Preprint
Technical Note

Satellite Image Multi-Frame Super-Resolution Using 3D Wide-Activation Neural Networks

Altmetrics

Downloads

308

Views

214

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

24 September 2020

Posted:

27 September 2020

You are already at the latest version

Alerts
Abstract
The small satellite market continues to grow year after year. A compound annual growth rate of 17% is estimated during the period between 2020 and 2025. Low-cost satellites can send a vast amount of images to be post-processed at the ground to improve the quality and extract detailed information. In this domain lies the resolution enhancement task, where a low-resolution image is converted to a higher resolution automatically. Deep learning approaches to Super-Resolution (SR) reached the state-of-the-art in multiple benchmarks; however, most of them were studied in a single-frame fashion. With satellite imagery, multi-frame images can be obtained at different conditions giving the possibility to add more information per image and improve the final analysis. In this context, we developed and applied to the PROBA-V dataset of multi-frame satellite images a model that recently topped the European Space Agency’s Multi-frame Super Resolution (MFSR) competition. The model is based on proven methods that worked on 2D images tweaked to work on 3D: the Wide Activation Super Resolution (WDSR) family. We show that with a simple 3D CNN residual architecture with WDSR blocks and a frame permutation technique as data augmentation better scores can be achieved than with more complex models. Moreover, the model requires few hardware resources, both for training and evaluation, so it can be applied directly from a personal laptop.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated