then used as a source of energy.

Pyruvate supplies energy to neurons through the Krebs cycle only when oxygen is present. It

is converted into acetyl-coenzyme A, which is the main input for the Krebs cycle in mitochondria. The


https://doi.org/10.20944/preprints202009.0539.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 d0i:10.20944/preprints202009.0539.v1

main synthesis of ATP is initiated by the oxidation of NADH and the reduction of O in the electron
transport chain (ETC) [13]. Humans depend primarily on vitamin B3 as a precursor for nicotinamide
adenine dinucleotide (NAD) synthesis [42]. NAD is the main coenzymes in redox reactions in
mitochondria [43-45]. During the reduction of NAD, the molecule acquires two electrons and one
proton, while the second proton is released into the cytoplasm. In physiological conditions,
neurons can recover in the salvage pathway most of the used NAD, and only limited amounts
of NAD supplemented by de novo pathway [46]. In a normal healthy brain, the level of NAD
exceeds its neuronal needs [47]. The level, however, declines with age and particularly is
reduced in various chronic diseases [40,45,47].

The ETC is a series of complexes that control in mitochondria transfer of electrons from
donors to acceptors via redox reactions. The electrons are taken from NADH, through a chain of
electron carriers, to the final acceptor, oxygen. During this process, two gradients are built upon the
inner mitochondrial membrane. Primary is the oxygen-fixed electrons that result in negative
polarization of the mitochondrial matrix relative to the neuronal cytoplasm. The negative polarization
attracts positively charged protons (H*) towards the outer surface of the inner mitochondrial
membrane. The concentration of electron and proton gradients produces a strong electric field that
presses protons into the inner mitochondrial membrane. The magnitude of the resultant electric field
may eventually force the protons (Coulomb force) to break the inner mitochondrial membrane thus
making electropores ie., the channels of proton current. The process electroporation allows protons
entering the mitochondrial matrix and reacts with the oxygen. The end product of this process is water
and heat. In the case of unbalanced electron and proton currents, some oxygen molecules remain
unused and are precursors of reactive oxygen species (ROS) [22]. While passing the inner
mitochondrial membrane, the proton current is driving a "molecular pump", utilizing the enzyme ATP
synthase, to produce an ATP. It converts the energy of the protons to the chemical energy of ATP.
Theoretically, at least three protons must pass the inner mitochondrial membrane to recover one ATP
molecule.

The ATP recovered in mitochondria is used then as the rate-limiting factor of
glycolysis. The ATP controls the level of glucose phosphorylation, which, in turn, limits the
intracellular glucose concentration and its use by neurons to produce energy and ATP. The
initial process of glucose phosphorylation determines the fate of glucose in cellular
metabolism. Glucose itself may easily diffuse bidirectionally across the cellular membrane
[32]. G6P cannot leave the cytoplasm and must enter the metabolic pathway of glycolysis.
Due to this initial phosphorylation, even in case of an increased level of blood glucose e.g.,
after a meal, only limited by the ATP amount of glucose can be used by neurons in energy
metabolism. A greater level of G6P in addition to the free inflow of oxygen allows adjusting
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ATP production proportionally to neuronal activity increasing the metabolism of glucose
[48]. This also sets a level of neuronal oxygen needs. Both glucose and oxygen metabolic
pathways closely interact forming, what can be named the ATP-glucose-oxygen metabolic
synergy. Other substrates such as lactate support cellular energy metabolism [49,50]. Lactate
dehydrogenase catalyzes the pyruvate and lactate interconversion with simultaneous NADH and NAD
interconversion. In increased concentrations of lactate, the enzyme exhibits feedback inhibition and
lowers the rate of the pyruvate to lactate conversion.

The existence of the ATP-glucose-oxygen synergy in the brain is well documented
experimentally [11,12,35,36,48,50,51]. The activity of metabolites (enzymes and proteins)
associated with glucose supply and glycolysis is mutually tuned by the availability of oxygen
[36]. The lower level of oxygen activates hypoxia-inducible factor 1 (HIF-1) that in turn
upregulates both the GLUT 1 and GLUT3 glucose transporters which are responsible for
basal glucose uptake and activity of glucose 6-phosphate isomerase [36,37,50,52]. Both
transporters intensify anaerobic glycolysis and help to overcome the hypoxia crisis. Similarly,
hypoglycemia augments cellular glucose transport and metabolism, with a specific increase
in the activity of both glucose transporters GLUT-1 and GLUT-3 [50]. GLUT-1 transporters
are located in the endothelial cells lining the brain microvasculature, glial cells, and choroid
plexus, while GLUT-3 is expressed in neurons [50,52]. Both isoforms meet the energy
demands of the brain by transporting glucose into the central nervous system in an insulin-
independent manner [50]. Especially GLUT-3 activity is critical in protecting against
hypoglycemia [32,52]. A transient increase in activity of GLUT-3, after either hypoxic
ischemia or hypoxia, attempts to preserve the cellular glucose supply, thereby protecting
against depletion of cellular ATP stores [50]. Therefore an increase in GLUT-3 is the brain-

protective mechanism that may inhibit neuronal death [16,23].

2. The aging brain

Aging of the nervous system is a complex process that seems to be triggered by the
dysfunction of energy metabolism [1,19,20,24,53-55]. The effects of aging are prominent in the
nervous structures that are the most sensitive to energy deficits. The anatomy, and physiology
of such structures as the cerebral cortex, hippocampus, and the basal ganglia make them prone
to neurodegeneration. They are the primary target of deficient energy metabolism [28,29,56-
59].
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Understanding mechanisms to control body metabolism at the hypothalamus level can
open new perspectives in the prevention and treatment of neurodegenerative diseases [53]
2018]. The hypothalamus produces and secretes neurohormones and thus functional connects
through the pituitary gland the central nervous system with the endocrine system. The
hypothalamus controls hunger, thirst, circadian rhythm, sleep, and body temperature. The
hypothalamus regulates numerous metabolic processes and many functions of the autonomic
and the central nervous system [60]. The lateral hypothalamus, also known as the lateral
hypothalamic area (LHA), is the orexinergic nucleus that has extensive projections throughout
the nervous system. This system mediates several cognitive and motor processes such as
agitation, feeding behavior, digestive functions, pain sensation, control of body temperature,
blood pressure, and many others. Clinically relevant disorders involving dysfunction of the
orexinergic projection system include narcolepsy, motility disorders, or functional
gastrointestinal disorders including visceral hypersensitivity and eating disorders. Sleep
disorders, one of the prodromal symptoms of Parkinson's disease [61,62], are associated with
a marked reduction in the population of LHA orexinergic projection neurons and lowered
level of orexin peptides in the cerebrospinal fluid [3,9,10,62-64].

Hypothalamic neurons regulate systemic energy homeostasis and neuroendocrine
functions.  The hypothalamic-pituitary-adrenal axis regulates stress levels and the
hypothalamic-pituitary-thyroid axis is responsible for metabolism control and regulating
visceral functions. Histaminergic, dopaminergic, serotoninergic, noradrenergic, and
cholinergic nuclei, to which the lateral hypothalamus orexin neurons project. This projection
forms the activating network of the reticular formation located throughout the brainstem,
which determines the subjective quality of life. Also, the projection of the lateral
hypothalamus to the ventral tegmental area (VTA) controls the oxytocin reward system
establishing positive social relationships such as feelings of friendship, love, and sympathy.
Glutamate, endocannabinoids, and neuropeptides (orexin-A and orexin-B), are here the
primary neuronal signaling substances. Pathway-specific neurotransmitters include GABA,
melanin concentration hormone, nociceptin, glucose, dynorphin peptides, and appetite-
regulating peptide hormones (including leptin and ghrelin). It is noteworthy that the
cannabinoid receptor 1 (CB1) is co-localized in many output structures of the projection of
LHA orexinergic neurons, which can explain the universal "miraculous” therapeutic
properties of marijuana, its psychoactive effect, and high efficiency in suppressing convulsive

seizures caused by hypoglycemia or insulin resistance.
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There are only 10,000-20,000 orexinergic neurons in the human brain. Their
population is reduced by nearly 50% in the process of aging and degenerative disease which
may explain why patients with Alzheimer's disease have reduced levels of orexin in the
cerebrospinal fluid. In parallel, there is observed neurodegeneration of the suprachiasmatic
nucleus - another small (containing only 20,000 neurons) - hypothalamic center regulating the
wakefulness/sleep rhythm. Therefore, patients with neurodegenerative diseases suffer from
sleep disorders and circadian rhythm disorders [61,62]. In total, the depletion of the
hypothalamus function in the course of brain aging and neurodegenerative diseases is
associated with mental changes, which are reflected in a decrease in the subjective value of

life and the development of depression.

3. Axonal neurodegeneration

Synaptic transmission is one of the most complex processes in the nervous system.
This process is highly energy-consuming and it is believed that 80% of the energy necessary
for the functioning of the nervous system is used for synaptic transmission and related
processes [5,6]. The key to understanding this phenomenon is the close connection of their
physiological function with metabolic and trophic processes in all active cells (neurons,
muscle, and glial cells). Simply put, active cells are better nourished and kept in better shape
than hypoactive cells. On the other hand, excessive cellular activity is also harmful. It is
accompanied by the phenomenon of excitotoxicity, i.e. programmed death of overactive cells
[65]. This phenomenon has been found, among others, in glutaminergic neurons. Exposure of
neurons to excessive glutamate levels is accompanied by abrupt opening of calcium channels.
The increased influx of calcium ions into the interior of the neuron activates several enzymes
(phospholipases, endonucleases, and proteases) that damage the membranes, cytoskeleton,
and cell DNA. Excitotoxicity is thought to accompany many pathological conditions, such as
strokes, hearing damage through excessive exposure to noise, and any neurodegenerative
disease. Other conditions that can lead to excessive levels of glutamate in neurons are
hypoglycemia and dehydration. Dehydration of the body causes both changes in the pH of the
cerebrospinal fluid and impairs osmotic control in the brain. Neurotoxicity and loss of
neuronal processes induced by amino acids (glutamate and aspartate) is a hallmark of several
neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, amyotrophic

lateral sclerosis, Parkinson's disease, and Huntington's disease. Besides, the excessive toxic
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concentration of glutamate around neurons may occur in hypoglycaemic states. The
excitotoxic effect of glutamate leads to an increase in intracellular calcium ion levels, which
triggers a cascade of pathological reactions that culminate in the death of nerve cells. Studies
show that intracellular calcium signaling is crucial for synaptic plasticity - the cellular
mechanism of learning and memory. Therefore, calcium channel modulators and calcium
signaling control are currently of interest to researchers in their potential use as
neuroprotective mechanisms. Latrepirdine has been found to act as an inhibitor of NMDA
receptors and voltage-gated calcium channels. Latrepirdine inhibition of glutamate-induced
calcium signals may be used to protect neurons from excitotoxicity-induced apoptosis.
Latrepirdine modifies the permeability of mitochondrial membranes and thereby regulates
calcium ion activity in mitochondria. The very high concentration of calcium ions around
neurons compared to their low maintained at the nanomolar level, the concentration in the
cytoplasm, causes not only a very high osmotic potential but also the electrical potential of
divalent calcium ions. Also, the diameter of the hydrated calcium ions is the same as sodium
ions. The accumulation of these three factors causes that the electric field rapidly changing
during the conduction of functional impulses on the cell membrane of neurons causes focal
and rapid changes in the electrical conductivity of the membrane called electroporation. The
results of in vitro tests confirmed that the process of pore formation and their subsequent
clogging may take up to tens of seconds. We cannot explain how the phenomenon of
electroporation works and why it has such a large time constant. We do not know why pore
closing is controlled by ATP levels. The activity of calcium ions is particularly observed
during the pore reclosing stage. Research suggests that electroporation may be associated with
secondary calcium signaling necessary to provide increased somatic and segmental energy
metabolism in neurons. This phenomenon is typical for unprotected myelin cell membranes,
especially the initial segment of the axon, where functional impulses are generated and for

Ranvier nodes.

4. Aging of the brain circulatory systems

The extremely limited capability of brain tissue for the storage of oxygen and glucose
requires the continuous delivery of both energetic substrates by cerebral blood flow (CBF)
[12]. The almost exclusive ATP production via oxidative phosphorylation may suggest that
the CBF response serves both glucose and oxygen delivery increase. Glucose contains a
moderate amount of chemical energy per bond as confirmed by the relatively small energy
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output in glycolysis and the Krebs cycle converting glucose to CO2 and NADH [51]. Only the
oxidative phosphorylation allows for a large release of free energy from oxygen bonds. This
shows that O, rather than glucose, NAD(H), or ATP, is the molecule that provides the most

energy to the brain and is crucial for sustaining its life.

The circulation of blood and cerebrospinal fluid supply the brain with oxygen,
glucose, and nutrients necessary for the life and functioning of neurons. The circulation of
cerebrospinal fluid removes unnecessary and toxic waste. There exists a physiological
mechanism that combines in the brain local activity of neuronal networks with energy supply.
The functioning of the brain’s vascular system depends on the proper activity of neurons
which in turn depends on adequate blood flow. Ischemia or abnormal blood vessel function is
one of the basic causes of metabolic dysfunctions in the aging brain. The neuronal
dysfunctions closely correlate with the development of blood vessel abnormalities, such as

capillary basement thickening and endothelial hyperplasia, which contribute to a decrease in

oxygen supply (hypoxia).

In the aging brain, the efficiency, and selectivity of the brain's vascular bed and of the
blood-brain barrier decline. Microdamages to blood vessels and changes in the permeability
of brain-protective barriers cause depletion or even blockage of the supply of substances
necessary for the proper functioning of neurons. The inefficient or damaged blood-brain
barrier causes undesirable substances and pathogens can invade the brain tissue provoking
local inflammations that intensify degenerative and necrotic processes. Pathological effects of
unsealed the blood-brain barrier and vascular microdamage are usually augmented by
increased blood pressure and type 2 diabetes. Aging strikes also fundamental for the brain
functioning process of waste product removal, resulting in pathological accumulation of
protein deposits. Accumulated intracellular and extracellular deposits worsen both functioning
of individual neurons and neuronal networks. Kinetics of all vital neurochemical processes
drop rapidly which additionally intensifies neurodegeneration. The brain's and neuronal
capability to repair molecular lesions also collapses rapidly. Neurons that have accumulated a
large amount of damaged DNA and misfolded proteins, or those that no longer effectively
repair DNA lesions, enter the process of senescence and apoptosis. Depending on which
region of the brain is the most affected by aging and neurodegeneration, a characteristic set of

clinical symptoms emerges.

NAD-dependent enzymes in the aging brain
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NAD plays a fundamental role as a cofactor in cellular energy metabolism [66]. It
serves as an electron transporter to power oxidative phosphorylation and ATP production.
Besides that NAD is also used by NAD-consuming enzymes such as ADP-ribose
transferases and poly(ADP ribose) polymerases (PARPS), CADPribose synthases, sirtuins, and
NAD hydrolase SARM1 [15,17,38,39,67]. They mediate several intracellular reactions
includes DNA repair, chromatin silencing, transcriptional regulation, metabolic switching,
and calcium mobilization. Sirtuins are NAD-dependent histone deacetylases regulating
metabolic function, longevity, and aging [66,68]. PARP over-activation has been associated
with dopaminergic neuron toxicity and atrophy [69,70], as well as disruption of the
mitochondrial ultrastructure [71].

Studies on sirtuins, whose enzymatic activity is closely related to NAD biosynthesis,
provided extremely interesting data. Sirtuins regulate the metabolic responses of cells and
tissues by adapting them to the level of available nutrients [72]. They also participate in
response to cellular stress and in repairing cellular structure damage caused by their
metabolism disorders. Since the activity of sirtuins is dependent on NAD, maintaining the
physiological level of NAD in cells plays a critical role in their function [43,45,47,73]. The
decline caused by aging and in the course of many diseases impairs the function of sirtuins. A
decline in the energy metabolism of neurons is accompanied by a decrease in their resistance
to stress, an increase in damage to the cytoskeleton along with progressive impairment in
neuronal processes: bioelectric activity and synaptogenesis. The process of neurogenesis
being crucial for forming neuronal networks is also impoverished.

Sirtuins are the main effectors of the cellular response to metabolism changes and
cellular stress. The key function of nuclear sirtuins is to regulate genome homeostasis under
stress. The loss of sirtuin function is associated with genomic instability and deterioration of
cell viability as well as the escalation of neurodegenerative processes. In particular, patients
with Alzheimer's disease have reduced expression of sirtuin 1 (SIRT1). The physiological
activity of SIRT1 can reduce the amount of oligomerized beta-amyloid by increased alpha-
secretase synthesis. Thus, SIRT1 promotes brain networks function and survival [15]. The
decrease in SIRTL1 synthesis in aging neurons of the cerebral cortex and hippocampus impairs
learning and memory, and thus undermines cognitive functions of the brain. Sirtuin 1 also has
an important impact on glucose-induced insulin secretion in pancreatic -cells, which up to a
point maintains normal brain metabolism. Besides, SIRT1 counteracts insulin resistance of

cells in peripheral tissues, including adipose tissue, liver, and skeletal muscle.
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Sirtuin 1 has also been shown to improve vascular function by affecting many of the
pathways important for endothelial function. SIRT1 inhibits the expression of inflammatory
factors, including interleukin-6 (IL-6), monocyte chemotactic protein 1 (MCP-1), intercellular
adhesive molecule 1 (ICAM-1), matrix metalloproteinase 14 (MMP14), and vascular cell
adhesion molecule 1 (VCAM-1). Also, sirtuin 1 improves blood levels of free fatty acids,
triglycerides, cholesterol, and glucose. These protective effects of SIRT1 indicate that it acts
as an anti-atherosclerotic agent that slows down the aging process of the brain and the whole
body. Thus nicotinamide mononucleotide therapy may improve the function of blood vessels
in older people, partly by activating sirtuin 1 [72].

The sirtuins may play a role in alleviating the symptoms of depression induced by
energy metabolism dysfunctions. Under chronic stress, in the dentate gyrus of the
hippocampus, the level of sirtuin 1 and 2 expressions decline rapidly which is accompanied
by symptoms of depression. Supplementation of SIRT1 may exert anti-depressant effects
since it is a potent inhibitor of monoamine oxidase A (MAO-A). Also, increased SIRT2
expression has antidepressant effects. Finally, the mitochondrial activity of SIRT3 is very
sensitive to the decrease of NAD [45].

5. Energy metabolism and neurodegenerative disorders

The etiology of neurodegenerative diseases remains enigmatic; however, evidence for defects
in energy metabolism, excitotoxicity, and for oxidative damage is increasingly compelling [19,16,20,
24,38,53]. Mitochondria are particularly susceptible to oxidative stress, and there is evidence of age-
dependent damage and deterioration of respiratory enzyme activities with normal aging [19,20].

Neurodegenerative diseases are disorders characterized by irreversible and
progressive destruction of the structure and function of the brain [28,55, 58,73,74] Luca et al.
2018. This process usually begins in specific areas of the brain, and depending on it, cognitive
deficits (Alzheimer's disease, frontotemporal dementia) or motor symptoms (Parkinson's
disease and Huntington's disease ) dominate in the clinical phase [56, 64]. Usually, the
occurrence of neurological symptoms is preceded by increasing metabolic dysfunctions, such
as weight gain or loss, which is accompanied by changes in eating habits and preferences.

Several preclinical and clinical data indicate that the modified energy homeostasis
intensifies the progress of neurodegenerative processes [55,62]. The decline of the
hypothalamus function primarily leads to energy homeostasis disorders [55,57]. In brain
imaging studies, hypothalamic atrophy (over 10% by volume) was observed in patients with

Alzheimer's disease [75]. The hypothalamic atrophy appears in the early clinical stages, which
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may suggest that hypothalamic lesions are a significant cause of neurodegenerative changes
[60].

5.1 Proteinopathies and Alzheimer's disease

From a neuropathological perspective, Alzheimer's disease is identified by the
presence of neurofibrillary tangles in the brain, composed of intraneuronal fibrous aggregates
of hyper- and incorrectly phosphorylated tau proteins, and extracellular accumulation of beta-
amyloid [57,73-75]. Under physiological conditions, beta-amyloid is continually produced in
neurons by the sequential action of two proteases: beta and gamma secretases, which cleave
the amyloid precursor protein (APP). This protein is synthesized in the endoplasmic reticulum
and then transported to the plasma membrane. There, enzymes called secretases cut APP into
bioactive fragments. Some of the cleaved APP fragments are transferred then to the vicinity of
synaptic areas, where, during bioelectrical activity, follicular fusion occurs necessary for the
release of neurotransmitters. Thus, APP appears to modulate interactions with intracellular
signaling systems responsible for the growth of axons and dendrites and support for various
functions involved in the maintenance of synapses. In adult brains, APP and its fragments
function as sensing molecules. In response to the neuronal activity, they control cholesterol
homeostasis, the supply of neurotransmitter carriers, and synaptogenesis. These processes are
particularly important in large neurons, in which APP can act as a long-range sensor that
transmits feedback information on synapse functioning and their activity back to the cell
body.

In adult brain neurogenesis, APP plays a role in neuroblast migration. APP activity is
intensified during the maturation of the brain and synaptogenesis in the processes of learning
and memory. These observations suggest that APP plays a fundamental role in the formation
of synaptic connections as well as in the shaping and maintaining neuromuscular junctions.
Since protein synthesis precursor amyloid is regulated synaptic activity, APP and fragments
thereof can regulate neuronal lipid metabolism, necessary for the regeneration of the cell
membrane and mitochondrial membranes, which structure is permanently exposed to micro
damages (micropores) in the course of bioelectric activity of neurons.

The amount of beta-amyloid remaining in brain tissue depends on both the level of neuronal
activity and the efficiency of the brain's cleaning process(es). The decline in the efficiency of beta-
amyloid removal leads to the accumulation of toxic oligomers and the formation of deposits damaging

the structure and functions of the brain. The process of creating beta-amyloid deposits and

neurofibrillary tangles is commonly existing in every aging brain. The glymphatic system is the brain's
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metabolite clearance system connected to the peripheral lymphatic system. Under physiological
conditions, cerebrospinal fluid is pumped into the brain tissue in the rhythm of heart contractions and
next it returns to the ventricular system while simultaneously flushing out waste, including pathogenic
beta-amyloid and tau proteins. The glymphatic system is particularly active during sleep and its
functioning improves with physical activity.

The accumulation of toxic proteins exerts the most destructive effects on areas of the brain
with the highest activity [74]. As a result of proteinopathy, hypoactive neuronal centers emerge that
are destroyed then due to impaired metabolism and reduced energy supply. In the aging brain,
structures with high physiological activity such as the cerebral cortex, hypothalamus, and striatum,
are prone to proteinopathy resulting from the decline of neuronal activity due to age-related insulin
resistance. This process strikes the functioning of the hypothalamus most [76]. Pathologies include in
particular the lateral periventricular nucleus of the hypothalamus, suprachiasmatic nuclei, tuber-
mamillary bodies, and supraoptic nuclei, that all are responsible for the systemic control of energy

metabolism. This closes the vicious circle of brain aging.

5.2 Neurodegenerative processes in Parkinson’s disease

The basal ganglia and the nigrostriatal system is the second area of the brain with high
susceptibility for degenerative changes [29]. Many factors contribute to this increased
vulnerability. Firstly, relatively high energy supply is required to maintain an extremely
extensive nigrostriatal movement memory network [29,77-79]. Motor learning and adaptive
plasticity of the nigrostriatal network rely on the continuous exchange of a fraction of the
striatal GABA interneurons [27,28]. Additionally, the high resting activity of the entire
nigrostriatal system poses a great metabolic challenge. Relatively high energy cost is

necessary to maintain such a network making it prone to neurodegeneration [5,63].

In neurons, most energy is spent on axonal transmission. Such morphological factors
as axonal fiber length, its myelinization, and axonal arborization are the main determinants of
neuronal energetic demands. A single dopaminergic neuron of substantia nigra can form up
to thousands of synapses with GABAergic neurons of the striatum. Also, the structure of
nigrostriatal connections is very dynamic and changes depending on individual motor activity
and motor learning. Hipokinesia reduces energy supply for the nigrostriatal system that
initiates the adaptive process of pruning of unused and unnecessary synapses [17]. The
process of synaptic pruning can be followed by axonal degeneration, and eventually
dopaminergic cell death [28,80]. The main symptom of the nigrostriatal network reduction is

increased muscle stiffness and, consequently, further reduction of motor activity in older
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adults. Depleted motor activity reduces the expression of glia-derived neurotrophic factor
(GDNF) in the striatum, which is important for the synaptogenesis thus functioning of the
entire nigrostriatal network. This causes a further reduction of dopaminergic synapses and the
death of dopaminergic neurons of the substantia nigra. Increasing nigrostriatal interaction
inhibits neurogenesis of GABA interneurons in the subventricular zone that escalates
dysfunction of the striatum and the death rate of dopaminergic neurons of the substantia nigra.
Only fractional, compensatory nigrostriatal synaptogenesis delays the appearance of the first
clinical motor symptoms of Parkinson's disease until the majority (60-70%) of dopaminergic
neurons are destroyed [29]. The results gathered up to date on the pathogenesis of idiopathic
Parkinson's disease suggest that the age-related decrease in nigrostriatal interaction is the
main cause of the motor pathology in the course of the disease. Therefore, the search for new
therapies in Parkinson's disease should now focus on slowing degenerative processes in the
GABAergic striatum and restoring fully functional GDNF synthesis - the main
chemoattractant for dopaminergic synaptogenesis and neurogenesis and migration of GABA

interneurons.

6. Neurogenesis in the aging brain

Understanding the process of neurogenesis in the striatum and identify the factors that
contribute to the continuous renewal of the interneuronal network of the striatum should
facilitate the development of new therapeutic strategies [27-30,81]. The statement that
interneurons are exchanged continuously in the adult brain raises the question of whether this
process can be used therapeutically in the treatment of Parkinson's disease [28,79]. In the
neurogenesis and differentiation of progenitor cells play key role chemoattractants, such as
the neurotransmitter GABA and neurotrophic factors. Especially glial-derived neurotrophic
factor (GDNF) has an impact on neurogenesis in the subventricular zone (SVZ) and
nigrostriatal synaptogenesis as well. This suggests a high potential of GDNF in the treatment

of motor symptoms of Parkinson’s disease.

GDNF is involved in the development of dopaminergic synapses in the nigrostriatal
complex. Thus, it prevents damage to this system and inhibits the death of dopaminergic
neurons of the substantia nigra pars compacta (SNPC). The dopaminergic neurons projecting
to the striatum express two GDNF receptors: the RET receptor tyrosine kinase and the GDNF
family alphal receptor (GFRal). GFRal is the main receptor of the dopaminergic SNPC

neurons. In animal models of Parkinson's disease, the injection of GDNF into the striatum
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allows the recovery of nigrostriatal function by creating new synaptic connections.
Importantly, GDNF acts as a chemoattractant for both the axonal endings of SNPC neurons
and for the activation and migration SVZ progenitor cells [27,82]. It also promotes functional
and morphological differentiation of neuroblasts reaching the striatum. Thus, GDNF signaling
through the RET receptor and GFRal is of fundamental importance for the maintenance of
the functional structure of the striatum and reconstruction dopaminergic nigrostriatal
projection. GDNF through GFRal signaling participates in the growth of axons and promotes
the formation of synapses on striatal GABAergic medium spiny neurons. In particular,
GDNF activity contributes also to the rapid differentiation and incorporation into the striatal
network of GABAergic interneurons. Unfortunately, progress in the development of new
pharmacological based on the GDNF is slow, since this factor does not cross the blood-brain
barrier. However, there is an emerging another possibility. There is growing evidence that
vitamin D increases tyrosine hydroxylase expression levels, suggesting that it can modulate
dopaminergic processes. Vitamin D is a powerful inducer of endogenous GDNF which may
support the survival of dopaminergic neurons. Thus, adjunctive vitamin D therapy may prove
useful in the treatment of Parkinson's disease. Supplementation of vitamin D also helps in

mitigating the effects of insulin resistance in neurons.

The most straightforward GDNF therapeutic effect can be achieved by increasing the
level of a patient's physical activity. Studies in rodents have shown an activity-induced
increase of GDNF expression in several brain structures including the striatum. This result
suggests that the therapeutic effect of the neuroprotective and neurodegenerative GDNF can
be simply controlled by physical activity. Physical activity causes in the nigrostriatal system
synaptogenesis to increase while limits the apoptosis in SNPC neurons. GDNF signaling by
the RET receptor tyrosine kinase has an impact on the integrity and function of the blood-
brain barrier and thus plays a potential role in the survival of neurons of the central nervous
system. Finally, GDNF plays an important role in the activity of the microglia, which suggests
that it can offer protection against neurodegeneration by blocking the inflammatory processes

in the brain.

7. The problem of excitotoxicity

Some NAD can be made via the de novo pathway, starting from the essential amino acid

tryptophan [45]. The kynurenine pathway accounts for the catabolism of ingested tryptophan and is
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the starting point for the biosynthesis of serotonin and melatonin [83,85]. The kynurenine pathway
consists of eight enzymatic steps and one non-enzymatic reaction. At the step catalyzed by the
nicotinamide mononucleotide adenylyltransferases, the NAD de novo biosynthesis and NAD salvage
pathways converge. In the brain, tryptophan is mainly metabolized via the kynurenine pathway [18,83-
84]. A central compound of the pathway is kynurenine, which can be metabolized in two separate
ways: one furnishing kynurenic acid, and the other 3-hydroxykynurenine and quinolinic acid, the
precursors of NAD [18].

Kynurenic acid is one of the endogenous excitatory amino acid receptor blockers with a high
affinity positive modulatory binding site at the AMPA receptor. Kynurenic acid has proven to be
neuroprotective. Depending on the tissue type, kynurenine either continues down its pathway towards
the tricarboxylic acid cycle or is transformed to kynurenic acid in microglial cells or astrocytes,
respectively [85].

Contrary, quinolinic acid, which is a biosynthetic precursor to NAD acts as an agonist of
NMDA receptors and neurotoxin [86]. A defect in energy metabolism may lead to neuronal
depolarization, excessive activation of NMDA receptors accompanied by an increase in intracellular
calcium, and apoptosis [19,20]. There are several neurodegenerative disorders whose pathogenesis has
been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism [18]. The
kynurenine pathway is an additional source of cellular energy as it can degrade about 90% of
dietary tryptophan into NAD. Changes in brain tryptophan concentration directly alter the
rate of serotonin and quinolinic acid synthesis. Quinolinic acid acts as an agonist of the NMDA
receptor setting basic cellular metabolism of neurons. In low concentrations it is fully catabolized
to NAD, thus plays a neuroprotective role. In higher doses, however, it may act as a neurotoxin,
gliotoxin, proinflammatory mediator, and pro-oxidant molecule [85,86]. Especially high levels of
quinolinic acid appear in the brain in response to inflammation. Pathological levels of quinolinic acid
can impair neuronal function and even trigger the apoptosis [16,23,24,26, 85,86]. Increased levels of
quinolinic acid destabilize also the cytoskeleton of astrocytes and blood vessels endothelial cells,
which leads to degradation of the blood-brain barrier. This in turn escalates neuroinflammation and
further increases the synthesis of quinolinic acid. Such a pathological sequence escalates neurotoxic
effects that accompanied neurodegenerative diseases. Chronic mild stress can lead to an
increase in the metabolism of quinolinic acid in the amygdala and striatum and its reduction in
the cingulate cortex. The pathological changes can lead to axonal neurodegeneration in the

involved brain areas [85].

Inhibition of the KYN pathway results in an additional decline of NAD level, which

correlates with a decrease in cell viability, NAD-dependent SIRT1 activity, and CNS function unless
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alternative precursors for NAD synthesis are made available [26,84]. Excessive activation of the
kynurenine pathway, however, increases the neurotoxic activity of quinolinic acids [86]. Quinolinic
acid at nanomolar concentrations can promote NAD synthesis in astrocytes and neurons [84]. High
quinolinic acid concentrations in cerebrospinal fluids have been observed in several neurodegenerative
diseases: Alzheimer's and Parkinson's disease, multiple sclerosis, depression, epilepsy, and
Huntington’s disease (for review [83]). These findings point to the production of quinolinic acid by the
kynurenine pathway as a contributing factor to neurodegenerative diseases.

8. Perspectives for the treatment of neurodegenerative disorders

Nowadays, the recovery of efficient systemic energy metabolism is the most rational target for
maintaining organismal homeostasis, physiology, and life. This hypothesis initiated an intensive
search for strategies targeting brain and neurons energy metabolism in attempts to find
antineurodegeneration therapy. It has been discovered recently that NAD supplementation can
effectively restore energy metabolism on both the cellular and organismal level [12,47,87-89]. It
seems, that supplementing the brain with NAD precursors should ameliorate the age-related functional
brain deficits by counteracting neuronal aging and neurodegeneration. The newest studies have
confirmed the therapeutic potential of supplementing NAD intermediates, such as nicotinamide
riboside, providing a proof of concept for the development of the new effective intervention
[47,53,89]. NAD has a critical role as the substrate of NAD-dependent enzymes including sirtuins and
poly-ADP-ribose polymerases (PARPs) [90]. Whereas PARPs facilitate repair and maintenance of
genomic integrity, the activity of sirtuins regulates protein quality control pathways, in particular
catabolism of the unfolded proteins. Unfortunately, both PARPs and the sirtuins must compete with
ATP for the same, limited, and decreasing with age, the intracellular pool of NAD. Since ATP controls
energy metabolism, its deficiency impairs all metabolic processes their impairment is only a matter of
time. Consequently, the age-related deficit in energy metabolism well explains progressing insulin
resistance, neurodegeneration, as well as the formation of alfa-synuclein inclusions, amyloid plagues,
and neurofibrillary tangles [47,53,91]. Thus the intracellular accumulation of misfolded protein
aggregates is caused by the age-related energy metabolism crisis which is multiplied by the misfolded
protein accumulation. Supplementation of key NAD intermediates can ameliorate a variety of age-
associated disorders related to energy metabolism decline. Supplementation of these intermediates
appears to restore NAD levels in both the nuclear and mitochondrial compartments of neurons [47,89].

The therapy might be only effective in the early stage of neurodegenerative processes.
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