Preprint
Article

Light Trapping in Single Elliptical Silicon Nanowires

Altmetrics

Downloads

370

Views

269

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

19 October 2020

Posted:

19 October 2020

You are already at the latest version

Alerts
Abstract
Light trapping in single nanowires (NWs) are of vital importance for photovoltaic applications. However, circular NWs (CNWs) can limit its light-trapping ability due to high geometrical symmetry. In this work, we present a detailed study of light trapping in single NWs with an elliptical cross-section (ENWs). We demonstrate that the ENWs exhibit significantly enhanced light trapping compared with the CNWs, which can be ascribed to the symmetry-broken structure that can orthogonalize the direction of light illumination and the leaky mode resonances (LMRs). That is, the elliptical cross-section can simultaneously increase the light path length by increasing the vertical axis and reshape the LMR modes by decreasing the horizontal axis. We found that the light absorption can be engineered via tuning the horizontal and vertical axes, the photocurrent is significantly enhanced by 374.0% (150.3%, 74.1%) or 146.1% (61.0%, 35.3%) in comparison with that of the CNWs with the same diameter as the horizontal axis of 100 (200, 400) nm or the vertical axis of 1000 nm, respectively. This work advances our understanding of how to improve light trapping based on the symmetry breaking from the CNWs to ENWs and provides a rational way for designing high-efficiency single or self-assembled NW photovoltaic devices.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated